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BOOTSTRAP AND WILD BOOTSTRAP FOR HIGH
DIMENSIONAL LINEAR MODELS

By ENNO MAMMEN

Universitdit Heidelberg

In this paper two bootstrap procedures are considered for the estima-
tion of the distribution of linear contrasts and of F-test statistics in high
dimensional linear models. An asymptotic approach will be chosen where
the dimension p of the model may increase for sample size n — ». The
range of validity will be compared for the normal approximation and for the
bootstrap procedures. Furthermore, it will be argued that the rates of
convergence are different for the bootstrap procedures in this asymptotic
framework. This is in contrast to the usual asymptotic approach where p is
fixed.

1. Introduction. In this paper asymptotic results will be presented for
the application of Efron’s (1979) bootstrap to least squares estimates in linear
models where the design vectors are random and the dimension p of the
parameter is large. We consider the linear model

(1.1) Y, o= XD Bpten i=1,...,n.

In this equation Y; , are n observations, X, , are the (observed) random
design vectors belonging to R?, 8, is a p-dimensional parameter and ¢, ,, are
the (unobservable) error variables. We will use an asymptotic approach where
everything may depend on n. Therefore dependence on n will not be indicated
in the notation. We write Y, =Y, ,, X;=X,,, B =8, and ¢ =¢, ,. The
stochastic structure is described by

(X;,Y,) arei.i.d. with finite second moments EY;? <

1.2
(1.2) and EIIXL-II2 < oo,

(1.3) B minimizes b — E(Y; — X['b)”.

We assume that EX,X[ is nonsingular. Then B is uniquely defined.
Furthermore if one additionally assumes that E(Y, — X7B)? > 0, then the
following conditions are always fulfilled after a standardization of the observa-
tions (X;, Y;) and of the parameter S:

(1.4) EX,XT =1,

(1.5) 0 < infEe? < supEe? < .

For instance, to get (1.4) define X, as (EX; X[)~'/2X; and B as (EX; X;/)'/?B.
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256 E. MAMMEN

Then using the new X, and B, for (1.5) replace Y; and B8 by cY; or ¢B,
respectively, where ¢ = [E(Y, — X[B)?]~1/2.

Note that (1.2) and (1.3) imply that EX,e, = EX,(Y; — X7B8) = 0 holds
(because B minimizes the nonrandom quadratic expression b — EY;* —
2bT[EX,;Y,] + bT[EX; X[ 1b). But these assumptions do not imply that

given (X;,..., X,) thee;,i = 1,...,n are conditionally i.i.d.

(1.6) .
with mean zero.

In this paper we treat the case where the assumption of (1.6) is not
appropriate. Take for instance the case where the conditional distributions of
the error variables ¢; are heteroscedastic. Conditions (1.2) and (1.3) also do not
imply that the linear model holds in the sense that E(¢;|X; = x) vanishes for
every x. The parameter B defines the ‘“nearest’ linear model. For instance this
model may be appropriate if we are interested in the best approximation of
x = E(Y;|X; = x) in a given finite-dimensional linear function space (for in-
stance polynomial regression). Also in the usual setup where one assumes that
E(¢;1X;) = 0 holds it may be interesting how bootstrap behaves under violation
of this assumption. Therefore we will in general not assume that E(¢,|X;) = 0
holds.

We are interested in the estimation of the distribution of the least squares
estimator 8 of B,

(1.7) B = (XTX) 'XTY,

where X is the n X p data matrix with rows X! and Y is an n X 1 data vector
with elements Y.

Two bootstrap procedures have been proposed for the model (1.2) and (1.3).
The first one is due to Efron (1982).

BooTsTrRAP. One generates a resample (Xf,Y),...,(X¥ Y*) from
(X, Y),...,(X,,Y,)}. Then one defines

(1.8) f* = (X*TX*) ' X*Ty*

and one uses Z*(Vn (B* — B)) as an estimate of _Z(Vn (B — B)), where
Z*(...) denotes the conditional distribution .Z(...|X,,...,X,,Y;,...,Y,)
and where X* is the n X p data matrix with rows X;” and Y* is an n X 1
data vector with elements Y.

The consistency of this procedure has been proved in Freedman (1981) for
the case of fixed dimension p. A second possibility of bootstrapping has been
considered by Wu (1986) [see also Beran (1986)]. This resampling procedure
has been proposed for the case that the additional assumption E(e;|X;) = 0 is
appropriate. Nevertheless we will study this procedure also for the case that
this assumption is violated. It proceeds as follows.
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WiLp Bootstrap. First one estimates #(¢;lX,..., X,,) by an arbitrary
distribution F with
(1.9) E(ZIF) = o,
(1.10) E(Z*F) = &,
(1.11) E(ZF) = &.

Then one generates independent & with £(¢/) = F and one lets
(1.12) Y, W= X8 + £V, i=1,...,n
BY is the least squares estimator based on the resample

(1.13) BY = (XTX) 'XTYV.

We call this bootstrap procedure wild bootstrap because n(!) different
distributions _#(¢;|X;) are estimated by only n observations. The condition
(1.11) has been introduced by Liu (1988) and Hirdle and Mammen (1990) to
improve the rate of convergence of the bootstrap estimate. Consistency of this
bootstrap has been proved by Liu (1988) for a special model, who also gives
some heuristic arguments that the bootstrap estimate of the distribution of
the studentized least squares estimator converges with rate 1/n. In Héardle
and Mammen (1990) an example (goodness-of-fit test of a parametric versus a
nonparametric regression curve) is given for which Efron’s bootstrap does not
work, but where wild bootstrap is consistent. For other applications of wild
bootstrap in nonparametric regression see Hiardle and Marron (1991), Cao-Abad
(1991) and Cao-Abad and Gonzales-Manteiga (1990).

Here we will consider three constructions of F If one assumes that F puts
mass only on two points, then F, = _A(Z), where Z, = —(J5 — 1)é,;/2 with
probability (Y5 + 1)/(2V5) and Z, = (\/7 + Dé,/ 2 with probability 1 —
(V5 + 1)/(2V5). In the other constructions we put Z; = £,U,, where -Z(U,)
does not depend on i and where EU, = 0, EU? = EU; 5~ 1. We consider two
choices of .£(U,). First one may put U, = V;/ V2 + (V2 — 1)/2, where the Vs
are independent N(0, 1)-distributed variables. Another choice would be to
define U; as U, = (8, + V; 1/ V2X8, + V, 5/ V2) — §,5,, where the V; ;’s are
independent N(0, 1)- distributed variables and where 8, =@/4 + \/_— 7/ 12)1/ 2
and &, = (3/4 — \/_ 7 /12)"/2. In the sequel we will always assume that one of
these three constructions of F has been used. In our simulations we have
used the last construction. For further constructions of F see also Liu (1988).

In this paper we will use an asymptotic approach in whlch the dimension p
of the linear model and of the design vectors Xj,..., X, may depend on the
sample size n. We will also allow the dimension p to grow with the sample size
n. This feature is important because in many applications models are used
where the dimension p is not small compared with n. Then an asymptotic
approach in which p is fixed is misleading because the high dimensionality of
the model is lost asymptotically. Compare, for instance, bootstrap in our model
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(1.1) and (1.2) with bootstrap in a linear model with nonrandom design and
ii.d. errors. The differences between bootstrap in these models can be made
clear by an asymptotic approach with increasing p. In our model bootstrap is
based on resampling from the (p + 1)-dimensional tuples (X;, Y;). For large p
bootstrap does not work always satisfactorily here (see the simulations in
Section 3) because it has to mimic a complex stochastic structure of high
dimensional distributions. The situation is quite different in linear models
with nonrandom design and i.i.d. errors. There bootstrap (based on resampling
from the residuals, see Section 4) mimics the relatively simple stochastic
structure of one-dimensional i.i.d. error variables and for least squares esti-
mates bootstrap works under weaker conditions than those which are neces-
sary for the classical normal approximation. This has been pointed out in an
asymptotic approach with increasing p by Bickel and Freedman (1983): The
Mallows distance between the bootstrap estimate and the distribution of the
least squares estimate converges to 0 if p?/n — 0. Furthermore for linear
contrasts of the least squares estimate bootstrap works if p/n — 0. The
results of Bickel and Freedman (1983) have been generalized to M estimates
in Mammen (1989) [for simulations see also Mammen (1992)]. Asymptotics
where p may increase have been also proposed for linear models in Huber
(1981), Shorack (1982), and Portnoy (1984, 1985) and for loglinear models in
Haberman (1977a, b), Ehm (1986, 1991), Portnoy (1988) and Sauermann
(1989). In this paper we will use this approach to explain the different
performance of bootstrap, wild bootstrap and normal approximation. For a
comparison of different resampling procedures in linear models with fixed
dimension p see also Liu and Singh (1992).

We will make assumptions on (the tails of) the distributions of X; which
ensure that the random p X p matrix n~ 'Y ; X, X7 is invertible with high
probability and that (n7'X7_, X, X7)"! = (EX,X7)"'. The conditions will
exclude the interesting case that some observations become very influential
compared with the other observations (leverage points). We have not been able
to state asymptotic results in an asymptotic framework which admits increas-
ing dimension p and the occurrence of leverage points. We conjecture that this
may be involved already for fixed dimension p.

This paper is organized as follows. In Section 2 we will show that for linear
contrasts bootstrap and wild bootstrap work for high dimensional models in
the whole range of the validity of asymptotic normality. In the third section
the accuracy of these bootstrap procedures and of the normal approximation
will be compared by using formal Edgeworth expansions and simulations. In
Section 4 we will show consistency of bootstrapping an F-test statistic under
conditions which in general do not imply the validity of the approximation by
an F-distribution. This will also be done for bootstrap in a linear model with
nonrandom design and i.i.d. errors. The proofs of the theorems are given in
Section 5.

2. Consistency of bootstrap for linear contrasts. In this section the
bootstrap of the distribution of linear contrasts c¢?(3 — B) will be considered.
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It will turn out (see Theorem 1) that bootstrap estimates consistently the
unconditional law -#(Vn ¢T(B — B)) under weaker assumptions on (the dimen-
sion of) the model than those which are necessary for wild bootstrap and
normal approximations. As in the introduction we denote Z(...|X;,..., X,,
Y,...,Y )by £*(...). d, is the Kolmogorov distance (sup norm between the
distribution functions).

THEOREM 1. Choose ¢ € R? with |lc|ll = 1. Consider a linear model
(1.1)-(1.3) which is standardized such that (1.4) and (1.5) hold. For a fixed
8 > 0 assume that

(2.1) p'*®/n -0,

(2.2) sup sup Eld7X,|* (1 + &?) < =,
n=1|dl=1

where K is the smallest integer greater than or equal to 2/,
(23)  E(c"X,)'e¥[(c"X,)"? 2 yn| > 0 for every fived y > 0.

Then

(2.4) d(£*(VneT(B* = B)), £ (Vnc™(B — B))) » 0 (in probability),
if E(e,X,) = 0 or if 6 > 1/3,

(2.5) dw(./*(\/;cT(BW - B)), £(Ync"(B - /3))) — 0 (in probability),
if E(s,)X,) = 0 or if 6 > 1.

Note that for decreasing & condition (2.1) becomes weaker and condition
(2.2) becomes stronger. We conjecture that the moment conditions in (2.2) may
be replaced by weaker but more complicated conditions on the distribution
tails of the design vectors. For instance for the case that the elements of X;
are i.i.d. the results of Yin, Bai and Krishnaiah (1988) suggest that it suffices
that the fourth moments of the elements of X, are bounded.

Given the conditions (2.1) and (2.2), the Lindeberg condition (2.3) is neces-
sary for the asymptotic normality of vn ¢7(8 — EB). This follows from Lemma
3 in Section 5. Therefore Theorem 1 shows that, given (2.1) and (2.2),
bootstrap and wild bootstrap work in the whole range of the validity of
asymptotic normality of Vn ¢7(8 — ER).

If E(¢;X;) #+ 0 in general, the bias vn ¢T(EB — B) is of order p/Vn (see
Lemmas 2 and 3 in Section 5), which may tend to infinity if & < 1. Then for
VneT(B — B) a mean zero normal approximation and wild bootstrap fail
whereas bootstrap works as long as § > 1/3 (ie., p*/n® — 0). Therefore
bootstrap works under weaker model assumptions than wild bootstrap (which
is natural by the construction of these procedures). However, in Section 3 we
will see that this model robustness of bootstrap must be paid for by a slower
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rate of convergence than wild bootstrap (for the estimation of the studentized
estimator) if the additional model assumption E(e;|X;) = 0 holds.

Under the assumptions of Theorem 1 bootstrap and wild bootstrap esti-
mates also consistently the conditional law Z(VncT(B — B)IX Leee, X, if
additionally E(¢;/X;) = 0 holds or if § > 1 (i.e.,, p?/n — 0). This holds because
under these assumptions

d(Z£(Vne"(B - B)Xy,...,X,), Z(Vnc"(B—B)))—0

(in probability). To see this, note that the conditional and the unconditional
law converge to the same normal limit N(0, E(c7X;)%?). For the uncondi-
tional law this follows from Lemmas 2 and 4 in Section 5. For the conditional
law one argues similarly as in the proofs of Lemmas 4* and 6* in Section 5.

If E(¢,1X;) = 0, then for the study of the wild bootstrap another approach
may be more appropriate than that outlined in Theorem 1 and in its proof.
Consider the case that given a sequence of realizations of (X,,..., X)) the
conditional distribution of ¢”(8 — B) can be approximated by a normal distri-
bution. This would imply the Lindeberg condition. Then the Lindeberg condi-
tion holds also for the conditional law of ¢”(BW — B) (see Lemma 6*) and
under weak additional assumptions the same normal approximation works
also for the conditional law of ¢7(8" — B). This would entail that wild
bootstrap approximates Z(VncT(8 — B)IX,,..., X,) consistently nearly as
long as a mean zero normal approximation works.

3. Accuracy of the bootstrap. In this section the cases will be studied
more closely where bootstrap and normal approximations work. We conjecture
that for high dimensional models wild bootstrap is a more accurate estimate of
the distribution of vVn ¢7(8 — B) than bootstrap if the bias Vn cT(EB — B) is
not too large. The accuracy of bootstrap and normal approximations will be
compared by a formal Edgeworth expansion and by simulations. For deriving
the formal Edgeworth expansion we assume that the linear model holds in the
sense of E(e;|X;) = 0. Then wlo.g. EB =B. We will give no proof of the
validity of the Edgeworth expansion. We will show the rates of convergence
only for the bootstrap estimates of the first four moments of a linear contrast
¢T(B — B) and we will use these results for an heuristic study of bootstrap
based on the assumption that the formal second order Edgeworth expansion
holds for ¢”(8 — B), ¢T(BY — B), ¢T(B* — B) and their studentized counter-
parts. Then one gets for them a first order Edgeworth expansion with the
following error term: P(Z < x) = ®(%) + y(ZX1 — £®)e(x) + O(8(Z)), where
& = (x — EZ)var(Z)~V2, y(Z) = (1/6)EZ® and 8(Z) = EZ* — 3 + y(Z)? with
Z =(Z — EZ)var(Z)~1/2. A higher order analysis for wild bootstrap based on
Edgeworth expansions can be found in Liu (1988) for a one dimensional linear
model and in Cao-Abad (1991) and Cao-Abad and Gonzales-Manteiga (1990)
for nonparametric regression. For a simple approach of a higher order analysis
of bootstrap which does not use Edgeworth expansions see also Mammen
(1990).
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For the analysis of bootstrap we consider the moments of the following
expansions of Vn ¢T(8 — B) and \/;cT(B* - B):

2

3.1 ,,= Y cTA"— Y X¢,,
(3.1) px r )
2
(3.2) 0, = % TA*" ZXL*
h=0 n

where A=1- (1/n)L?_, X, X" and A* =1 — (1/n)Zi=1 XHXHT.

THEOREM 2. Choose ¢ € R? with |lc|ll = 1. Consider a linear model with
(1.1)-(1.5). Assume additionally E(e;|X;) = 0 and

(3.3) p'*t®/n > 0 forafixed 6 > 0.
If the following holds for large enough C,, C, and C5 > 0 (depending on §)
(3.4) sup E(IIX,1l/vp )" < +,
n

(3.5) sup sup E(dTXi)C2 < +o,

n|ldli=1
(3.6) supElgilc3 < +oo,
then "
(3.7) é = \/;cT(fi —B) +op(p/n),
(3.8) = Vnc"(B* - B) + op(p/n).
For the moments of the stochastzc expansions Bc,n and Ojjn one gets
(3.9) E*§}, = Op(p/n),
(3.10) var*(ézn) - var(éc,n) =O0p(n~"? +p/n),
(3.11) w5(6r,) — ma(b.,,) = Op(n=' + p/n®?),
(3.12) wi(62,) — 3var*(8%,)" = 0p(n7?),
(3.13) wy(8..,) - 3var(f, ) = 0(n"Y).

Here for j =3 and j = 4 the quantities n;, i and var* are defined as
wni(Z) = E(Z - E(Z))), wi(Z) = E*(Z - E*(Z))J) and var*(Z) = E¥(Z —
E"‘(Z))2 where E*(Z) = E(ZIXl, X, Y, L, Y.

Theorem 2 can be used for an heuristic study of the accuracy of the
bootstrap. Equation (3.10) suggests that the sup norm between the distribu-
tion function of Vnc”7(8 — B) and the bootstrap approximation is of order
Op(n~'2 + p/n). This rate of convergence may be very slow for large p. For
many cases it has been proposed to bootstrap the studentized estimator to
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increase the rate of convergence [see, e.g., Beran (1987)]. However, (3.9)
sugests that the rate of convergence of the bootstrap approximation of the
studentized linear contrast is of order Op(p/n). Note that here for large p,
p > Vn , studentization does not increase the rate of convergence.

The situation is quite different for wild bootstrap. Conditionally on
(X,,...,X,,Y,...,Y) the estimate Vn c”(8" — B) is a sum of conditionally
independent zero mean variables. This simplifies the calculation of moments
(and would also make a rigorous proof of the Edgeworth expansion easier).
Because the moments of the statistic vn ¢7(8 — B) may not exist under our
assumptions we consider conditional moments given the following event H =

= {The maximal absolute eigenvalue of X”X/n — I is bounded by (p/n)}
for an ¢ with 0 <e < 1/2.

THEOREM 3. Choose a fixed ¢ with 0 <& < 1/2. Then under the assump-
tions of Theorem 2 with appropriately chosen C,, C, and C5 > 0 one gets for
every fixed k < 0,

(3.14) P(H,)=1-0(n™"),

(8.15) varyy(n/%T(B" — B)) — vary(n'/2%T(B — B)) = Op(n"/* + p/n),
(3.16) 43, u(n 27 (BY = B)) = o u (/7" (B - B)) = Op(n" + pn=?),
(3.17) o, (027 (B = B)) = Op(n=12),

(3.18) g g (n'/2c" (B — B)) - Bvarg(n'/%T (BY = B))" = 0p(n ™),

(3.19) ,u,4,H(n1/2(:T(BA - B)) - 3varH(n1/ch(f2 - B))2 =0p(n7 1.

Here forj = 3 and j = 4 the quantltzes K b» K5 5, vary and varj; are defined
as u; y(Z) = E(Z — E(ZIH)Y|H), 7y H(Z) E}((Z - E}(2)))), vary(Z) =
E((Z E(ZIH)?|H) and var}(Z) = E}(Z — E}(2))?, where E}(Z) =
E(ZIH, X,,...,X,,Y,,...,Y,)and H=H,.

Theorem 3 suggests that wild bootstrap of an unstudentized linear contrast
has the same rate of convergence as bootstrap. But studentization leads always
to an improvement of the rate of convergence of wild bootstrap. Then wild
bootstrap produces approximations of order Op(n~! + pn~=3/2). For studenti-
zation one may use the variance estimate 62 = var”(VncT8%) =
1/n)Lr, (c"XTX/n)"1X,)2(Y, — X[B)?. This choice of ¢2 is asymptotically
equivalent to the bootstrap variance estimator (see the proof of Lemma 4* in
Section 5). The poor rate of convergence of bootstrap for the studentized linear
contrast comes from a bias effect [see (3.9)]. Therefore this rate does not
depend on the choice of the variance estimator 62 (as long as 62 fulfills
certain regularity conditions). Because of (3.15) the accuracy of the normal
approximation N(0,62) is Op(n~1/% 4+ pn~1). The different rates of conver-
gence are summarized in Table 1.
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TaBLE 1
Rates of convergence of the bootstrap procedures and the mean zero normal approximation under
the assumption E(e,1X,) = 0

Estimation of ZGneTB - B)) ZGnet@ - ) /6,)
Normal approximation N(0, 6,2) Op(n=12 + pn=1)
Wild bootstrap Op(n=12 + pn=1) Op(n~! + pn=3/2)
Bootstrap Op(n=Y2% + pn=Y) Op(pn=1)

We have also compared bootstrap, wild bootstrap and normal approximation
in a simulation study. The results are displayed in Figures 2-5. We have
considered the following model. The sample size n is 50 and the dimension p
is 5. The design vectors are defined as

Xi1=]' and le=UljZl/2’ i=1,...,50;j=2,...,5

and for different choices of y = (y,, v, ¥3) the observations are put as
Y, = 7@ + v2Q,V; + 75V,

where @, = (IX,I* - 1 — EZ?).

The variables U, o,...,Usg s Vis---5 Vs, Z1,. .., Z5 are independent with
the following dlstrlbutlons The U, ;’s have a standard normal distribution
N(0,1). The distribution of the V s is a mixture of normal distributions:
(1/2)N(1/2,(1.2)%) + (1/2)N(— 1/2 (0.7)%). For a plot of the error density
see Figure 1. The Z,’s are uniformly distributed on the interval [1, 3]. We have

.2.00 -1.50 -1.00  -0.50 0.50 1.00 1.50 2.00

F1Gc. 1. Density of the error variables €, in the simulations.
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.0124

Fic. 2. Monte Carlo estimates of the expected squared error of estimates of the distribution
function of an unstudentized linear contrast and a studentized linear contrast, plotted against the
distribution function (Model I, p = 5, ¢ = ¢1): A wild bootstrap estimate; O bootstrap estimate; +
normal approximation; & wild bootstrap estimate of the studentized linear contrast; O bootstrap
estimate of the studentized linear contrast.

used the following choices of y:
vy=(0,1,1) (Case I),
vy =(1,0.25,1) (Case IT).

In case I the linear model also holds in the sense of E(g;X;) = 0 but the
error variables ¢; are conditionally heteroschedastic. In case II the conditional
expectation E(g;|X;) does not vanish. We have made 1000 simulations. Every
bootstrap resampling and every wild bootstrap resampling uses 1000 replica-
tions. We study the estimates for the distribution function of two linear
contrasts (studentized and unstudentized) based on bootstrap, wild bootstrap
and normal approximation with estimated variance. The following two linear
contrasts ¢7(8 — B) have been simulated: ¢ = ¢, = (1,0,...,0)T and ¢ = ¢, =
(0,1,0,0,0)7. In Figures 2-5 the Monte Carlo estimate for the expected
squared error of these estimates are plotted against the distribution function
of the linear contrasts ¢T(B8 — B) or of the studentized linear contrasts
cT(B - B)/6,. In Tables 2-5 the Monte Carlo estimates for the expectation
and the standard deviation are given at the 10% and the 90% quantiles.

We draw the following conclusions from our simulations.

1. Consider first the case of the first linear contrast c; in case II [y =
(1,0.25,1)]. In this case ¢T(B — B) has a large bias: EcT(B —
B)/(var(cTB))/2 = —0.77. The bootstrap and wild bootstrap estimate (and
the mean zero normal approximation) of the distribution function are
shifted compared with the real distribution function. The bootstrap esti-
mate gives here the best approximation. This is in accordance with Theo-
rem 1, which shows that bootstrap is more robust against departures of
E(e;1X;) from 0.
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Fig. 3. Monte Carlo estimates of the expected squared error of estimates of the distribution
function of an unstudentized linear contrast and a studentized linear contrast, plotted against the
distribution function (Model I, p = 5, ¢ = ¢y): & wild bootstrap estimate; O bootstrap estimate; +
normal approximation; & wild bootstrap estimate of the studentized linear contrast; O bootstrap
estimate of the studentized linear contrast.

2. The situation is quite different for the second linear contrast c,. c¢Z(8 — B)
has only a small bias EcI(8 — B)/(var(cIB)/2 = —0.009. Here one has a
similar picture as in case I. The location of the real distribution is estimated
more accurately by all estimates. The bootstrap estimate has a large
variance compared with the wild bootstrap estimate (see Tables 2, 3 and 5).
The wild bootstrap estimate of the studentized linear contrast produces
here the best approximation.

Fic. 4. Monte Carlo estimates of the expected squared error of estimates of the distribution
function of an unstudentized linear contrast and a studentized linear contrast, plotted against the
distribution function. (Model II, p = 5, ¢ = ¢;): A wild bootstrap estimate; O bootstrap estimate;
+ normal approximation; < wild bootstrap estimate of the studentized linear contrast, O
bootstrap estimate of the studentized linear contrast.
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Fic. 5. Monte Carlo estimates of the expected squared error of estimates of the distribution
function of an unstudentized linear contrast and a studentized linear contrast, plotted against the
distribution function (Model II, p = 5, ¢ = ¢,): & wild bootstrap estimate; O bootstrap estimate;

+ normal approximation; <> wild bootstrap estimate of the studentized linear contrast; O
bootstrap estimate of the studentized linear contrast.

TABLE 2
Monte Carlo estimates of the expectation (first row) and standard deviation (second row) of
estimates of the distribution function of an unstudentized linear contrast (columns 1 and 3)
and a studentized linear contrast (columns 2 and 4) at the 10% and 90% quantiles
(ModelI, p =5,c =c¢;)

10% quantile 90% quantile

1) 2) (3) 4)
Bootstrap 0.083 0.094 0.900 0.866
0.073 0.063 0.071 0.062
Wild bootstrap 0.068 0.075 0.919 0.877
0.053 0.014 0.057 0.017

Normal approximation 0.084 — 0.899 —

0.063 — 0.067 —

TABLE 3

Monte Carlo estimates of the expectation (first row) and standard deviation (second row) of

estimates of the distribution function of an unstudentized linear contrast (columns 1 and 3)

and a studentized linear contrast (columns 2 and 4) at the 10% and 90% quantiles
(Model I, p = 5, ¢ = cy)

10% quantile 90% quantile
1) (2) 3) 4)
Bootstrap 0.080 0.112 0.906 0.870
0.085 0.076 0.089 0.079
Wild bootstrap 0.060 0.080 0.928 0.896
0.061 0.024 0.067 0.027
Normal approximation 0.084 — 0.900 —

0.080 — 0.085 —
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TaBLE 4
Monte Carlo estimates of the expectation ( first row) and standard deviation (second row) of
estimates of the distribution function of an unstudentized linear contrast (columns 1 and 3)
and a studentized linear contrast (columns 2 and 4) at the 10% and 90% quantiles
(Model II, p = 5, ¢ = ¢;)

10% quantile 90% quantile

(1) (2) (3) 4)
Bootstrap 0.089 0.076 0.900 0.876
0.070 0.041 0.036 0.019
Wild bootstrap 0.028 0.009 0.848 0.769
0.028 0.003 0.050 0.016

Normal approximation 0.046 — 0.821 —

0.039 — 0.058 —

3. Consider again case I and the second linear contrast ¢, in case II. The wild
bootstrap estimate works much better here for the studentized linear
contrast than for the unstudentized contrast. This is not true for the
bootstrap estimate (consider also the tails of the distributions in Figures 2,
3 and 5). Furthermore, in other simulations in Mammen (1992) bootstrap
of the unstudentized estimate works slightly better than bootstrap of the
studentized estimate. Note that this contradicts the usual higher-order
results for fixed dimension p, which say that studentization improves the
rate of convergence of bootstrap. However, this is in accordance with our
discussion based on Edgeworth expansions, where we have argued that
studentization of the linear contrast does not lead to a faster rate of
convergence of the bootstrap estimate if the dimension p is large.

4. Note that also in case II for ¢ = ¢, wild bootstrap is preferable to bootstrap
although in this model the departure from the linear model is drastic:
E(¢,1X;) is of larger order than the conditional standard deviation
(var(e;|X;))/? of the error variables.

TABLE 5
Monte Carlo estimates of the expectation ( first row) and standard deviation (second row) of
estimates of the distribution function of an unstudentized linear contrast (columns 1 and 3)
and a studentized linear contrast (columns 2 and 4) at the 10% and 90% quantiles
(Model I, p = 5, ¢ = ¢3)

10% quantile 90% quantile
(1) (2) (3) 4)
Bootstrap 0.069 0.102 0.928 0.899
0.068 0.064 0.068 0.065
Wild bootstrap 0.049 0.077 0.949 0.925
0.044 0.023 0.045 0.023
Normal approximation 0.073 — 0.924 —

0.063 — 0.064 —
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4. Bootstrapping F-tests. Bootstrap may be used to estimate critical
values of an F-test statistic. In this section we will show that bootstrap works
in high dimensional linear models under weak conditions (see Theorem 3).
Note that in our model (1.1)-(1.3) in general the approximation by an F-distri-
bution fails.

For linear subspaces H, c H; of R”, 0 € H,, we consider the testing
problem B € H, versus B € H,. The F-test statistic for this testing problem
is defined by

_ MY — I,Y1%/(py — po)
IY — IL,YII?/(n — py)

where (for i = 1,2) II,Y is the projection of Y onto L, = {zlz; = Xij for
b€ H,} and p; is the dimension of L,. Denote the least squares estimator
under the hypotheses B € H, by B,. For the determination of critical values
we want to estimate the distribution of 7' for parameters B in the hypotheses
H,. Furthermore on the alternative 8 € H; \ H, the bootstrap estimate of
the distribution of T should converge to the distribution of 7' under a
parameter B, which lies in the hypothesis H,. This would guarantee a
satisfactory power of 7' when the bootstrap critical values are used.

In the next theorem we will show that bootstrap and wild bootstrap work
after the following slight modifications:

(4.1a) {(X},Y*)}is aresample from {(Xi, Y, - X7B, + X,Tﬁo)}.

The conditional variance and the conditional third moment
(4.1b) of &Y are (Y; — X7B,)? and (Y, — X7B,)® (respectively). The
Y,V are defined as Y,V = XT3, + &¥.

Using these bootstrap observations one can construct test statistics

L _ (L = T) (Y I/(py — po)
I(I = T,) (Y*) |/ (n = py)

pw_ 10 =T ) /(2 — po).
I(1-m)(X™) I/ (n = py)

THEOREM 4. Assume (1.1)-(1.5) for B € H,, with E(¢;X;) = 0. Assume
additionally that for a fixed & > 0,

(4.2) pi*/n -0,

(4.3) sup  sup E(dTXi)4K(1 +e2) <o,
n=1|ldli=1,deH,
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where K is the smallest integer greater than or equal to 2/8,
(4.4) pP1ypP1 —po/n =0,

(4.5) sup supE(dTXi)4ef < o,
n>1 d

where the second supremum is taken over d € H, N Hy with ||d|l = 1. Then
the following holds for the resampling plans (4.1a) and (4.1b):

(4.6) d(Z*(T*), Z£(T°) = 0 (in probability),
(4.7 d(ZL*(TY), Z£(T°)) - 0 (inprobability),
where

70 (11, — T,)(Y - XB)||2/(p1 — Do)
I =)D I°/(n = p1)

Note that

o _ (11, — Ho)el/(p1 — po)
I(I = y)e|/(n - py)

whether H, is true or not and that if 8 € H,, then T = T°. Therefore
bootstrap and wild bootstrap estimate the distribution of T' consistently on the
hypotheses H,. On the alternative H, the wild bootstrap and the bootstrap
estimate converges to the distribution of 7' under a distribution with 8 =0 €
H,. For the validity of the approximation by an F-distribution in general one
has to assume additionally that E(e2|X;) = Ee2, which is not necessary for the
bootstrap and the wild bootstrap.

If p; — p, is bounded, then in Theorem 4 it suffices to assume instead of
(4.5) that for every y > 0 and d, € H, n HYf with [|d,ll = 1:
E(dTX,)%2I[(dT X,)%2 > yn] — 0. For the case of p, — p, = =, (4.5) can be
replaced by the weaker assumption sup,, ., (p; — po) 2E lIXi,zll‘ls;1 < o, where
X, , is the projection of X; onto Hy NH;.

For F-tests we consider here also the homoscedastic model (1.6). Instead of
looking at conditional laws given (Xj, ..., X,,) we assume now that X,,..., X,
are nonrandom. If assumption (1.6) held, one could apply the bootstrap which
is based on resampling from the centered residuals £, — £. [Efron (1982)].

Here &, = Y, — X[, are the residuals and é.= (1/n)X7_, &,.

BoorsTrAP (Residual resampling). One generates a resample ¢7,..., ¢y
from {\/n/(n -py (& —8), ..., \/n/(n —-py) (&, — €)). Put €®°=
(e?,...,e2)T. Then the bootstrap observations are generated by

(4.8) Y®=X3, + £°.
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Using the bootstrap observations (X, Y;®),...,(X,, Y,?) one constructs

2
I(1, - 1) (¥Y2) /(21 = o)
3 .
Iz =)'/ (n = p1)
Now on the hypotheses .Z(T') is estimated by .Z*(T ®).

®=

This is a slight modification of the procedure in Efron (1982) where it has
been proposed to resample from {§;, — £,..., £, — £.}. In the following theorem
we use the following Mallows distances d o, v) = infl(Ell X — Y9/
(X)) =p, A(Y)=v}and d(u,v) = 1nf{(E[1nf(|lX Y1 DDV2 A(X) = p,
Z(Y) =v}.

THEOREM 5. Assume (4.8) and
(4~9) Yz = XiTB + &,

where B € H, and ¢, are i.i.d. with Ee; =0 and where Y7 X;XT is
nonsingular. We make the following assumptions:

d(u, 4) = 0 (in probability), where u = £ (¢;) and i is the

(4.10) empirical measure i = (1/n)L}_, 3, ,

(4.12) 0 < infEe} < supEe} < c.
n n

Then

(413) d(L*((p1 —P0)*T®), £((p1 — Po)"/*T°)) = 0 (in probability),

dy-2* (|1 = ) (X*) P/ (p1 — P0) ),

(4.14) ,
Z(I(T1, = To)(Y = X8)[*/(p1 = Po)*?) = 0 (in probability).

It can easily be seen that condition (4.10) holds if the distribution of ¢; does
not depend on n and Es! is bounded. Note that in our notation everything
may depend on n.

Statement (4.13) makes sense because (p; — po)l/ 2 is the right norming
factor: Note that IKI — I)MI?/(n — p,) = Ee?2 + Op(n~/?) and |(II; —
XY — XBI?/(p, — po) = Ee? + 0p((p, — po)~ 1/2) (see the proof of Theo-
rem 5).

If one would resample from {&§, — &,...,&, — £} instead of

{yn/(n—py) ¢, - . yn/(n —p,) (€, — £)}, then for the consistency

of bootstrap in (4. 14) one has additionally to assume /p; — pop,/n — 0.
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This result may be compared with the necessary conditions for the validity
of the approximation of .Z(T') by an F-distribution. It can be seen that—given
(4.11) and (4.12)—for bounded p, — p, it is necessary and sufficient that the
maximal diagonal element of (II; — II;) converges to 0. Note that this condi-
tion is not necessary for the bootstrap.

5. Proofs.

Proor oF THEOREM 1. In the proof of Theorem 1 we will show that
(2.1)-(2.3) entail

\/;CT([% - EBK) = (c™X;)e; +0,(1),

M= s

Ve (f* — E*Bg) = (cTXF)e¥ + 0,(1),

5= F-

I
-

n N 1 2
\/ECT(,BW - E*B}’{V) -7 E:l (c™X;)el” + 0,(1).

Here %> B}'} and B,V{V are higher order stochastic expansions of 8, g* and g%
(respectively). E*( ) denotes the conditional expectation E( [X,Y) and &} =
Y;* — X*”3. By application of the Lindeberg condition (2.3) we will then show
that these expressions have the same normal limit. The convergence of the
expectations will be ensured by E(¢;|X;) = 0 or 6§ > 1/3 (8 > 1, respectively).
Note that (1.1)-(1.3) imply EX,e; = 0. The proof of Theorem 1 is divided into
several lemmas.

LEMMA 0. Assume (2.2). Then

(5.1)  E(IXIl/vVp)™ (1 + ¢2) is uniformly bounded for n > 1.

Proor. Choose an orthogonal basis {e;: j = 1,..., p} of R”. Then

» 2K
E(IX,0%/p)" (1 +e2) =E[p* ¥ (ein)z) (1 +¢?)
j=1
—2K < Ty \? T 2 2
=p ) Z E(thi) o (ejzxxi) (1 + 8i)
J1r-ees J2K=
< const. O
LeEmMmA 1. Under the assumptions of Theorem 1,
1 n
(52) Aamax(—’; Z XiXiT - I) = OP(p1/2+5/4n_1/2)
i=1

(A ymax denotes the maximal absolute eigenvalue).
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Proor. Put A=1- (1/n)2?_ ; X, XF. We will show
(5.3) EA = O(p%*'n~K)
for A = trace(A%%X) > A (A®)X. This implies (5.2).

Proor oF (5.3). First note that

(5.4) EA = n‘2K§:trace E(X» X7 — 1) cee (X~ xT - I),

ntth 2K

where = {(i},...,i,x): for every j there exists h # j with i, =i }.
After evaluating the matrix product in (5.4) EA is a sum with summands of
the following type:

n~?KS = n~*% trace X; X' - --- - X, X[
(5.5) )
=n 2K(Xi7l'Xi2) Ceee (X:Xil)»
where 0 <s <2K. Put r=#{i;,...,i,}. To every summand S one can

construct a graph with r nodes and s edges. Every node corresponds to an
index i; and two nodes i, and i; are connected by an edge if (XiiXiJ) appears
in S. The order of a node i is the number of edges touching i [where an edge
going from i to i (a loop) counts twice]. For (r, s) = (K, 2K) the order of every
node is 4. The graphs are always connected and the order of every node is
even.

Now the number of different graphs corresponding to the sum in (5.4) is
bounded. Furthermore one can show that the number of summands of type
(5.5) corresponding to the same graph with r nodes and s edges is bounded by
K%n¥ if s <2r and by KXn "+ @K=9/2 if s > 2r ([x] denotes sup(n € N:
n < x)). For s < 2r this follows immediately because the maximal number of
different indices in </ is K and because for every index j there exist less than
K possibilities to choose h #;j with i, =i. For s > 2r note that after
replacement of two factors (X, Xif —I) and (X; XT — I) by I (at most) one

Lp" 7 lp

index may disappear in trace(X; X" —I)- --- - (X, X[ —I). Therefore if

2K " l2K
s > 2r the term S corresponds to a summand in (5.4) with an index
(i1, ...,095) € J such that #{i,,..., i) <r + [(2K - 5)/2].
We will show
(5.6) E(S) =0(p**'™).
This implies the statement of Lemma 1 because of the following:

n—2Kps+1—rnK SpK“n_K lfS < 2r,
(57) n—2Kps+1—rnr+[(2K—s)/2] SpK+1n—K(ps—r—K/ns/2—r)

<pXtin K ifs > 2r.
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Proor orF (5.6). Define

Q=1{i,....i 5},

Q = {i € Q: There are exactly two edges connecting i with another node}.
First consider the case @ = &. From (2.2) one can follow
(5.8) ES = O(p#loopsp(l/Z)(s—#loops)) _ O(p(1/2)(s+#loops))’

where #loops denotes the number of loops in the graph. Because of Q=0
and because the order of every node is even there are at least four edges for
every node i connecting ¢ with another node. Then there must be at least 2r
edges which are no loops. This implies #loops < s — 2r and ES = O(p*™") =
0( ps -r+ 1)‘ )

Suppose now that @ # &. Then there exists an i, € Q. Denote the neigh-
bors of i, by i; and i, (we do not exclude the case i; = i,). Now note that

(59)  E((X2X,)(X2X,)(X0X,)"|X., X,) = (XIMX,,)p",

where M is a p X p matrix with bounded maximal absolute eigenvalue
(uniformly in i, and n). Without loss of generality assume M = I. Then

(5.10) E(SIX;:i #i,) = p"S,

where S is of type (5.5). The graph which corresponds to § has r — 1 nodes
and s — & — 1 edges. It can be generated from the graph of S by removing the
node i, and all edges which touch i, and by adding an edge which goes from i,
to i,. Because of (5.10) it suffices to prove (5.6) for r = 1. O

LeEmMma 2. Under the assumptions of Theorem 1,

(5.11) Var( = sz)= ((%)h)

k
(5.12) E(cTA"‘/— ZX8)= (%m)

i=1

forl<h<K-1landk =1[h/2]+ 1.

Proor. The statements of the lemma follow by lengthy computations.
Note that

W EXe = T S(RXI-1) e (XX 1) e,

/ i~ 17 7 ip
noi=1 1<iy,..., in<n

Remember that (1.1)-(1.3) imply EX;¢; = 0. O
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Lemma 3. Under the assumptions of Theorem 1,

A 1 »n
(5.13) VneT(B - Efy) cTﬁ;lXieﬁop(n,

where .BK B+Xoch<r-14 (1/‘/-)2

Proor. Use (1/n)X? X, X)) 1= -A)'=I+A+A%+ --- . Be-
cause of Lemma 1,

n

1 =z 1
T Ah _ X AK -

h>K

(5.14) _ Op((p1/2+5/4n—1/2)Kp1/2)

= Op((p1+snf1)K/2) = 0,(1).

Because of Lemma 2,

T Y A— ZXs—EA" = L Xiei| = 0,(1). O
1<h<K-1 \/;z 1 i=1

LemMmA 4. Under the assumptions of Theorem 1,

(5.15) dw(_/(\/ch(é — EBy), N(0, E(c"X,)’s?) - 0.

Proor. Use condition (2.3) and Lemma 3. O
Now we state the bootstrap counterparts of Lemmas 1 to 4.

LEMMA 1*. Under the conditions of Theorem 1,

1/2+6/4
P
(5.16) Aamax(A*) = OP(T)’

where A* =1 — (1/n)L?_; X}¥(XF)T.

ProoF. Similarly as in the proof of Lemma 1 we consider A* = trace( A*)2X,
Note that EA* is a sum of summands of type (5.5). This sum can be treated as
in the proof of Lemma 1. O
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LeEmMA 2%, Under the assumptions of Theorem 1,

= Op(]')’

— Y X*e* — E*c TA*h Z X e
L= l=1

(5.17)
for0<h <K-1.

See the proof of Lemma 2. O

Proor.
LeEmMA 3*. Under the assumptions of Theorem 1,
R o 1 2
(5.18) VncT(B* - EBy) = CTW Eng;.k +0,(1),

where B = B + o < x—1 A"/ Vn)Tr_ | XFe¥.

Proor. Note that because of Lemma 1* (see the proof of Lemma 3)

T = c"(1 - A*) ‘a7t S XFYF = B+ cT(1- At Y X;
i=1

C
i=1

= "Bg + op(n1/%).
“1yr | X,4, = 0 this implies (5.18). O

With Lemma 2* and E*Xef = n

LEmMMA 4*. Under the assumptions of Theorem 1,

(5.19) dw(,/*(\/ﬁ c"(B* - EBg), N(0, E(c"X,)’?) » 0 (in probability)

)=(X,Y). Then

For every i there exists a j such that (Xr Y™ Y
XT(B B). Put &f, =¢; and ¢, =

Proor.
(cTX,*)g;k =T, + Ty,

=Y*-X}B=Y,-X"B=¢—

&f
—XJ-T(B - B). We apply Lemma 3* and write n~/2Y"_;
(1/Vn)Er_ i (cTX#)ef; and Ty = (1/Vn)LP; (cTXF)e¥,. First

where T, =
we show

(5.20) T, — E*T, - 0 (in probability).

Proor oF (5.20). First note that
12 A 2
— ¥ (<"X,)* (X7 (8 - B))

var*(T,) = E*(T, — E*T,)* <
n;,—

NS A
- (B-8) ~ L z.z! (B - B)
i=1

for Z; = (¢"X,)X;. Using || — BII> = Op(p/n) and using that E(IZ;l/ y/p)*¥
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and E(d*Z;)*K are uniformly bounded for [|d||= 1 and n > 1 [see (2.2) and
Lemma 0] one can show with the same arguments as in the proof of Lemma 1
that A, (n 7127 | Z,ZT — EZ,ZT) = 0p(1). This implies var*(T,) = Op(p/n)
and (5.20). O

Now note that X?_; (¢TX,XY;, — X7B) = 0 implies that E*T,
—n"287_ (TX)NXT(B - B) = —n—1/22" 1 (cTX)e; = —E*T,. Therefore
it remains to show the asymptotic normality of T, — E*T,. This can be shown
by proving the Lindeberg condition: 3 vy, — 0 such that n_lZLl [(cTX))e; —

API(c"X,)e; — A2 > y,n) - 0 (in probability), where A = n=1X?_, (¢TX))s;.
For the proof of the Lindeberg condition first note that A = 0,(1) and that

n T (eTX)%21(cTX,)%2 > y,n) — 0 (in probability) if v, goes slowly
enough to 0 [because of (2 3)] This implies for y, converging slowly enough
to O:

n—l

M=

[(CTXi)Ei - A]2I([(CTXi)8i - A]2 > )’nn)

i=1

<n? f:l [(c™X,)e, )" 1([(c7X, )e; — A]” > y,n) + 0p(1)
i
-1 é [(e7X,)e,] {I[1(c™X, )e,] = 0.5y12n12]
+1[](c"X;)e;| < 0.5yL/2n1/2,
Al = 0.571/2n1/2]} + 0p(1)
! V; 0.25y,nI[|Al = 0.5y}2n2] + 0p(1)

< A% + 0p(1) = 0p(1). ]

For the proof of the first statement of Theorem 1 it remains to show the
following lemma:

LeEmma 5. Under the assumptions of Theorem 1
(5.21) E*(c"(B% — B)) — E(c"(Bx — B)) = 0p(1/Vn)

if 8>1/3 or E(¢;)X;) =0
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ProoF. Assume first E(g,|X,) = 0. Then E(c”Bg) = ¢”B. Furthermore by
straightforward calculations one can show E*(c"B%) = ¢"B + 0,(n"'/?) (see

also the proof of Theorem 2). This shows (5.21).
Assume now 8 > 1/3. Then p%n~3/2 = 0(1) and (see Lemma 2)

Vn EcT(Bg — B) = Ec"(I + A)n™'/% ¥ X,e; + O(p*n=%/?)

i=1
= —n"2E(c"X,)I1 X, 1%, + o(1).

By similar calculations one gets

‘/EE*CT(B}'} - :é) = —n72 Z (CTXZ)“Xi“28i + Op(p*n /%)

i=1
= ‘/;ECT(BK - B) +o0p(1),

but this implies (5.21). O

We will now prove the second statement of Theorem 1—the consistency of
wild bootstrap.

LEmMA 6. Under the conditions of Theorem 1,

N |
(5.22) VneT(BY - B) = = Y (c"X,)el + 0,(1)

i=1

if E(e,X,) = 0 or 6 > 1.

Proor. The proof goes along the lines of the proofs of Lemmas 1-3. Note
that vn E*cT(BY — B) = 0,(1) (see Lemma 2). O

LeEMMA 6*. Under the conditions of Theorem 1,
(5.23) d.(£*(VncT(BY - B)), N(0, E(c7X,)"?)) = 0 (in probability)
if E(g;1X,) =0o0r 6 > 1.

ProoF. In the first part of the proof we will show that

(5.24) var*(Vn cT(B" - B)) - E(cTX,)’¢?.
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In the second part we will prove the asymptotic normality of
(e (8" - B)).

First note that

E*(c7X;)"(sV)”
1

II
S| =

var*(\/;cT(BAW - ﬁ))

n
1=

(CTXi)z(gi - XiT(BA - B))Z-

II
S| =

1

12

Now
(5.25) %i=i1 (cTXi)2(XiT(/§ - B))2 =0,(1) (see the proof of Lemma 4*).
Furthermore we will show
(5.26) = % (X)) e B(eTX,).
i=1
But (5.25) and (5.26) imply (5.24).
Proor oF (5.26). First choose y,, — 0 such that
E(c"X,)’e?1((c7X;)’e? = y,n) = 0.
Choose ¢, = 0, c¢,, > v, such that
nP((c"X,)’e? > c,n) < E(c"X,)"e2/c, I((cTX;) e? = y,n) - 0.
Then sup,_;_,(c"X)?? = 0,(c,n) and (1/n)L}_; (c"X,)%} — (c"X;)?s} A

c,n) — 0 (in probability) (a A b denotes the infimum of a and b).
Now

12 2 1 2
var(;ig,l ((CTX,-) g2 A cnn)) < ;E(CTXi) gZc,n - 0.
This implies (5.26). O

For the proof of asymptotic normality of Z*(Vn cT(BY — B)) it suffices to
show, for y > 0,

1 »
— ¥ B (c"X,) (eF) I((c"X:)(eF)" = yn) > 0 (in probability).
i=1
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But this follows similarly as in the proof of Lemma 4* from
L& ryng 2 Ty \2.2
— X (¢"X,) (e)"I((c"X;) e} = yn) = 0,(1) fory>0
i=1

because of
2 A 2 A
le¥]® < const. 2 or |el|® < const. U?2éZ,
where U,,...,U, are ii.d. variables with distribution as described in the

introduction. O

Proor oF THEOREM 2. Equation (3.7) follows by Lemma 2. Equation (3.8)
follows similarly. Note that we have additionally assumed that E(e;|X;) = 0
holds. The expansions for the moments in (3.9)-(3.13) follow by lengthy
calculations. For instance, to see (3.9), one has to consider

2 n
(5.27) E*(6:,)= X E*(cTA*”n—l/2 Y Xre¥|.
h=0 i=1
For the first term of the right-hand side of (5.27) one gets, using ©7_; X, = 0,
n n
E”‘(cTn_l/2 Y Xl-*e;") =cTn 12 Y X,;£ =0.
i=1 i=1
For the second term one gets, using again Y7_; X;¢, = 0,

E*(CTA"‘n_l/2 i Xl*e;")

i=1

= E*(cTn—3/2 Y (1- X;“X;“T)X;“s;")

i,j=1

n
= E*(cTn—3/2 > (I- Xi*Xi*T)X,-*e;")
i=1

n
= —cTn=32 ¥ |IX,II°X,8,
i=1

n
= —n"32 Y X% X,e,
i=1

“1
n n
+n752 Y HXi||2cTXiXiT(n_1 ZXJXJT) X, e.

i k=1 j=1



280 E. MAMMEN

These terms are both of order Op(p/n). This can easily be seen for the first
term by calculatlng the second moment. For the second term, one plugs in the
expansion (£7_; X;X")"! =T+ A + A® + ---. Then to bound the rest term
one uses |n~ ZE” ) IIX 127X, X,|| = OP(p/n) In=2287_, X,e,ll = Op(p'/?)
and Lemma 1.

Similarly one shows that the third term of the right-hand side of (5.27) is of
order Op(p/n). O

Proor orF THEOREM 3. Equation (3.14) follows from (5.3) with appropri-
ately chosen K. For the proof of the expansions (3.15)-(3.19) one calculates

and compares the conditional moments of n'/2¢T(8 — B) (given X,,..., X,
and H,) and the conditional moments of n'/2cT(8¥ — B) (given Yi,...,Y,,
Xy,..., X, and H,). The calculation of these moments is easier than in the

proof of Theorem 2 because n/2cT(B — B) and n'/2T(BY — B) are sums of
conditionally independent zero mean variables. O

Proor oF THEOREM 4. For simplicity we assume B € H,. In the next
lemma we treat the denominator of T'°, T* and T¥.

LemMA 7.  Assume the conditions of Theorem 4. Then

(528) (1= T)Y[*/(n —py) = Ay + Op(py/n + n~Y2),
(5.29) ”(I - HI)YWHZ/(n —p1) =4+ OP(Pl/n + n—1/2),
(5.30) ez - HI)Y*HZ/(n —p1) = Ay + Op(py/n + 0717,

where A, = E&2.

Proor o Lemma 7. - For the proof of (5.28) note that [(I — TI)Y|*> = (I —

1)1z||2 llell® — ||H18|| Write X , for the projection of X, onto H; and
denote by J: H; — H; the inverse of the linear map which is deﬁned on H, by
the matrix (1/n)L7_, X; ; X[)). Then one gets

n
(Mell* = n=2 (XTI IX; 16,)(XT 1K, 185) =n7t X (XTJX; 1)e;8,.

n
i,j,k=1 i,j=1

Now using a stochastic expansion of the random linear map J (see Lemma 1)

one can show |[II,el® = nT'E? i (XTI X; e e, + 0p(py) = Op(py). llell® =

nEe? + Op(n'/?) implies (5.28). Equatlons (5.29) and (5.30) follow similarly.
O
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Now we treat the numerator of T° T* and TV.

Lemma 8. Assume B € H, and the conditions of Theorem 4. Then

(5.31) (11, — )Y ||2/Vp1 —po =48y, +Z +0p(1),
(5.32) I(11, = T)Y Y| /vpr = Po = Ay + Z% + 0p(1),
(5.33) (11, = T)Y*|*/y/p1 — Po = Ag + Z* + 0p(1),

where A, = E||X1,2||2.ef(p1 —po) Y% and

n
Z=n"Yp,—p)) * ¥ e XX )z,
i,j=1

n
_ -1/2
Z¥ =n"Yp,—-py) ? ¥ 8?(XiT,2Xj,2)EJv'V7
i,j=1

n
_ -1/2
Z* =n"Ypy —po) P X ef(XFIXFy)er.
i,j=1

Here X, , and X}, are the projections of X; and X (resp.) onto Hy NH,.

The proof of Lemma 8 is similar to the proof of Lemma 7. The following
lemma implies the statement of Theorem 4 for p, — p, —» ». Note that
Ay(A; + Op(p,/n + n1/2)~1 = A,ATY + Op(1) follows from (4.4) and A, =
O((p; — py)?). In the case of bounded p, — p, Theorem 4 follows because
n”l2Er X, ey, nTVPEr XFoe¥ and nTU'/?LP_ X, .6l have the same

12 13

asymptotic normal limit.

LEMMA 9. Assume p; — p, = », B € H, and the conditions of Theorem 4.
Then

d.(P,N(0,0%)) - 0 (in probability),
where P = £(Z), Z*(Z%) or £*(Z*) and o? = E(p, —
Po)_lefgg(xfzxz,z)z-

ProOF OF LEMMA 9. First one shows Z — Z = 0p(1), where Z = n"(p, —
po) V2L, ; (X[, X, y)e;. According to Theorem 2.1 in de Jong (1987) for
the proof of asymptotic normality of Z it suffices to show

(5.34) EZ*/(EZ?)" - 3.

The proof of (5.34) is straightforward. The proof of the asymptotic normality
of ZW and Z* goes similarly. O
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ProOF OF THEOREM 5. Suppose Y7_,X; X[ =1 (wlo.g) and define X,
and X, , as the projections of X; onto H, or onto Hy N H, (respectively).

Then 3, = L, X, 1¢; and L, || X; ,|I> = spur L; X; ; X7, = p,. Furthermore
1 1 1

T I~ = o—lell® ~ ()"
(5.35) = ! ia-z— ! i g, XTI X (&
n—p1;/1° m=pi;5 " P
=Ee2+ 0 (i)
i ?\
because of

2 n
) 2Y Ee}(X7\X;,) ¢?

i#j

1 n
var( Zai(Xngj,l)aj) < (

N = D1z n=p
n

< (n-p) *(Es?)’2 LIIX; II?
i=1

= 0(py(n —py) ) =o(n7?)

and

Var( - (n —P1)_2 2": (1 - “Xi,1”2)2)

n—p; i=1

n

- O((n -p) X (- ||X,-,1||2)2) = 0(%).

i=1

(Note that X7 ||X,~,1“4 <Xr, IIX,-JII2 = p, because of ||X; Il < 1.)

i=1
Similarly one gets

et (CR LT

1 1
= lle®|l* —

()|
o n_p1|| (£2) ]|

(5.36) = E*(s2)" + OP(TIE—) -

1
n
! i€?+op(i) = ||<I—H1)<e)||2+op(%)

n—pP;;ia n—p;
1
n
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where in the fourth equation the following has been used:

n n
var(£) = Varv(n_1 VZIEj -nt . Zl(XiT,‘IXj,I)Ej)
Jj= iJj=

i=1

= E(ef)n? é:l (1 - Zn: (Xi?lXj,l))z

< 2E(e}?) {n_z (XiTlXj,l)(ijle,l) +nt

n
i,j,k=1
n

[
=2E(e?)|n 2 ¥ (Xngkyl) +n7t

I i k=1
[ 1/2
(XF.X,.) 02| + n‘l}
1
1/2
+ n_l}

= 2E(512)(\/p71 + 1)/n = o(%).
We show now that
(5.37) dy(f,-£*(ef)) = 0 (in probability).
This follows from n~1X"_,; (.+ X73,)* > 0. Note that

i,

< 2E(¢2) n‘2(

Ts

I n
= 2E(812) n_2( ||Xi,1||2n2
i=1

n

1
(5.38) ~-x (X78,)" = 0 (in probability),

Jj=1
(5.39) €.~ 0 (in probability).

Proor or (5.38).

n
<const.n”! ) ||X-,1||4

_ 2
<const.n™! ) IX;,I* = 0.
j=1
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Now because of (4.11) and (5.37) there exist (conditionally) independent
n,mg with £*(n,) = A(e;), L*(nf) = L*(?) and E*(n? — (n8)*)? - 0
(in probability) [here E*(---) = E(--- |X,Y)]. Define Z = X8 + n and Z®=
X3, + n° Then
2

E*

1 2 1 2
To=p I~ o) (2 = XB) [ = 2= (T, = T0) (2°)]

2
= E*
(5.40)

1 2 1 2
‘/p—T_——E”(Hl =) ()" - ﬁ"(nl —10,)(n®)]|

n 2
{ Y IX, 5l (n2 = (n2)°) + T (XX, ) (nm; — nf’n?)}
i=1

i#j

= E*

P1 — Po
2

+ E*

n

S2(p1—po)_l{E*[ r

i=1

2
Y "']}ST1+T2+T3,

i#j

where

T, =

2 n 2
B )] -
P1 —Poi=-1 P1 — Do

< 2B*((n? = (2)") = 0p(1),

n 2
Y E*IX, oI*(n2 = (n2)’)
=1

o3
[

2 n 2 2 2\ 2
E* < _ 2[ g+ iZ_E* ?
41 _po{ [,’gl ]} b1 —Po (P1=Po) { ! (TI ) }

b1 — Do

2(py - po) {Ee? — B*(e2)7) = 0p( “ 2] = 0p(D),

T -2 E[Z]

n

<2(p; _po)_1 Z (szXi,z)zE*(Tlmz - 77?”7?)2
i, j=1

2
= 2E*(nmy — n$mg) = op(1).
Now (5.35), (5.36) and (5.40) imply the statements of the theorem. O
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