The Annals of Statistics
1991, Vol. 19, No. 2, 1073-1083

THE DIFFUSE KALMAN FILTER!

By PIET DE JONG

University of British Columbia

The Kalman recursion for state space models is extended to allow for
likelihood evaluation and minimum mean square estimation given states
with an arbitrarily large covariance matrix. The extension is computation-
ally minor. Application is made to likelihood evaluation, state estimation,
prediction and smoothing.

1. Introduction. This paper deals with likelihood evaluation and mini-
mum mean square error prediction given observations generated by a state
space model with a diffuse initial state. A state is said to be diffuse if its
covariance matrix is arbitrarily large. Diffuse initial states arise in the context
of parameter uncertainty and model nonstationarity as illustrated later.

To deal with a diffuse initial state in the state space model, Schweppe (1973)
and Harvey and Phillips (1979) propose initiating the Kalman filter with a very
large covariance matrix. This poses numerical problems and does not answer
the question of the existence of diffuse constructs. A variant of the Kalman
filter, called the information filter, has also been proposed. However, as Ansley
and Kohn [(1985), page 1298] point out, the information filter breaks down in
many important cases and can be numerically inefficient. Harvey and Pierse
(1984) and Harvey (1990) propose initiating the Kalman filter with regression
type estimates based on an initial stretch of the data. These estimates may be
cumbersome to construct and questions of existence are not dealt with. Pole
and West (1989) deal with diffuse initial states in a Bayesian setting. In a
sequence of papers, Ansley and Kohn (1985), Kohn and Ansley (1986, 1987a,
1987b) develop, discuss and advocate the use of a modified form of the Kalman
filter to allow for diffuse states. This paper presents alternate modifications
with the following merits:

1. Computational. The modified filter is a computationally trivial extension of
the ordinary Kalman filter, turning the two existing vector recursions into
matrix recursions and the addition of a matrix recursion. No extra matrix
inversions are required.

2. Analytic. Proofs are general and direct. Necessary and sufficient conditions
for the existence of diffuse constructs are in terms of extended filter
quantities.
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Special cases of the methods used in this paper have been alluded to in
Rosenberg (1973), Wecker and Ansley (1983) and Kohn and Ansley (1985,
1987a), as discussed later.

The program of this paper is as follows. The next section introduces the
state space model (SSM), examples and the Kalman filter (KF). Section 3
discusses likelihood evaluation and introduces the diffuse Kalman filter (DKF).
Section 4 deals with the diffuse likelihood. Section 5 goes on to consider diffuse
prediction. Diffuse smoothing is dealt with in Section 6.

2. The state space model and the Kalman filter. Throughout this
article capital letters denote nonrandom matrices. Lower case letters denote
column vectors. The notation y ~ (¢, 02C) indicates y is a random vector with
expectation E(y) = ¢ and covariance matrix Cov(y) = o-2C. Expectations and
covariances are always unconditional.

If A and B have identical column dimension, then (A; B) = (A’, B'). Thus
(¥13¥9; ---;,) is the stack of the column vectors y;, y,,...,¥,. The notation
y* indicates the number of components in y while A~ denotes the
Moore-Penrose generalized inverse of A.

DeFiniTION 2.1. The state space model (SSM). Random vector y =
(¥1;99 .-.;¥,) is said to be generated by a state space model, denoted y «
SSM, if for 1 <t <n, y, =X, + Z,a, + G,u,, where for 0 <t <n, a,,; =
W.8 + T,a, + H,u, and

@ (ugsuyq;...3u,) ~ (0,02 with 02> 0,
(ii) @y = 0 and B = b + By, where y ~ (¢, 02C), b is fixed and B has full
column rank,
@iii) y and (uy; uy; ... ; u,) are uncorrelated,
(iv) C is nonsingular unless C = 0; Cov(y) is nonsingular if C = 0.

This article deals with state space methods when vy is diffuse. Random
vector v is said to be diffuse, denoted C — o, if C~! converges to a zero matrix
in the Euclidean norm. Diffuse random vectors arise in two ways. First, to
model parameter uncertainty and second, diffuseness arises when a nonsta-
tionary model is assumed to have applied since time immemorial. The next
example illustrates matters.

ExaMpLE 2.1. Suppose for scalar y,, (v,,; —x/,:8) =a(y, — x/8) + u,,
where the u, ~ (0, o?) are serially uncorrelated. Special cases of this model are
the regression model (a = 0), the autoregressive model of order 1 (x, = 1), the
random walk (8 = 0, a = 1), white noise (6 = 0, a = 0), the regression model
with random walk disturbances (a = 1) and the random walk with drift
(@ =1, x,,, — x, = 1). A SSM formulation is to take for ¢ > 1, Z, = 1, G, = 0,
W,=0,T,=a and H, = 1. Table 1 indicates alternative specifications for the
remaining quantities. For the last three cases reported in Table 1, y is
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identified with, respectively, 8, y, — x(8 and (8;y, — x48). The entries
1/ V1 — a? in the column for H, are derived assuming the model has applied
since time immemorial. This is a standard assumption in practical time series
modelling leading to parameter parsimony since no new parameters have to be
introduced to model initial conditions.

THEOREM 2.1. Ify <« SSM, then y = XB + &, where
X = [X,+ZWy; Xy + Zy(Wy + TW,); ...
X+ Z W, 1+ Ty W,y +(Ty - TYW)]
and & ~ (0,023) with 3 nonsingular and Cov(B,e) = 0.

The proof is direct. In terms of this notation, Cov(y) = o?{(XB)C(XB) + 3}
and in particular, 023 is the covariance matrix of y assuming C = 0, or in
other words, the residual covariance matrix of y given y. Note that 2, has a
complicated but specialized structure as induced by the SSM.

Well-known constructs and results used in this article include the following.
Suppose x is a random vector. Then a predictor of x using y is defined
as a + Ay, where a and A are chosen such that the diagonal entries of
Cov(x — @ — Ay) are minimum. If £ is the predictor of x using y, then define
mse(£) = Cov(x — £).

The Kalman filter (KF) computes predictors in the context of the SSM when
C = 0. In particular the KF is the recursion

e, =y —X,B—-Za,, D, =Z,P,Z, + G,G;,
(2.1) K, = (TtPtZt’ + Hth,)Dt_ly @iy = W,B + Toa, + Kee,,
P, =(T,- K, Z)PT/ + (H, - K.G,)H,,
with starting conditions a, = W,8, P, = H,H,. Here a, is the predictor of «,
using (y4; ¥s; - -;¥,—1) and mse(a,) = o2P,. Also e, is the error of predicting y,
using (y;;¥s; .. .55,-1), E(e,)) = 0, Cov(e,) = 02D, and for ¢ # s, Cov(e,, e,) =

0. It is assumed the D, are nonsingular, a condition guaranteed by Definition
2.1 (iv); proofs are in Anderson and Moore (1979).

3. Evaluation of the likelihood with the diffuse Kalman filter.
Suppose y < SSM, y is fixed (C = 0) and y is normally distributed. From
Theorem 2.1, y = X(b + By) + ¢ and hence Cov(y) = Cov(e) = 023. The log
of the likelihood based on y is, apart from a constant,

My) = —z{lnlo?3] + (y - XB)'S "Xy — XB) /o?)
= —3{y*In(0?) + Inl3| + (¢ — 25"y + y'Sy)/a?},
where
S = (XB)YS(XB), s=(XB)S !(y- Xb),
q=(y - Xb)37'(y — Xb).
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The maximum likelihood estimators (mle’s) of y and o2 are, respectively,
$=871s, &%= (q-s'S1s)/y*

where it is assumed that S is nonsingular. Substituting ¥ and &2 back into
A(y) yields the (y, o?)-maximized log-likelihood — 3[y*In(2)} + In|3]].

The expressions for S, s, ¢ and |2| as indicated before are not computation-
ally practical. However, a viable approach to calculating these quantities is to
employ the KF (2.1). This method was first proposed by Schweppe (1965) and
extended upon by Rosenberg (1973). The next development indicates further
extensions and is stated in terms of the following notation.

DEFINITION 3.1. The diffuse Kalman filter (DKF). The DKF is the KF (2.1)
with the equations for e, and a,, ,, respectively, replaced by

Et = (XtB’yt - th) - ZtAt! At+1 = VVt( —-B, b) + TtAt + KtEt!

with starting condition A; = W,(—B, b). Also the following recursion is added:
Qi1 = Q, + E/D; 'E,, where Q; = 0.

THEOREM 3.1. Supposey < SSM, v is fixed, y is normally distributed and
the DKF is applied. Then Q,, ., = {(S, s);(s’, ¢)}. If S is nonsingular, then the
mle’s of y and 0% are § = S~ s and &2 = (q — s'S™'s) /y*, respectively. The
(y, 0®)-maximized log-likelihood is — 3[y*{In(6%)} + L"_, In|D,/1.

PrOOF. Suppose e = (ej;ey; ...;e,), where the e, are as defined in (2.1).
Then for some matrices K and L, e = Ky — L. In particular, K is zero above
the main diagonal and has all ones on the diagonal implying |K| = 1. Since
E(e) = 0, it follows that KXB = LB for all B and hence KX =L and e =
K(y — XpB). Furthermore, Cov(e) is block-diagonal with blocks D,, D,,..., D,
as given in (2.1) and hence KXK' = D = diag(D,, D,,...,D,),3 ' =K'D"'K
and

In|3| = In|D,| + In|Dy| + -+ +1n|D,|,
S = (KXB)'D"'(KXB), s = (KXB)D 'K(y — Xb),
g = {K(y - Xb))'D"'K(y - Xb).
Now suppose B in (2.1) is replaced by b to yield f = (fy; fy; --.; f,) instead of
e. Then f= K(y — Xb). If F = KXB, then the columns of F can be computed
in the same way as f, except that y is replaced by zero and b by the
corresponding columns of —B. In terms of this notation, S = F'D"'F, s =

F'D7'f and q = f'D"'f. It is clear that E, = (F,, f,), where (F;; Fy; ...; F,) =
F. Hence @, ., is as asserted. O

The DKF can thus be used for likelihood evaluation when C = 0. Further
uses are outlined later. These are similar to the uses of the Ansley and Kohn
[(1985), page 1297] algorithm. However, the DKF is simple and efficient
compared to the Ansley and Kohn (1985) algorithm: no factorizations are
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TABLE 1
Alternative initial conditions

Alternative X, W, b B c C H,
& known, |a| < 1 x] 0 ) 1 0 0 1/V1 — a?
8 diffuse, la| < 1 x/ 0 0 I 0 S 1/V1 - a?
8 known, |a| > 1 (x4,0) 0, a) (8;0) ;1) 0 o 1
8 diffuse, la| = 1 (x/,0) 0, a) 0;0) I 0 0 1

required and attendant proofs are short, direct and more general [e.g., As-
sumption 2.5(i) of Ansley and Kohn (1985) is not needed]. Rosenberg [(1973),
page 410] has suggested a special case of the DKF for likelihood maximization
when C = 0. Wecker and Ansley (1983) and Kohn and Ansley (1985) also make
Rosenberg’s (1973) suggestion. A square root version of the DKF is discussed
in de Jong (1990).

ExampLE 2.1 (continued). Suppose a = 0 and suppose & is regarded as
diffuse. Then @, accumulates the squares and cross products and @, .; =
(X,y)(X,y). Theorem 3.1 in this case specializes to the usual regression
results. Alternatively, supposed |la| > 1 and the specification of the last row of
Table 1. Detailed calculations show for ¢ > 1, E, = (x; — ax/_1,0,y, — ay,_,),
D, = 1 except that E, = (x1, @, ;). Thus the symmetric matrix @ is

n
2 %)+ L (% —ax,_y)(x, — ax,_y)
t=2
Q= ax} a?

n n
’ ' 2
yixg t Z (¥ —ay,_1)(x, —ax,_q)  ay, y12 + Z (¥: — ay,-1)
t=2 t=2

and the mle of § is

n -1 n
6= { ) (x; —ax,_1)(x, — axt—i)'} { 2 (% - ax,_ ) (¥ — ay,—1) |
t=2 t=2
while the mle of y, — x48 is (y, — x{8)/a. Further, the mle of o2 is
R 1 212
62=n"1 Y {(yt_ayt—l) _(xt_axt—l)a}
t=2 .

and the (8, o?)-maximized log-likelihood is — 37{In(62)}. In the special case of
a random walk with drift (a = 1, x,,; — x, = 1), the mle’s of §, y, — x4{6 and
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o2 reduce to

Yn = X1 ny; = Yn

)

(a —0)°

1 i 2
) n t=2(yt Ye-1) n—1

n—1 n-—1

4. The diffuse likelihood. The next result generalizes Theorem 3.1 to
the case where y is random. The result sets the stage for a consideration of the
diffuse likelihood.

THEOREM 4.1. Suppose y « SSM and (y;y) is normally distributed. Fur-
ther suppose the DKF is applied and S is nonsingular. Then the mle of
c is 9=28""s, with covariance matrix o2S~'. The mle of o2 is &%=
(q — s'S7's)/y*, while the mle of C is zero. The log-likelihood A(y) maxi-
mized with respect to ¢, 02 and Cis — i[y*{In(¢2)} + £ 7_, In|D,/1.

Proor. Write, for example, A(y|y) as the conditional log-likelihood of y
given y. Then y(y) = A(y) + A(yly) — A(yly) and —2A(y) thus equals

Inlo2C| + (y — ¢)’C~Y(y — ¢) /o® + Inlo 23|
+(y — Xb — XBy)'S Yy — Xb — XBy) /o?
~Info%(C 1 +8) 7 - {y - (C +8) (s + C )
X(C71+ 8S){y = (CT1+8) (s + C )} fo.
Expanding the various terms and simplifying, shows A(y) equals

1
- E[mlcl +1n|C! + S| + Inlo23)|
(4.1)

+{g+cCle— (CTle+5)(S+C) (Cle +5)} /0%

Maximizing with respect to ¢ yields the first assertion of the theorem. Substi-
tuting ¢ = S™!s into (4.1) shows that the c-maximized log-likelihood is
— H{In|I + CS| + Inlo23| + (¢ — s'S™1s)/0?} and hence the mle’s of o and
C are as asserted. Substituting the mle’s of 02 and C into c-maximized
log-likelihood yields the (c, o2, C')-maximized log-likelihood as asserted. O

Thus 9 = S~ 's is the mle of ¢ for every o2 and C, while the mle’s of o2
and C are maximizers in the c-maximized likelihood. Furthermore, as C — ,
both 9 and 62 stay fixed. The next theorem considers the behaviour of A(y) as
C — «. The theorem expands a result of de Jong (1988) and shows the role of
the DKF.
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THEOREM 4.2. Suppose y < SSM and (y;y) is normally distributed. Fur-
ther, suppose the DKF is applied and S is nonsingular. Then as C — o,
A(») + 3 In|C| converges to

1 n
(4.2) - E[y#{ln(az)} +In|S| + Y WD, + (¢ — s'S_ls)/a'z].
t=1
Moreover (4.2) is a log-likelihood based on Ny, where N has rank y* — y*,
Cov(Ny,y) = 0 and In|Cov(Ny)| equals the first three terms in (4.2). The

log-likelihood (4.2) maximized with respect to o2 equals

(4.3) - %[y#{ln(6'2)} + In|S| + i lnIDtI].
t=1

Proor. Consider A(y) as given in (4.1). Add ; In|C| and let C — o to show
A(y) + 3 In|C| converges to (4.2).

For the second part of the theorem, let N be any matrix of full row rank
such that the row space of N coincides with the row space of M, where
M =1 - (XBX{(XB)3 YXB)}"(XBY>~1. Then NXB =0, E(Ny) = NXb,
Cov(Ny) = 2N 3 N' and

q—s'S7ls = (y - Xb)S"'M(y - Xb) = (y — Xb)M'S " *M(y — Xb)
= {M(y - Xb)}'M'S"'M{M(y — Xb)}
= {N(y — Xb)})(NSN") "Y{N(y — Xb)}.

Thus the likelihood based on Ny agrees with (4.2) if In|Cov(Ny)| is as
specified. Expression (4.3) is arrived at by substituting 62 for o2 in (4.2). O

Theorem 4.2 implies that (4.2) is a proper log-likelihood, called the diffuse
log-likelihood. Since Cov(Ny,y) = 0, the diffuse log-likelihood is a likelihood
based on those aspects of y invariant to y. Note that the diffuse log-likelihood
differs from the (c, C, o?)-maximized log-likelihood only with respect to the
term 1 In|S|.

ExaMPLE 2.1 (continued). Assume the specification given in the last line
of Table 1. Then |S| = a?|L}_,(x, — ax,_;Xx, — ax,_,)| and the diffuse log-
likelihood maximized with respect to o2 is

n{ln(&z)} +a® t;2(xt - qxt—l)(xt__ ax,_1)'|.

5. Diffuse prediction. The DKF can be used to compute diffuse predic-
tors of @, and y, in the context of the SSM. These are predictors constructed
under the assumption that y < SSM with C - «. For 1 <t <n + 1, let 9,, &,
and j, denote the predictors of vy, a, and y, using (y;;¥,; ...;y,_,). Note that
if C =0, then 9, = ¢, mse(9,) = 0, 4, = a, and §, = X,B + Z,a,, where a, is
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as given in the KF (2.1). The case where C # 0 is treated in the next theorem
which uses the notation @, = {(S,, s,); (s/, ¢,)}, where g, is scalar.

THEOREM 5.1. Suppose y <« SSM, where C + 0 and the DKF is applied.
Let A,, and E,, denote all but the last columns of A, and E,. Then

9,=(S,+C ) (C ¢ +s,), mse(f,)=0XS,+C),

aAt = At( ~'Qt; 1)’ mse( aAt) = Uth + AtY mse( ’)’;t)A’

ty»

Y — .f’t = Et( _'f'ﬁ 1), mse(yt) = 0'2Dt + Ety mse('f't)Et’y'

Proor. Without loss of generality, assume ¢ = n + 1. The predictor of y 4
not using y is ¢ with mse matrix ¢2C. By Theorem 2.1, y = Xb + XBy + ¢,
where ¢ ~ (0, %3). Using a well-known result, the predictor of y using y is
thus

((XBYS Y (XB) + C"1} '{C'c + (XB)'S (y — Xb)}
=(S+C ) (C e +s),

with mse matrix o2(S + C~1)~!. Hence 7, and mse(7,) are as asserted.

Now consider predicting a, using (y;;¥s; ...;,_1). This is equivalent to
first predicting @, using (y; y;; ¥s; - - -;¥;_1), and then predicting this predictor
using (y;;¥; ...;¥,_1)- The first mentioned predictor is a, given in (2.1).
However from the DKF,

A q(—7;1) = [VVt(_B’b) + T, A, + Kt{(XtB9yt - X,b) - ZtAt}](_')’; 1)
= thB + TtAt(_’y; 1) + Kt{yt - Xtﬁ _At(_'}’§ 1)},

with starting condition A,(—vy;1) = W,B8. Thus A,(—1v;1) satisfies the same
recursion and starting condition as a, and hence a, = A,(—y;1). Thus &, =
A/(—9,; 1) as required. The formula for mse(d,) follows from

mse(&,) = Cov(a, —a, + a, — &,) = Cov(a, — a,) + Cov(a, — &,)
= 2P, + Cov{A,(%, — v; 0)},

where the second equality results from the fact that «, — a, is a prediction
error using the random vector (y;y;;¥s,...,¥,_1) and both e, and &, are
based on this random vector. The expressions for J, and mse(j,) are proved
similarly. O

Now suppose in the formula for 4,, c is replaced by its mle S; 's,. Then 9,
reduces to S;'s,. This evidently is also the limit of 9, as C — «. Thus the
diffuse predictor of y based on (y,;y,,...,¥,_1) coincides with the predictor of
v replacing ¢ by its mle. Similar statements apply to &, and ¥,. Thus replacing
¢ by its mle is tantamount to treating y as random with an arbitarily large
covariance matrix. A formal statement is contained in Theorem 5.2, the proof
of which follows directly from Theorem 5.1.
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THEOREM 5.2. Supposey < SSMand 1 <t <n + 1. If S, is nonsingular,
then as C — «, §, = S 's, and mse(9,) - oS, . If the rows of A, are in the
row space of S, then as C — », &, - A(-S;s;1) and mse(d,) —
o%(P, + A, ,S;A,). If the rows of E,, are in the row space of S,, then as
C > 3 - {X(-B,b) + Z,AN-S7s,;1) and mse§,) - o*D, +
E, S E,).

A special case of this result is displayed in Rosenberg (1973). Kohn and
Ansley [(1987a), page 45], in the context of spline smoothing, show that their
modified filter for computing limiting predictors yields the same results as the
approach taken in Wecker and Ansley (1983) which is that of Rosenberg
(1973). Kohn and Ansley [(1987a), page 45] go on to conclude that the
Rosenberg (1973) approach is numerically inefficient. A comparison of the
DKF and the Ansley and Kohn [(1985), page 1297] filter shows that this is
not so.

Like the Ansley and Kohn filter, the DKF can be collapsed to the ordinary
Kalman filter after a few iterations. This combines the ideas of this section and
Section 4. Initially, suppose y corresponds to purely initial conditions (as in
the third row of Table 1) and hence for 1 <¢<n, X,8=0 and W,8=0.
Suppose m is the first integer such that S,, is nonsingular. Consider

My) + zlCl = {A(y1, 52, -, Y1) + 3 I0ICl}

+ )‘(ym"",ynlyla-'-’ym—l)a

where A(y,,,...,¥.¥15-+-»¥n_1) is the conditional log-likelihood based on
Yp; - --3y,) conditioning on (y; ...;¥,,_1). As C — «, the term in curly
brackets converges to

m-—1

1
=g |Or5 2 () + IS, L4 T D+ (0 = 5 S708) /07
t=

while Ay,,,...; YY1 --->Ym_1) converges to the log-likelihood based on
(¥, ---;,) generated by a SSM with initial conditions

E(a,) =A,(-8,',;1), Cov(a,)=0%P, +A4,,S;'4,,)

Thus, if KF is initialized at ¢t = m with E(a,,) and Cov(e,,) as given, then
as C — «, ‘

1 n
Ay) + 3 1InlC| - -3 y*In(a?) + In|S,,| + Y InID,| + q, /02|,
t=1

where g, = q,, — 5,,5,,'s,, + L7_,.e/D; 'e,. The KF as initialized also directly
yields the limits of &, and mse(&,), m <t <n as C » . If X,8+0 or
W,B # 0 for some 1 < ¢ < n, then the state vector for m < ¢ < n is taken to be
(a,; ¥) and the DKF can be collapsed to the KF based on the SSM employing

the augmented state vector.
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6. Diffuse smoothing. Smoothing refers to predicting the state a,, 1 <

t < n, using the entire observation vector y where y — SSM. Smoothing can
be based on the recursion

(6-1) ]Vt_l = Zt’Dt_lEt + L;]Vt, Rt—l = Zt,Dt_IZt + L;Rth

where N,=0, R, =0 and for 1<¢t<n, L,=T,—K,Z,, and all other
quantities are defined as in the DKF.

THEOREM 6.1. Suppose y < SSM, where C + 0 and the DKF is applied
followed by the recursion (6.1). For 1 <t <n =1, suppose &, denotes the
predictor of «, using y. Then

a, = (At + Pt]vt—l)(_i/n+1; 1)’
mse(d,) = 0'2(Pt - PR, |P) + th—l,y mse('f’ndrl)]vtl—l,y’

where N,_, , denotes all but the last column of A, + P,N,_, and ¥,_, and
mse(9, ,.,) are as given in Theorem 5.1 with t =n + 1. Furthermore, as
C — » and provided N,_, ., is in the row space of S,,,, d, and mse(a,)
converge to the previous expressions with ¥, ., replaced by S, .s,,, and
mse(§, . ,) replaced by oS, ..

Proor. From de Jong (1989), if r,_; = Z/D; 'e, + K/r, with r, = 0 and e,
as in (2.1), then the predictor of @, and associated mse matrix using (y;y) are
respectively, a, + P,r,_, and c%(P, — P,R,_,P,). Now

N.i(-v;1) = (Z/D;'E, + L\N,)(—v;1) = Z;D; 'e, + LiN(-7;1),

with starting condition N,(—y;1) = 0. Thus N,_,(—v;1) = r,_; and the pre-
dictor of «, using (y;y)is (A, + P,N,_;)(—v; 1), which implies &, and mse(&,)
are as asserted. The limiting expressions as C — « are arrived at by letting
C - = in the expressions for 9, ,, and mse(§,,,). O

Using the results in de Jong (1989), expressions analogous to those in
Theorem 6.1 can also be derived for predictors of the signal X,B + Z,a, using
yor X, + Z,a, and a, using (yy; ...;¥_1;Y:41; - --;¥,) Furthermore, the
results can be generalized to derive cross covariances of the form, for example,
Cov(a, — &,, a, — &), t #+ s and fixed point and fixed lag smoothing algorithms
for the case C — .

ExamPLE 2.1 (continued). Consider the specification as in the last row of
Table 1. Then N,_; = E, and R,_; = 1. Thus as C > «, @, - y, — x/6, where
0=28, 18,11

Acknowledgments. I am indebted to Andrew Harvey and anonymous
referees for helpful comments.
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