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ASYMPTOTICALLY OPTIMAL HYPOTHESIS TESTING
WITH MEMORY CONSTRAINTS

By J. A. BuckLEW AND P. E. NEY

University of Wisconsin—Madison

The binary hypothesis testing problem of deciding between two Markov
chains is formulated under memory constraints. The optimality criterion
used is the exponential rate with which the probability of error approaches
zero as the sample size tends to infinity. The optimal memory constrained
test is shown to be the solution of a set of equations derived from suitable
large deviation twistings of the transition matrices under the two hypothe-
ses. A computational algorithm and some examples are given.

1. Introduction. The performance capabilities and cost of modern high
speed electronic communication systems is often proportional to the memory
or storage requirements of the task to be performed. A typical situation may be
that one is sending digital information over a noisy communications channel.
A logic i is communicated by transmitting the function f(¢), 0 <¢<T,
i €{0,1}. Every T seconds, the communications receiver must perform a
simple binary hypothesis test to determine whether a logic 1 or logic 0 was
transmitted in the previous signaling interval. For a satellite or fiber optic
system, T would typically be 10~7 to 10~° [Lathi (1989)]. The electronic
(thermal and man-made) noise over such a short signaling interval should be
assumed to have some memory of its past (engineers would say the noise is
colored or nonwhite). A useful model for the noise is that it be modeled as
some sort of Markov process that is simply added to the transmitted wave-
form. If such a model is used, then the communication receiver design problem
comes down to deciding which of two Markov processes is present in the
previous signaling interval.

The classical solution to this problem is, of course, to implement a log-likeli-
hood ratio test statistic which would give the best performance in the usual
Bayes risk or Neyman-Pearson sense. Problems arise, however, when one
considers how to go about implementing this test in electronic hardware. It is
virtually impossible to build an arbitrary mapping from C[0, T'], the continu-
ous functions on the interval [0, T'], into R. One must first sample the process
over the interval [0, T']. In many situations this sampled process will be a
discrete time Markov chain with transition function P and we must test
P = P, versus P = P, for given transition functions P,, P,. The log-likelihood
ratio test would then necessitate computing
P(X;, X;11)
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Here a nonlinear operation must be performed every T'/n seconds. Specifi-
cally, every T/n seconds, the value X; must be recalled from a memory and
the nonlinearity log[ P(X;, X, ,)/Py(X;, X; )] computed (a table lookup pro-
cedure would be fastest if there are only a few possible values). The very
fastest random access memories currently available require about 5 - 10~°
seconds to access a stored value [Wooley (1988)]. If T itself is around 1072, it
is clear that an attempt via a straightforward optimal processing design is
doomed to failure. The only other possibility would be to try to implement
some sort of parallel computation architecture necessitating a large increase in
complexity.

In problems of this sort, strict optimality is not the overriding concern. The
probability of error in such systems is very low (10~¢ is a typical number for a
communications link before any error correction is implemented) [Haykin
(1989)]. Developing fast (low memory) suboptimal structures is often a more
desirable goal than implementing a slow optimal one. To this end, practition-
ers have frequently implemented a test statistic of the form

(1.2) T,= if(Xi)’
1

where f(-) (called a memoryless nonlinearity) is chosen (in an ad hoc fashion)
to guarantee that the mean value of T, under the two hypotheses is different
and thus will lead to a consistent test. A test of this form is called a
memoryless detector in the engineering literature, since the present sample
may be processed without knowledge of the previous samples. Memoryless
nonlinearities may be computed (or at least staircase approximations) by
relatively simple hardware at very high speed by so-called flash converters
[Roden (1988)). Typical functions to implement would be f(x) = sgn(x) [en-
gineers would say f(-) is a hard limiter] or f(x) =x for x € [—a,a] and
f(x) = a - sgn(x) otherwise (engineers would call f(-) a type of soft limiter
[Haykin (1989)]). The nonlinearities are almost always bounded since it is
desired that large noise spikes due to intentional or unintentional jamming
and interference have limited impact on the test statistic.

In this paper we will be concerned with developing hypothesis testing
designs under a memory constraint. Our performance criterion will be the
asymptotic efficiency of the test, that is, the rate at which the maximum error
probability goes to zero. Due to the large sample sizes encountered in many
practical situations, an asymptotic criterion is not inappropriate. More pre-
cisely, we will show that:

1. A unique optimal g (in the previous sense) always exists.

2. This function is determined as the solution of a set of equations derived
from suitable twistings of P, and P,.

3. An algorithm is given for computing g.

We limit ourselves here to Markov chains on a finite state space and to tests
of simple hypotheses versus simple alternatives. This makes the mathematics
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very tractable and exposes many of the salient features of the problem. Some
natural possible extensions are discussed in Section 6.

The problem we are considering has been studied extensively in the theoret-
ical engineering literature usually via the locally optimal asymptotic relative
efficiency (ARE) as a test fidelity criterion [Miller and Thomas (1972), Poor and
Thomas (1979), Halverson and Wise (1984) and Sadowsky and Bucklew (1986)].
The ARE criterion requires that one let the two hypotheses collapse towards
one another and at the same time increase the number of decision samples in
order to maintain a given fixed power. Because of the assumption that one
hypothesis converges to the other, the design problem may be handled rela-
tively simply by central limit methods. In this paper, our performance criterion
will be the Chernoff efficiency of the test, that is, the asymptotic rate at which
the probability of error approaches zero as the sample size gets large. Thus
(unlike the ARE), we allow the hypotheses to remain fixed and only the
number of decision samples is changed to obtain the rate performance.

Our problem and the techniques presented here could allow for other
interpretations and extensions. Our techniques can be viewed as providing a
large sample approximation to the likelihood ratio for a fixed memory al-
lowance. Extensions to processes with longer memory and test statistics with
various other more complicated memory constraints would be of interest.

The organization of the rest of the paper is as follows: Section 2 contains a
brief summary of the necessary mathematical background of matrix perturba-
tion theory and large deviation theory for Markov chains. Section 3 is a
statement of our results. Section 4 contains proofs of the results of Section 3.
Section 5 discusses computational aspects of our algorithm. Section 6 contains
a discussion of possible extensions of them.

2. Some mathematical background. The mathematics in this paper
are based on a combination of large deviation theory for Markov chains and an
elementary perturbation result for matrices. We summarize the main facts we
will need.

Let X;, X,,... be an irreducible Markov chain on a finite state space
&= {x,, Xy, . .., X )}, with transition matrix P = {p(x, y); x,y € &} and invari-
ant measure 7 = (m,, 7,,...,m;). Let g(-) be a real valued function on &,

p=E,.g(X)and S, = L7g(X)).

The objective of large deviation (LD) theory is to study the asymptotic
behavior of the deviation of the sample mean, namely P{S, /n > a}, for a > u
(if @ < u, this quantity converges to one by the law of large numbers). Roughly
speaking, LD theory tells us that these probabilities decay exponentially and
the objective is to find the exponent. More precisely,

1 S
2.1 im — 1 —>a)=-1I
(2.1) tim —log P{ =% > a} - ~1(2),
where I(g) is called the rate function. .
To describe I(g), one considers the transform matrix P(6, g) = {explg(x)] -
p(x,y)). This is a nonnegative irreducible matrix and hence has a maximal
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eigenvalue A(6; g) with associated right and left eigenvectors r(6,g) =
(r(xl; 0’ g), r(xz; 0’ g)’ cr r(xd; 09 g)) and l(0’ g) = (l(xla 09 g)’ l(x2, 0, g)a

S 1(xg; 0, 8)). Let A(6; g) = log A(6; g). The convex conjugate of A(6; g) is
defined to be

(2.2) A*(x;8) = sup[6x — A(0;8);0 € R].

One of the basic results of LD theory says that the limit in (2.1) exists and that
I(g) = A*(a; g). For a proof of this result see, for example, Miller (1961) or
Ellis (1985) or in much greater generality, Donsker and Varadhan (1975a, b,
1976) or Ney and Nummelin (1987a, b). In the case when {X,} are iid, this
result is just the classical Cramér/Chernoff theorem.

In the problems under study here, we will also refer to the so-called twisted
transition function

A exp[6g(x)] p(x,y)r(x;9,8)
Q) = (S

It is easy to check that this is really a transition function and that its invariant
probability measure is

(2.4) m(0,8) = {m(x;0,8)} = {I(x;0,8)r(x;0,8); x € &Y},

where r and ! are normalized so that ¥ w(x;0, g) = 1. The important prop-
erty of P(6, g) is that if we take 6 = 6, as the solution of A'(6; g) = a, then
E_ 6, 8(X;) = a. Thus by going over to P, one centers S,/n at a.

The previous facts are basically all the LD theory we will need. We will also
use a perturbation result for P(6, g). Namely, suppose f is any real valued
function on & and take £ > 0 (thought of as small). Then we consider the
perturbed matrix P(6, g + ¢ f). Clearly (as ¢ — 0),

P(0,g+cf) = {exp[0g(x)] p(x,y)[1 + e0f(x) + O(e?)]; x,y € &)

and by a textbook result on perturbation of matrices [see, e.g., Chatelin (1983),
page 13), the maximal eigenvalue of P(6, g + ¢ f) satisfies

(2.3) e &y,

(2.5) Mg +ef) = A(6;g) + 0A(0s g, F) + O(e?),
where
(2.6) A(6;g, ) =A6;8) L f(x)m(x;6,8).

Note that this says that the directional derivative of A(8; g) with respect to g
in the direction f is

(2.7) DpA(858) = 0A(8;8) X f(x)m(x;6,8).

3. Results. As in the previous section, {X,, n = 0,1, ...} is an irreducible
Markov chain on a finite state space &= {x,,..., x,;} with time homogeneous
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transition function P = {p(x,y); x,y € &}. Let P° and P! be given irre-
ducible stochastic matrices. We are to test
Hy,: P=P° versus H;: P=P.

Associated with each of P° and P! there will be all the objects defined in
Section 2: invariant measures, transform matrices, eigenfunctions and eigen-
values, etc. We denote these by superscripts or subscripts i = 0, 1.

Assume that 7° = 7!, (Otherwise our test cannot discriminate between H,

and H,.) We constrain ourselves to tests of the following form, the so-called
memoryless detectors:

(3.1) decide H, if S, > na, H,if S, <na,
where
Sn = Sn(g) = Z g(Xt)’
i=1
g is a real valued function on & and a € R. We must choose the memoryless

nonlinearity g and the threshold a. Clearly, it is no loss of generality to take
a = 0 and we must thus choose g so as to maximize

I(g) A Ii(8),
where
1
Iy(g) = — lim —~ log PHo( S, < 0)
and
1
I(g) = — lim - log PH1( S, > 0)

(a A b =min(a, d); a V b = max(a, b)). These quantities are the error rates
associated with H, and H,. As indicated in Section 2, associated with each of
P% and P! is a transform matrix Pi(0, g) = {exp[0g(x)]p‘(x, y)} and a maxi-
mal eigenvalue A (8; g), i = 0, 1. By the definition (2.2) with a = 0,

(3.2) I(8) = A'*(0;8) = — igflog X(6;8).

We will see that the infimum is actually achieved at a point 0;, (depending of
course on g) and thus our problem reduces to finding g so as to minimize

(3.3) AO(eg;g) v N F )

We will call g an optimal solution if it minimizes (3.3). Let
(34) A(8°, 6%, 8) = 1°(6% g) v N'(6%; g).
We will see that there exist (6°%, 1%, g*) such that

(3.5) inf A(6°,0, g) = A(6°%, 6", g%),
gyoo’ol

and thus g* is an optimal solution. Let us call (§°*, 6'*, g*) an optimal triple.
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We will also see that this point is unique in a suitable sense and is determined
as the solution of a set of equations.

We start by fixing (% 6') and finding an optimal related g; then we
consider what happens as 0°, 6' and g vary. The main result is Theorem 2.

THEOREM 1. For every fixed 0° > 0 > 0, there exists a unique solution g*
of the pair of equations

(3.6a) A°(6%8) = X(6; 8)
and
(3.6b) m0(x;0% g) = mi(x;6%, 8), x € &.

This solution is optimal with respect to (8°, 0') in the sense that it minimizes
A6°, 0%, g). It is in fact the unique local optimum (i.e., the unique solution
that minimizes A in a neighborhood of g*).

Thus for each fixed (6°, 8), there is a unique optimal g. (Later we give an
algorithm for computing this g.) It remains to determine the particular pair
(6°, 6") whose associated g is the global optimum we are seeking. To this end
we will prove Theorem 2. Note that

Ai(co; 5) =)(6;g), i=0,1
(3.7) ;
)\(cf)o, co’, ;) =A(6° 6%, g).

Thus any uniqueness of an optimal triple will be valid only up to multiplicative
constants as in (3.7).

THEOREM 2. Let (6°*, 0'* g*) be an optimal solution. Then this triple
satisfies

(3.8a) A0(6°%; g*) = AL(0'*; g%),
(3.8b) m0(x;0%%, g*) = wl(x; 0™, g*%), xXE &,
(3.8¢) Y g*(x)mi(x;0%, 8*%) =0, i=0,1.

Equations (3.8a, b, ¢) have a unique solution [up to multiplication by con-
stants in the sense of (3.7)). Thus 'A(6° 6, g) achieves a minimium at
(6°*,0'*, g*) and g* is the sought-after optimal solution of the testing prob-
lem.

4. Proofs. Let 7' = (7'(x;6, 8),...,7m(x,0, ), i = 0,1, be the invari-
ant probability measure of P’ and u,(g) = E_{g(X,)]. Then lim(S,/n) =
w(g) exists a.s. [P']. Since we have assumed that 7° # 7!, we may restrict
ourselves to g’s such that

(4.1) po(8) <0 <p(g),
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since otherwise we would have I,(g) A I,(g) = 0, whereas one can always find
a g such that I, A I; > 0.

Consider the transform matrices
(4.2) Pi(0,g) = {e"9pi(x,y);x,y € £}, 6eR,

with maximal eigenvalues _Ai(e; &) and associated left and right eigenvectors
1*(-;0, ), r'c- ;0,8). Let A'(8; g) = log A'(6; g) and A**(-; g) equals the convex
conjugate of A’. Then

(4.3) - I;(g) = N'*(0;8) = — igflog X(6;8) > 0.
Let 7'(x;0, 8) = li(x;0, g)ri(x; 0, g) and normalize so that T, m(x;0,8) = 1.

Then 7'(6, g) = (7'(x1; 6, g), ..., w'(x4; 6, g)) is the invariant probability mea-
sure of the twisted stochastic matrix in (2.3), namely

ri(x;0,8)
X(6;8)ri(y;0,8)°

Q'(x,y;0,8) = Pi(x,y;0, g)

Clearly the optimal g must satisfy
(4.4) g(x) A Ag(xg) <0 <g(xy) Vo Vg(xg).

Thus P¥(9, g) are nonnegative irreducible matrices having at least one entry
e’*®pi(x,y) > as || > » [for some (x,y)]. This forces Ai(8;g) —  as
|6] —  and since X’ is a convex function of 6, the infimum in (4.3) is achieved
at some point 6}. Thus

I(g) = —log X'(6}; 8)
and as indicated in Section 3, we must find g so as to minimize
AO((););g) v )\1(0;; )
LEmMA 1. If g satisfies (4.1), then
62 >0 > 0;.
Proor. A%(; g) is differentiable and by the twisting property [see Ney and
Nummelin (1987 a, b)]
dA°
0) _
2 (65) = 0.
Also (d)°/d6)(0) = uy(g) < 0 by (4.1). But by convexity of A%, dA°/d@ is
increasing and this forces §; > 0. Similarly, 6 < 0. O

Turning to the proof of Theorem 1, we proceed via three lemmas.

LemMa 2. If g* is locally optimal with respect to 8° > 0 > 6, then
(4.5a) X°(6°% g*) = A(6'; g*)
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and

(4.5b) A°(0% g*, f) = A (6% g%, f) forallf: & R.

Conversely, if g* satisfies (4.5) [or (3.6)), then it is locally optimal with respect
to (8%, 0"). Furthermore (3.6) and (4.5) are equivalent.

LemMA 3. There exists an optimal g with respect to 8° > 0 > 6, hence a
solution of (4.5).

LemMA 4. There exists at most one solution of (4.5); hence a unique locally
optimal g.

These lemmas together prove Theorem 1.

ProOF OF LEMMA 2. Suppose A°%(8°%; g*) < AX9'; g*). Then for ¢ > 0 (¢ =
(g,...,&) € R?) and small we could force

max A'(6%; g* + £) = max es"iAi(Hi;g*) < max X'(6%; g%),
i=0,1 i=0,1 i=0,1

contradicting local optimality of g*. For the proof of (4.5b), note that from
(2.6) for any constant vector ¢ = (c,...,c) € R?,

(4.6) X(0;g, f+¢C) =A(6;g,f) +cAi(6;g)
and hence by (2.5),
X(0;8 +e(f+70))
= X(6;8) + 0] X(0; g, f) + cX(0;8)] + O(e?).
Consider the lines (as functions of ¢)
Li(c) = Xi(()i;g, f) +cX (8% g).

If g* is locally optimal with respect to (6%, 6%), then these lines (with g = g*)
must intersect somewhere on the c-axis.

Suppose there is no intersection. Then L°(c)L(c) < 0 for some ¢ and since
also §°6' < 0, we could find arbitrarily small ¢ such that [by (4.7)]

(4.8) max A'(6%; g* + e( f + ¢)) < max A'(6%; g%),
i-0,1 i-0,1

(4.7)

contradicting local optimality. Hence’ L°%c) = LYc) = 0 for some ¢, namely
(0%g*, f)  M(6%g*, f)
Since we already have (4.5a), this implies (4.5b).
Conversely, note that (4.5) and (2.5) imply that g* is locally optimal for
6°>0 > 9.
Finally, the equivalence of (4.5) and (3.6) follows from (2.6). This proves
Lemma 2. O
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ProOF OF LEMMA 3. Note that {e#p(x, y); x,y € &} can be interpreted as
the transform matrix in the parameter (g(x,),..., g(x,)) of a d-dimensional
Markov additive (MA) process, namely the occupation time of a Markov chain
with transition function {p(x,y)}. Hence P(6) = {e?¢®)p(x, y)} is the transform
matrix (as a function of g) of an MA process and its maximal eigenvalue is a
convex function of g [Miller (1961)]. Therefore A(6°,60%;g) = A°(8% g) Vv
A(6%; g) is also convex in g. Furthermore, A(6°, 6'; g) — « as ||g|| > o, when-
ever 6, > 0, 6, < 0. Hence A achieves its infimum for some 840, ¢1; that is,
890, is optimal with respect to (6%, 6'). O

Proor oF LEMMA 4. Suppose that there are two solutions g and g!. By
Lemma 3,

(4.9) X°(6%g, f) =X(0%g,f) and 1°(6%g", f) = A(6% &%, f)
for all f: &— R. Let h(x) = g'(x) — g(x) and for y € R, let

Pi(y) = (Bi(x,5;7); 2,5 € &} = {7 ™pi(x,5;0,g)}, i=0,1,
where pi(x,y; 0%, g) = e®#@pi(x, y). Thus Pi(y) is itself a transform matrix
(in the variable y) of the (nonstochastic) matrix Pi(6, g).

Let X'(y) be its maximal eigenvalue. If h(x) is not identically equal to 0,
then X' is a convex, differentiable function of vy, and by (2.5), for small y,
(4.10) X(y) = X(6%;8 + yh) = N(6%;8) + y0'A(0%; 8, h) + O(v?).

Hence

Y

dy

(0) = 6°A(6%; g, h).

Also by hypothesis,
A°(0) = X°(6°% g) = A}(8%; g) = X(0).
Thus by (4.9) and (4.10), we have

Xi(y) ,1 = 0,1, intersect at 0 and their derivatives

4.11
( ) have opposite signs there, or are both equal to 0.

Similarly, for y in a neighborhood of 1, rewrite P‘ as

Pi(y) = {7~ D" ®p(x, y; 0%, g1)}.

Then
X(y) = X658+ (y - 1)k
(4.12) (7) 4( e (y-1) ).-‘ |
= X(0%58") + (v — 1)0°Ai(6%; 8, h) + O(1 — )2
or

3\

dy

(1) = 0°X(6%; g, h).
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Since A(1) = A¥(6%; g1), we have again
A%(1) = A1),
and by (4.9) and (4.12):

X(y) intersect at 1 and their derivatives have

(4.13) o
opposite signs there, or are both equal to 0.

But (4.11) and (4.13) together can hold only if X(y) are constant, which
implies A(x) =0or g =g'. O

We proceed with the proof of Theorem 2 via the following lemmas.
LEMMA 5. If (0°*,0'*, g*) is an optimal triple, then it satisfies (3.8).
LEMMA 6. An optimal triple exists.

LEMMA 7. There exists at most one optimal triple [up to multiplication by
constants in the sense of (3.7)].

ProoF oF LEMMA 5. We calculate the derivatives of A!(-;g). Namely,
applying the perturbation formula (2.5), (2.6), we have

(6" + A6 ) = XN (0% 8) + A(6°;8)A0° ), g(x)m(x;6°, 8) + O(A6?)
x
and hence for i = 0, 1,

X o . ‘
(4.14) 25 (058) = X(058)) g(x)mi(x;6%, g).

If (6°*, 0'*, g*) is an optimal triple, then clearly g* is optimal with respect to
(6°#*, 8'*) and hence by Theorem 1, (3.8a,b) hold. Furthermore, if (3.8c) failed,
then by (4.14), we would have (dX' /36)X8%; g) > 0 or less than 0 for i = 0,1,
and we could make both eigenvalues smaller by perturbing (6°, 6!), contradict-
ing the definition of optimality. Hence (3.8) is satisfied. O

PRroOOF OoF LEMMA 6. Let 0;’ and 051' be as in (3.2), which were shown to exist
for each g in the proof of Theorem' 1; and let g,o ,» be as in the proof of
Lemma 3. The difference between the present case and Lemma 3 is that now
we do not know that A(()O 2o 1 g)is convex in g. One can show, however, that
A0, 0%, ggo 1) is a continuous function of (6°,6"). Also inf, )\(a0° abl, g) =
inf, )\(6?0 6, ag) = inf, A(6°, 6%, g) and hence A(a0° af! » 8a00,a0") =
)\(0 0%, 840 g1). Therefore

4.15 inf A(0° 0 0 = inf A 00 ot
( ) 00 g1 ( » 86 a) (60 8hex ( » 860, a)

for some compact K C R2 Hence the infimum in (4.15) is acheived for some
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(6% 6") = 6. But then (by the continuity)

inf A 00, 01,g = inf inf A eo,ol,g = inf A Bo,el,g 0t = A 5, s
8°,0%, ) ( ) 0°>0 & ( ) 89> 0 ( 0% 0') ( go)
6'<0 0'<0

and we have the required existence. O

Proor oF LEMMA 7. Suppose (6,6, g) and (6°, 6, 2) are two solutions.
Consider the matrix

(4.16) {pi(x,y;m)} = {exp[u[0'g(x) - 8'8(x)] + 84(x)]pi(%, 7))
and let A,(u) denote it maximal eigenvalue. For p near 0, this is a perturbation
of the maximal eigenvalue of {exp[6°2(x)]p,(x,y)}, namely of X(6%; g). Let
fi(x) = 0'g(x) — 6°g(x). Then
{Bi(x,y; 1)} = {exp[p fi(x)]exp[0°8(x)] pi(x, 7))
= {exp[6'g(x)] pi(x,¥)[1 + pfi(x) + O(u?)]}.
By (2.5) and (2.6),

M(w) = X(858) + wa(858) L fi(x)m(x:8', &)
- )e‘(éi;gr)[1 +u L [0'8(x) - éig(x)]wi(x;éi,g)]
and by (3.8¢) this becomes
- x’(éi;g)[1 +u0'S g(x)wi(x;éi,g)].
But note that since (8°, 61, 2) satisfies (3.8b),
% g(x)m(x;0° 8) = § g(x)m'(x; 6%, 8).
But X(6%; 8) = 1,(0) and hence by (4.17),
X,(0) = N'(8%; 8)0" L g(x)m'(x; 6%, 8)
= 2°(6°% g)8° Y, g(x)7°(x;8° 8).

Now since 6° and 6' have opposite signs (by Lemma 1), X' > 0,
0°L g(x)m°(x; 6, g) and 6'L g(x)m(x; ', g) also have opposite signs and hence
Xo(0) and X,(0) have opposite signs. Similarly, X,(1) and X,(1) have opposite
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signs. But by convexity, this is impossible unless A;(u) is constant and this
forces fi(x) = 0 for i = 0,1. This in turn implies the lemma. O

Finally, Lemmas 5, 6, and 7 imply Theorem 2.

5. Computational aspects. Fix (8% 60). Let ¢ = (¢,c,...,c) € R? and
note that

(5.1a) I'(x;8 +C) =1'(x;8),
(5.1b) ri(x;g +¢) =ri(x; g),
(5.1c) X(0;8 +C) = exp[co]X(6;g).

Note that one can always find a ¢ such that 1°(8% g + ¢) = A{8%; g + &) since
with

5.2 L g A08)

( . ) c(g)— 00_01 Ong(oo;g),

we have 2%(0% g + c(g)) = explc(g)8°1%(8%; g) = explc(g)o' A (9Y; g) =
A(0%; g + c(g)). Write g = g + c(g) and let g* denote the unique solution of

(3.6) in Theorem 1.
Let L(g) = {g + ¢: ¢ € R} be the diagonal lines through g. Then

(5.3a) & is a solution of (3.6a) for all g
and
(5.3b) the solutions of (3.6b) are precisely the points of L(g*).

(Note that g*= g*). Assertion (5.3a) is obvious. That all points of L(g*) are
solutions of (3.6b) follows from (5.1). Conversely, if g & L(g*), then g + g*=
g*, while both g and g* are solutions of (3.6a). Hence if g were also a solution
of (3.6b), the uniqueness part of Theorem 1 would be contradicted.

Also note that A’(6; cg) = A'(c; g) and hence we may rescale so that

(5.4) 0° — 61 = 1.

Assume from now on that this has been done. Denote by A(g) the common
value

(5.5) X(g) = A(8% 2) = (613 3).

We can now state the computing algorithm.

ALGORITHM. For fixed (8°6Y), define the sequence {g,(x) € R? n =
0,1,...} by

(5:6)  8ns1(x) = gu(x) +£0°(1 — 0°)A(g,)[7°(x;0° g,) — 7'(x; 0", &,)].
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Let g* denote the unique solution of (3.6). Then given any &' > 0, we can
choose ¢ > 0 such that

(5.7) g, —g*l <é&

for sufficiently large n.

Proor oF ALGORITHM. The previous conclusion will follow from the follow-
ing facts:

(5.8) DA(g) =6°(1 — 6°)A(g) L f(x)[m°(x;6% g) — m'(x;06", 8)]

and
(5.9) the critical points of A( ) are all global minima.

To see that (5.7) follows from (5.8) and (5.9), note that (5.6) can be rewritten
as

(5.10) 8,+1(x) = g,(x) + egrad(A(g,)).

Thus by the method of steepest decent, {g,} will be within &' of a global
minimum of /__\ for large n and suitable . But by Theorem 1, (5.2) and the
definition of A, the global minima of A are precisely the points on the line
L(g*). Thus for all sufficiently large n, g, will be in an &¢’-neighborhood of
L(g*), which is equivalent to (5.7).

To prove (5.8), note first that by (5.2) and (5.4), c(g) = log[AY(8%; g)/
A°(6°; g)] and hence by (2.5) and (2.6) and some calculating, one has

c(g+ef)=c(g) +e0'Y f(x)m'(x;0%, 8)

(5.11)
—e0%) f(x)m%(x;0% g) + O(&?).

Now

Ag+ef)=20%g+ef+c(g+ef)) =e@=NN0°, g +ef),

and hence by (2.5), (2.7) and (5.11), we get after some further calculations,
that

Mg +ef)=Xg) +e0°(1 - 0°)A(g)

XY f(x)[7°(x;0% g) — wi(x;0%, g)] + O(&?),

which implies (5.8).
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Finally, we prove (5.9). The critical points g are those satisfying D;A(g) = 0
for all £, and hence for such points,

m0(x;60° g) = w'(x;0%, g).
Hence by (5.1) also,
m0(x;60° 8) = w'(x;0%, 8).
But g also satisfies (3.6) and by the converse part of Lemma 2, g is locally
optimal with respect to (6%,6%).
Now g is a local minimum of A(-), for if not, there would be points g!

arbitrarily close to g such that A(g') > A(g), and hence by continuity, points
g! close to g such that

ME') = A(g") > A(g) = A(B),
contradicting local optimality of g. _

Finally, we note that all the local minima of A(-) are in fact global minima.
For suppose 2 is a local minimum. Then A(g) = A(g) for g € L(g8) = {8 + ¢;
¢ € R and all such g’s are local minima. Suppose g’ & L(&) were another
local minima. Then g' # g will both satisfy (3.6), contradicting the uniqueness

in Theorem 1. Thus all local minima are in the line L(8) and are hence global
minima. This proves (5.9) and the algorithm. O

Note that we must now perform a search in the (8°, ') parameter set. We
have available, in equation (4.14), an explicit representation of the derivative
of the eigenvalues with respect to 6. In the computation of the examples we
performed a steepest descent search in the (6°, 8!) parameters. Note that the
overall method is not a steepest descent since we do not go choose the largest
gradient with respect to all parameters. Our method falls into the class of
algorithms known as zig zag methods wherein one descends in each variable
sequentially.

ExampLE 1 (Comparison with an iid approximation). The state transition
matrices under the two hypotheses are

0.3 0.7 0.0
P°=10.0 03 0.7,
0.7 0.0 0.3
with stationary distribution [} 3 31]and
0.0 0.2 0.8
P'=100 02 08
0.1 0.1 038

with stationary distribution [ & 2]. The memoryless detector based upon

assuming the data is iid and distributed as the stationary distributions would
be g4 = [log(25/6) log(25/9) log(25/60)]. If we add a constant shift c(g;4)
to optimize this test’s performance, we find it to have an error rate of —0.176.
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TABLE 1
o ™ Optimal rate Memoryless rate

0.7 0.3 -0.919 -0.916
0.95 0.05 —0.454 —0.435
0.8 0.2 —0.807 —0.800
0.6 0.4 -0.981 —-0.979
0.51 0.49 —0.9998 —0.9997
0.9 0.1 -0.614 —0.600
0.95 0.3 -0.721 -0.717
0.5 0.49 —0.99995 —0.99994
0.5 0.1 —0.895 —0.894

Using the steepest descent search technique, we find the optimal choice is
g*¥=1[2.6 0.79 —1.3] with associated error rate of —0.189.

ExamMpLE 2 (Comparison with optimal detector). Consider the five state
Markov chain transition matrix

mi 1—py 0 0 0
M 0 - 0 0
0 M 0 1—p, 0
0 0 M 0 -
0 0 0 pe  1-gp

We consider the testing problem between two Markov chains labeled 0 and 1.
Chain i has the previous transition matrix parameter u;, { = 0,1. Table 1
compares the performance of the optimal test statistic versus the memoryless
test statistic for various choices of u, and ;. One can see that there appears
to be little loss in using a memoryless detector for this particular example over
a wide range of parameter values. If the previous five state example is replaced
by an even state symmetric (u, = 1 — u;) case, then one can show by a
regeneration argument that the rate performance of the memoryless and
optimal tests are identical even though the tests themselves are not.

ReEMARK. We computed the principal eigenvalues and associated eigenvec-
tors of the twisted matrices by a modified power method. Since our matrices
were irreducible and aperiodic, we were guaranteed that there was a strictly
largest (in modulus) positive eigenvalue. However, we found that the iterative
nature of the program tended to push the next largest.(in modulus) eigenvalue
out until machine accuracy failed to be able to distinguish between the relative
sizes. In such a situation, a simple powering up of matrices must fail since
essentially two eigenvalues of equal size are being excited. We found that
shifting (i.e., adding a positive constant % times an identity matrix) was
necessary. This operation has the effect of separating the largest positive
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eigenvalue away from the others, has no effect on the eigenvectors and merely
adds the constant % to the computed principal eigenvalue.

6. Discussion and other problems. One should not try to read too
much from the previous examples, since every hypothesis testing problem is
different. It is quite easy to generate examples where memoryless structures
perform arbitrarily close to or far from the performance of the optimal
structure. Clearly, if two Markov chains have the same stationary distribution,
then the memoryless test cannot distinguish between them at all. On the other
hand in the degenerate case of iid testing, the memoryless structure is
optimum.

There are a number of variants of the basic problem that would be interest-
ing and useful to consider. The authors have in the previous framework
considered a Neyman—-Pearson type of formulation where the type I error rate
is fixed and one desires to minimize the type II error rate. We have also
considered our problem when the observations are assumed to be continuous
time Markov processes with a finite state space. The case of more general state
spaces in discrete and continuous time remains unresolved at this time. An
anonymous reviewer has suggested a generalization of the problem considered
in the text. Suppose {X,} is an m-Markov chain. Suppose we are free to choose
a real-valued function operating on any & (k¢ < m) past samples of the chain.
One then sums the function values to obtain the test statistic. What is the
optimal function to choose in the sense of maximizing the exponential error
rate? It appears that many of the techniques we have used in the previous
sections may be used here but technical problems remain with the existence
and uniqueness properties. We are currently working on these. This problem
would be of particular practical interest as Markov-m models are a very
traditional class of noise models in communication systems.

Other questions hereto not investigated are the questions of robustness or
sensitivity of the designed detector to the underlying noise models. Another
question of interest is how to handle various classes of composite hypotheses
in this setting. We feel that this is a rich problem area with a solid practical
foundation for researchers interested in hypothesis testing.
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