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ASYMPTOTIC OPTIMALITY OF BAYES COMPOUND ESTIMATORS
IN COMPACT EXPONENTIAL FAMILIES

By SOMNATH DATTA
University of Georgia

The problem of finding admissible, asymptotically optimal compound
rules is pursued in the infinite state case. The components involve the
estimation of an arbitrary continuous transform of the natural parameter
of a real exponential family with compact parameter space. We show that
all Bayes estimators are admissible. Our main result is that any Bayes
compound estimator versus a mixture of i.i.d. priors on the compound
parameter is asymptotically optimal if the mixing hyperprior has full
support. .

The asymptotic optimality results are generalized to weighted squared
error loss with continuous weight function and applications to some nonex-
ponential situations are also considered.

Several examples of such hyperpriors are given and for some of them
practically useful forms of the corresponding Bayes estimators are ob-
tained.

1. Introduction. We start with some notational conventions used
throughout the body of this paper. Given any vector x = (x,,..., x,), for each
l1<a<n, x, denotes the vector (x,...,x,) and x,” denotes the vector
(v, ..., U, with v; = x; for j <a and = x;,, for j > a. Typically the letter
P is used for probabilities and E for the corresponding expectations. For
probabilities Py,..., P,, X _, P, denotes their measure theoretic product. For
the sake of clarification, dummy variables are often displayed in integrals. Also
mixed mode integral expressions like [X(w)dP are used. If X is a random
variable on a probability space (-, - , P), then XP~! denotes the distribution of
X under P. For a bounded function f, f, and f* denote its infimum and
supremum, respectively, over its entire domain. R, Z and N stand for the set of
reals, integers and nonnegative integers, respectively.

1.1. The component and the compound problem. The component problem
has the structure of the usual decision theory problem, that is, we have a
parameter space ©, a family of probability measures {P,: § € ®} on some
common measurable space &, an observable Z“valued random variable X ~ P,
under 6, an action space &7, a loss function L: /X ® — [0, ) and decision
rules ¢, t: - & such that L(¢,6) is measurable for each 6, with risk
R(t,6) = E,L(t,6).
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The compound problem simultaneously considers a number, say n, of
independent decision problems each of which is structurally identical to the
above component problem and the compound loss is taken to be the average of
all the component losses. Thus, for*each n > 1, the compound problem can be
formulated as a decision problem as follows. We have the parameter space ",
the action space &/", observations X =(X,,...,X,) ~Py= X;_P,, 0=
,,...,6) € ®", compound rules ¢ = (¢,,...,¢,) with loss L (¢,0) =
n~ 'L rL(¢,,06,) and risk

(1.1) R,(t,0) = E,L,(¢,9).

In the set compound version ¢, is a function of X,, X,,..., X, for all
1 < a < n. In the sequence compound version, however, the statistician is
allowed to use the data X, = (X,,..., X,) up to stage a in making the ath
decision and so ¢, is a function of X,,..., X ,forall1l <a <n.

Let Q = {w: w is a probability on 0}. For w € (), let R(w) stand for the
minimum Bayes risk versus o in the component problem, that is

R(w) = A [R(t,o) dw(6).

For a traditional simple symmetric rule [i.e., ¢ (x) =#(x,) V 1 <a <n for
some component rule ¢] the compound risk is easily seen to be at least R(G,),
G, being the empirical distribution of 6,,...,8,. Thus compound rules which
attain risks asymptotically no more than R(G,) are of interest. Hannan (1957)
used the term ‘““approximation to Bayes risk” to describe such effects. For a
compound rule ¢, the difference D, (¢, 8) = R ,(¢,0) — R(G,) is called the modi-
fied regret of ¢ at §. We say that a rule ¢ is asymptotically optimal (a.0.) if

(1.2) V D,(t,8),~0 asn .
/]

For the relation of this notion of optimality to that with a more stringent
envelope in the finite ® case, see Gilliland and Hannan (1986).

A set/sequence compound rule ¢ is said to be admissible if for each n > 1,
R (¢, 0) is admissible in the usual decision theoretic sense as a function of § in
the class of set/sequence compound rules.

1.2. Literature review and a summary. The problem of exhibiting com-
pound rules which are a.o. as well as admissible has been an interesting and
challenging question ever since it was put forward by Robbins (1951). His
featured example was decision between N(—1,1) and N(1, 1). He exhibited an
a.0. compound procedure and called it asymptotically subminimax by compari-
son with the simple symmetric minimax rule. He proposed the Bayes com-
pound rule versus the symmetric prior uniform on proportions for his featured
example and conjectured that it might have better risk behavior than his
asymptotically subminimax rule. Inglis (1973) studied the asymptotic optimal-
ity of a class of admissible Bayes rules for two state components under the
finiteness of the expected log densities and tacit [cf. Inglis (1979)] nonatomicity
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conditions for his ‘“‘generalization’’ of the Hannan—-Robbins theorem. Gilliland
and Hannan (1974), which was later published in 1986, treated the more
general problem of restricted risk components in the finite ® case. They
worked with a more stringent envelope and reduced the problem of asymptotic
optimality to the problem of establishing the L, consistency of certain induced
estimators. Gilliland, Hannan and Huang (1976) established that consistency
in two state components for Bayes compound estimators versus certain sym-
metric priors including the Robbins prior. This approach yielded for them
admissible rules which are a.o. with rates as good as O(n~'/2) in the general
two state component case. Vardeman (1978) successfully exploited a result by
the last authors to obtain admissible a.o. sequence compound rules in the two
state component case.

None of the results mentioned in the previous paragraph goes beyond the
finite O case. Inglis (1973) attempted to prove the admissibility and asymptotic
optimality of a class of Bayes compound estimators versus mixtures of i.i.d.
priors in estimating a geometric parameter with compact parameter space.
Unfortunately his proof of asymptotic optimality appears to contain certain
serious gaps. For a discussion on this see the addendum of Gilliland and
Hannan (1986).

The present work, which subsumes Inglis’s example, seems to be the first
successful attempt in the literature to accomplish compound admissibility and
asymptotic optimality simultaneously in the nonfinite state case. Our compo-
nent distributions form a one dimensional exponential family of quite general
nature, whose examples include well known exponential families such as
normal, exponential, geometric, Poisson and negative binomial, where the
parameter space is any compact interval of the natural parameter space on
which the first moment is finite. The component problem is to estimate an
arbitrary continuous transform of the natural parameter under squared error
loss. We note that all compound Bayes estimators in our problem are admissi-
ble. Our main result is that those Bayes versus a mixture of i.i.d. priors on the
compound parameter are a.o. if the mixing hyperprior has full support.

2. Exponential family component. Our component problem is the
following: ® =[c,d], —»<c<d <, &=R and L(a,8) = (a — ¢(8))?
where ¢ is any real continuous function on ® and V 8 € O, P, admits a
density p, wrt a common o-finite u on R given by

(2.1) pe(x) =e®h(0), xe€R.

In addition u is assumed to satisfy u, < u, where u, = us;' and s,(x) =
x+k xER kEL
Clearly ¢,d € O = {6: [e®* du(x) < »}. Throughout we will assume

(2.2) [xecx du(x) < o, fxed" du(x) < .

It is well known [e.g., Lehmann (1986), Theorem 2.9] that (2.2) holds if
¢,d €int 0,
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For w € , let P, denote the w mix of P,’s and p, denote its u density,

p(x) = fpo(x)dw, x € R.
The following consequences of our assumptions are worth noting and some
will be used in the later sections. -«

Cl. h(8) = (Je®* du(x))~! and A is continuous and positive on compact ©.
Consequently, 0 < h, < h* <. [Indeed h, = h(c) A h(d), since logh is
concave by the Hélder inequality.]

C2. Forany 6 €0,
(2'3) pgS (h*/h*)(pc+pd),

and hence any f € L(P,) n L,(P,) is uniformly integrable wrt the family of
probability measures {P,, 6 € O}.

C3. Since, for any 6 € 0,
(2.4) By (e A e®) < py(x) < h*(e™ V e%%),
and for any w € Q, p, inherits the above bound (2.4) on p,, we have

pw(x) h* phld=0)
p,,,(x)

(2.5) xeR

for any w, »' € Q.

We will use P for Py = X[_,P, and E for the corresponding expectation.
Since 2= R in our problem, we will view X,,..., X, to be the coordinate
functions on R™. On the other hand, any measurable function H on R” will be
viewed as the random variable H(X) whenever convenient.

3. Estimators induced by priors on ().

3.1. Bayes versus mixture of i.i.d. priors. Consider Q with the topology of
weak convergence. Let B(Q) denote the Borel o field of Q. Let A be a
probability on (Q, B({2)). Define the prior (for each n) @} on ©" as

(3.1) @7 (B; X -+ XB,) =fi=I—[1w(Bi)dA,

for B,,..., B, Borels of @. (Note that the above integral makes sense because
the integrand is nonnegative and measurable. For a proof of measurability it
suffices to take n =1 and B, open. But then it follows from a defining
property of weak convergence [Billingsley (1968), Theorem 2.l.iv] that {w:
w(B;) > €} is open and hence measurable V ¢ > 0.) Hereafter we will drop the
superscript n in @7, as it will be clear from the context.
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By the Fubini theorem, the a-component Bayes risk against @, of an
estimator ¢ = (¢,,...,¢,) in our set compound problem is

(2 R(w5) = [ ([ 0.~ 000 [Tpx) 4, ) au.

Let A,, denote the conditional probability measure on Q given X =x.
Then A, has density proportional to e%= wrt A where gon(w) =
Xiiqlogp,(x,). Let w,, =A,,°». By the Fubini theorem (on the space
Q X @™), the inner integral in (3.2) is

[ f (ta = #(6.))’py(x,) dw e8en® dA,
which then, by definitions of g,, and w,_,, equals .

(8.3) ( [eten® dA) J (b0 = #(8.))" Py (%) dwan(6,).

The compound risk being the average of the risks across the components, it
follows from (3.2) and (3.3) that the estimator which plays component Bayes
versus w,, in the ath estimation V a = 1,..., n is Bayes versus @, in the set
compound problem. Let 7, denote the Bayes estimator of ¢(8) versus a prior w
on O in the component problem,

7o(%) = [$(8) py(x) deo/p, ().

Thus the Bayes set compound estimator { versus @, is then given by

(3.4) t(x) =1, (x,), a=1,...,n.

In a similar fashion, or otherwise by relating the sequence rules with the set
rules and using the above, one can prove that the Bayes sequence compound
estimator versus @, is given by

(3.5) t(2,) =7, (x,), 1l<as<n.

3.2. Admissibility. For each 6 € ®", P and u" are mutually absolutely
continuous. Hence for any prior { on 8", P < [P d{, the marginal distribu-
tion of X, for all § € ®". Hence, by an immediate application of Lemma A of
the Appendix, we get that for each n > 1, all Bayes estimators in our com-
pound problems are admissible. In particular, { of (3.4) and of (3.5) are so in
the respective versions.

3.3. Asymptotic optimality. The support of any probability A on Q is
defined to be the smallest closed set with A probability 1. Our main result is
that the Bayes compound estimators versus @, are asymptotically optimal
whenever A has full support. The proof of this result is given in the next
section.

Recall that G, stands for the empirical distribution of 6,,...,6,. Let
£(x) = 74 (x,), 1 < @ < n. Then the modified regret of £ at 0 is

(36)  D(f0)=n" il (B(Z, — 6(0,))" - B(Z, - 6(6,))%).
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Since £,, £, $(6,) € ¢[0],
(3.7 |D,(£,0)| < 2diam ¢[@]n"! f E|f, - f,|.

a=1

THEOREM. If supp A = Q, then (a) with £, the Bayes compound estimator
given by (3.4),
(3.8) V E|f, - t,| = 0, uniformlyin §,asn - =

as<n

and consequently, { is asymptotically optimal; (b) the Bayes sequence com-
pound estimator given by (3.5) is asymptotically optimal.

3.4. Examples of A. We briefly discuss two examples of A with support (2,
as needed in the above theorem. For more details on them and some more
examples see Datta (1988).

ExampLE A (Dirichlet process). An important class of priors on the proba-
bilities on R with manageable posteriors has been introduced by Ferguson
(1973). Let y be a nonnull, finite Borel measure on R. Then A is called the
Dirichlet process prior with parameter y [hereafter we write A = 2(y)] if for
every finite measurable partition {Bj,...,B,)} of R the distribution of
(o(B)),...,o(B,,)) under A (v is the identity function on the space of
probabilities on R) is Dirichlet with parameters (y(By),...,y(B,,). It is well
known [e.g., Ferguson (1974)] that supp 2(y) is the set of probability distribu-
tions on R whose support is contained in suppy. So if we choose y with
suppy = ® = [c, d], then A = Z(y) has support ().

ExampLE B (Distributions on the moment space). Let D = {(uy, g, ...):
w; = [0 dw,V i > 1, for some w € O} C R” be the space of moment sequences
of probabilities on @. Since any w € ) is determined by its moment sequence
{u;} € D, ® being compact, a prior on D induces a prior on ) in the obvious
way. To make the ideas precise consider  with the weak convergence
topology and D with the product topology. Let p be the mapping « ~
(@), po(@)y...), p{w) = [6°dw, i > 1. Then p is 1-1, continuous, onto D
and hence is a homeomorphism since () is compact and D is Hausdorff. Thus
a prior A, on (D, (D)) induces the prior A = Ap o p on (Q, #({)). Since p
is a homeomorphism, supp A = Q iff supp Ap, = D.

The structure of D for the case ® =[0,1] has been studied by many
authors. Rolph (1968) exploited this structure to define his prior sequentially
on the coordinates. His priors can be adapted to the case ® = [c, d] by the
reparametrization 8 ~> (6 — ¢)/(d — ¢).

" Another way of putting priors on D would be to follow Rolph’s approach
directly for D = D[c, d], which has the same structure as D[0, 1]. See Datta
(1988) for more details.
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REMARK 3.1. Datta (1988) obtained a computationally feasible form of the
Bayes compound estimators. He expressed £, as a ratio of two finite dimen-
sional integrals wrt the posterior means of w under A. Kuo (1986) also
obtained the same expression in Example A, for which the posterior means are
known, and described a Monte Carlo method for its calculation. When P, is
geometric, negative binomial or Poisson, Example B yields a computationally
feasible form of £,. Some detailed studies in the direction of finding imple-
mentable £, and appropriate numerical methods seem desirable.

3.5. Extensions.

1. It should be obvious that we can also treat the cases where the components
are 1-1 transforms of some exponential families we have been considering.
Suppose that the component distributions P,, § € ©, are such that {Q,:
n € H} form one such exponential family where @, = Pw-l(n)T‘l, T and ¢
are 1-1 transformations on R and O, respectively, and ¢! is continuous.
Let X ~P,. Then Y ~ Q, where Y, = T(X,) and 7, = ¢(6,), 1 <a <n.
Since T is 1-1, estimators (based on Y) in the transformed problem are
related in a 1-1 fashion to the estimators (based on X) in the original
problem. Any such two estimators have identical risk function under a
common parametrization. Moreover since ¢! is continuous, ¢ remains
continuous in the reparametrization n of the transformed problem. Hence
the conclusion of Section 3.2 and the theorem in Section 3.3 for the
transformed problem implies that the set compound estimator

fé(¢~ ())g,(T(X,))dw,,
/q,(T(X,))dw,,

is admissible and a.o. for estimating ¢ in the original problem, where
w,, is as in Section 3.1 with g, (w)= X7, logq (T(X;)). Analogous
conclusions hold for the sequence compound version.

2. We can generalize the component loss to weighted squared error loss, where
the weight function is positive and continuous. If L(a, 8) = w(8)(a — $(8))?,
then a component Bayes estimator of ¢(8) is the ratio of the corresponding
Bayes estimators of w(8) - #(9) and w(6) wrt the squared error loss. Since
w¢ is continuous and w, > 0, the L,(E) case of Lemma 4.1 (see the next
section) with L = 2w*|¢|* /w, and two applications of the theorem for the
squared error loss imply that E|f, — £,| — 0 uniformly in « and 8 where £,
and £, refer here to the weighted loss. As before this is sufficient to
conclude the asymptotic optimality of 7 since (8.7) holds with w* multiple
of the RHS.

3. If we have u_; < u instead of u,; < u, we can use the transformation
T(x) = —x in extension 1 above to obtain admissible, a.o. estimators.

t(X) =

4. Proof of asymptotic optimality. We first introduce a few lemmas
which are needed for the proof of the theorem. For a set A, let [ A] denote its
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indicator function. The following Datta-Singh inequality is Lemma A.1 of
Datta (1988). Hence we omit the proof.

LEmMA 4.1. For<{y,z,Y,Z,L) €R5andz+ 0 <L,
y Y
Izl{ - =
z

z
For any two w, 0’ € (, let

/\L} <ly-7Y+ (H+L)|z—2|.

IP, = Pl = [Ip, - p,ldn,

and for a function f on Rand any k£ € N, let f® = fos,. Note that u, < u
follows from the assumption u; < u.

LeMMa 4.2. Let ¢(0) = e®* for some k € N. Then for any w and o' € Q
and m, m' € (0, »),

h
(41 h—IE,,m — 1l < (e —e*) (P, + B[l - | > morf® > m/]
+ ed=Om(2edk — ok + m)||P, — P,
with f=du,/du.
Proor. Since 7, and 7,, € (e, e?*), by C2 it follows that
S5 Bolr, — 7l 1> mor f® > m]

is bounded by the first term in the RHS of (4.1). To bound the expectation over
the other region first observe that

7.(x) = [e%py(x) dw/p(x) = p(x) /p()
for any w € Q since e®*p,(x) = p,(x + k) = p§*(x). Lemma 4.1 then applies to
yield
(4.2) Pult, = 74l < (2e?* —e*)lp, — p,l + |IpP — piPl.
Since (h,/h*)p, < e“@~Nip  follows from (2.5), (4.2) shows that

(hy/RME,r, — 7l - | <m, f® < m']is bounded by

e<d-c>m{(2edk —e)IP, —Pll+ [ |p® - pg,’f>|du}.
f(k)

<=m'

This completes the proof because, by the transformation theorem, the above
integral wrt u is

f Ipa) _pw'ld“k = f Ipw _pw'lfd#’ = m,”Pw - Pw'”‘ a
f=m’ f=m'

<m
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LEmMMA 4.3. If supp A = Q, then
\Y E|P, - Pg|l-> 0 uniformlyin 6 asn — c.

as<n e

PrOOF. Replace n by n'=n + 1 in Section 3.1. Denote g,.,, A,, and
@, (of the second paragraph of 3.1) by g, A and &, respectively. [& can be
shown to be the posterior distribution of 6, , ; given the data X = (X,,..., X,)
under the prior @;*! on (4,,...,0,,0,,,).] We will use @Dyy, if necessa.ry, to
exhibit the number of arguments.
Fix € ®" and 1 < a < n. Let G,, denote the empirical distribution based

on 6.'. Then we have the following:
@ G,, is G,_, corresponding to §,Y € ®@"~ 1,
(i) Letting F: R*~* —> Q be the function such that F(X, ;) = &,_;), it
follows from the definition of w,, that w,, = F(X,").
(i) Clearly P, XY "' = Py X, 1,
From (i), (ii) and (iii), we get that

1 \ -1
Pg”Pwna - PGna” = Pgav”P"; n— - PGn_]-" '
(

D
Since § and « are arbitrary
V V E”P“’na - PGna” S v E”P“s(n—l) - PGn.—l” - 0
0€0®” a<n gc@"-1

as n — «, by Theorem 3.1 and Example 5.3 [with £ = 1 and T(x) = x], both
from Datta (1991).

Next, because G, — G,, = n‘l(é,, G,,) with §, the distribution degen-
erate at 6,, the varlatlon norm of G - G,, is no more than 2n 1. Thus, by
definition of p,, and by (2.3),

B
lpg, - pg,| < 2n~' V p,<2n7? h_(Pc + Pa)-
0 *

Consequently
I1Pg, = Po, )< 207 [(1V py(2)) du < (4h% /R )n
0

The proof now ends by the triangle inequality. O

PROOF OF THE THEOREM. (a) The second part of the assertion follows from
3.7.
For the first part, first consider the special case ¢(8) = e%, k € N. Clearly,
Elf, -t | = EovE, |7,  —76,),

E3

h
< 'h_{(edk - eCk)(Pc + Pd)[l . l > m or f(k) > m']
*

+e(d_c)m(2edk _ eck + m')E”Pw,m — PG,,”}
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by Lemma 4.2, where m, m' < « are arbitrary. For each m and m’, the second
term of the above bound is 0(1) uniformly in @ and @ as n — « by Lemma 4.3.
The first term is independent of « and § and can be made arbitrarily small by
choosing m and m' large enough. This concludes the proof in the special case.

Next, more generally, let ¢(6) = ¥ ,a,e’ be a polynomial in e’. By defini-
tion and the linearity property of conditional expectation (or integral) it follows
that

fo= L apll,  f,= L a,dl,
k k

where 1% and #l*] are the corresponding Bayes estimators of e®* for each k.
Hence (3.8) holds since it holds with #*! and #*! for.each % by the previous
case.

Finally for general continuous ¢, given ¢ > 0, choose a polynomial p such
that V,|$(6) — p(e®)| < e. Then, using definitions and taking absolute values
under integrals,

£, — 8Pl <z, |, —HP)| <e
where #/P1 and 77! are the corresponding Bayes estimators of p(e®+) and so
I£, — £,] < |8lP) — FIP]] + 26,

The proof is now complete by the previous case, ¢ being arbitrary.

(b) Let 7,,(x,) = 74 (x,) and = (f,,,...,f,,)for l<a<n <wand { =
(13-, E,,)- Now R (£, ) < R,(Z, ), since its generalization [cf. inequality
(8.8.) of Hannan (1957)] holds without restriction and hence D,(£,0), is
bounded by RHS (8.7) with £, replaced by £,,. But since A has full support
this bound is o(1) uniformly in 6, because V,E|f, — f,,| is o(1) by part (a) and
the fact that the limit of a convergent sequence equals its Cesaro sum. O

REMARK 4.1. In fact, in part (b) above, V,|D,(£, 6)| = o(1). To prove this,
note that a slight extension of (2.5) of Gilliland (1968) gives

|D,(£,0)| < 2diam ¢[®]n~' ¥ E|f, - 7,.| + O(n"'logn),

a=1

where O(n~!log n) is uniform in . But the above proof has shown that the
first term is o(1) uniformly in 6.

REMARK 4.2. An interesting question seems to be how far we can relax the
compactness assumption on the component parameter space. It is known that
we cannot always go up to the natural parameter space. An example where no
a.0. compound estimator exists is the Poisson family with unbounded parame-
ter space. See Gilliland [(1968), Section 3.3] for a proof.
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APPENDIX

Admissibility of Bayes compound estimators under squared error
loss. Let {P,}, 8 € O be the component distributions. Consider the compound
problem of estimating ¢ under squared error loss L(t,0) =n"'YX2_.(¢, —
#(6,))? for any function ¢ on O. Let P, = X _ 1P, for € O". Let { be a
prior on 6. Denote the joint dlstrlbutlon Lo P on {(x,0) by Q. Then the

marginal of x is @x~! = [P, d{. For a function f on @" let @, f(8) denote the
class of conditional expectations of f(8) given x.

LEmma A. If { is such that Py < Qx 1V 0 € 0", then every Bayes
estimator versus { is admissible.

Proor. First consider the set compound case.

Fix an a €(1,...,n}. Then Q(¢, — 6,)® is minimal iff ¢ (x) € Q,4(6,).
Hence ¢, is determined up to @x ! null sets and so by the assumption of the
lemma has unique risk 6 ~ [(Q,$(8,) — #(8,))* dP,. Thus, since a € {1,...n}
is arbitrary, the compound Bayes estimators have the unique compound rlsk
0~ n'E2_,[(Q,4(6,) — ¢(6,))* dP, and hence are admissible.

For the sequence compound case, the given condition implies that for each
ae{l,...,n}, P <« Qx.;! V 9, € ©* Hence, by combining the intermediate
results in set case with n = a for each a, we get that the sequence compound
Bayes estimators have the unique compound risk § » n~1X"_, | (@, 4(8,) —
$(6,))* dP, and hence are admissible. O )
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