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TESTING FOR THRESHOLD AUTOREGRESSION

By K. S. CHAN
The University of Chicago

We consider the problem of determining whether a threshold autore-
gressive model fits a stationary time series significantly better than an
autoregressive model does. A test statistic A which is equivalent to the
(conditional) likelihood ratio test statistic when the noise is normally
distributed is proposed. Essentially, A is the normalized reduction in sum
of squares due to the piecewise linearity of the autoregressive function. It is
shown that, under certain regularity conditions, the asymptotic null distri-
bution of A is given by a functional of a central Gaussian process, i.e., with
zero mean function. Contiguous alternative hypotheses are then consid-
ered. The asymptotic distribution of A under the contiguous alternative is
shown to be given by the same functional of a noncentral Gaussian process.
These results are then illustrated with a special case of the test, in which
case the asymptotic distribution of A is related to a Brownian bridge.

1. Introduction. A useful class of nonlinear time series model is the
threshold autoregressive (TAR) model. For an introduction to the TAR model,
see Tong (1983). Tong (1987) surveyed some recent developments of TAR and
other nonlinear time series models. An interesting problem is to test if a TAR
model provides a significantly better fit to the data than an autoregressive
(AR) model does. Petruccelli and Davis (1986) proposed a portmanteau test for
threshold autoregressive-type nonlinearity. Their test is a CUSUM-type test
based on the predictive residuals of ordered autoregressions. A variant of the
test is considered in Tsay (1989). Luukkonen, Saikkonen and Ter#svirta (1988)
considered Lagrange multiplier tests for nonliner smooth transition autore-
gressive models which exclude the TAR model as its autoregressive function is,
in general, discontinuous.

In this paper, we consider a test statistic A which is equivalent to the
(conditional) likelihood ratio test statistic when the noise is normally dis-
tributed. Essentially, A is the normalized reduction in sum of squares due to
the piecewise linearity of the autoregressive function. The performance of the
present test and the portmanteau test of Petruccelli and Davis was studied in
Moeanaddin and Tong (1988). Their simulation results seem to suggest that,
in general, the present test is more powerful.

The testing problem here is nonstandard since one of the parameters is
absent under the null hypothesis. Thus, classical theory of asymptotics is not
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applicable. See, for example, Davies (1977, 1987). It is shown in Section 2 that,
under certain regularity conditions, the asymptotic null distribution of A is
given by the distribution of a functional of a central Gaussian process, i.e.,
with zero mean function. Then, in Section 3, we discuss the contiguous
alternative hypothesis, under which the asymptotic distribution of A is shown
to be given by the same functional of a noncentral Gaussian process. These
results are then illustrated with a special case of the test, in which case the
asymptotic distribution of A is related to a Brownian bridge.

2. The asympfotic null distribution. Let (X)), be a discrete param-
eter stationary time series. It is assumed that X, satisfies the difference
equation,

H:X,—0,-0,X, ;- —6,X,_,

—I(X,_4< r)(d’o + 0 X+ +¢th—q) =&

where (g,) is iid with zero mean and finite nonzero variance o? and e,
independent of the past X, ;, X,_,,...; I is the indicator function; 6,’s and
¢,’s are scalars; p, d, g are known nonnegative integers and p > q; r € R C R
and R is a known bounded subset. For simplicity, we first assume that ¢, is
Gaussian. In a remark near the end of this section, it is shown that the
Gaussian assumption can be relaxed a bit. We also assume the following
condition holds:

All the roots of the characteristic equation, z? — 6,27~ ! —
-+ — 8, = 0, lie strictly inside the unit circle.

Suppose we observe (X, X,,..., Xy). The null hypothesis we want to test
is
(2.2) H,: ¢, =0, 0<i<gq.
Under H, X, is said to follow a threshold autoregressive model. The parameter
r is called the threshold parameter and d the delay parameter. For a discus-
sion on the ergodicity and stationarity of TAR models, see, for example, Chan

and Tong (1985).
To begin with, suppose the true r is known. Then H is just a linear model.

Define

(2.1)

2

(C1)

14
6'2(7') = minz [Xt - 00 - Z GJXt_J

Jj=1
(2.3) q 2
—I(X,_g<r)|¢o+ X ¢jX,_,-) n,
J=1
(2.4) 6*=min} (X, - 6, — 6,X, , — - —0,X,_,)°/n,

all summations are from [ to N unless stated otherwise, [ = max(p,d), n =
N -1+ 1 and the minimum being over all 6’s and ¢’s. Then a strictly
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increasing function of the (conditional) likelihood ratio test statistic for H,
against H; = H\ H, is A(r) = (RSS,g — RSS1ag,))/6%(r), where RSS,y =
né§ and RSSrag,, = iné?(r).

Some conventions and notation, to be adopted throughout, follow. Unless
stated otherwise, all expectations are taken under the true probability distri-
bution for which H,, holds. Let X' = (X, X, .1,..., Xy), €' = (e, 6,41, -, €x)
and 0’ = (8, 0;,...,0,). Denote by X the n X (p + 1) matrix with its first
column consisting of 1’s and the (i, j + 1th entry equal to X;,; ;_;, j > 1.
Abbreviate I(X, <r) by I.(X,). Y, stands for the n X (¢ + 1) matrix whose
(i, Dth entry is I.(X,,;_,_,;) and whose (i, j + 1)th entry is
Xppic1I(Xppi1-g), 21 3, is a (B +1) X (k+ 1) symmetric matrix
whose (z + 1, j + Dth entry is

E(Ir(Xt—d))’ .] = 0’ i = O’
(25) Er,k(i + 1’.] + 1) = E(Xt—iIr(Xt—d))’ J = 0’ i # O,
E(Xt—iXt—jIr(Xt—d))’ iy #0.

Define 3, =3 A, the upper (g + 1) X (p + 1) submatrix of X, , and
3=3,,

Let Q(r) = RSS,g — RSSyg) It is just the reduction in sum of squares
due to “adding” the variables I(X,_, <r), X, I(X,_4<7r),...,
X,_oI(X,_4 <r) to the “original” variables 1, X, ;,..., X,_, in the autore-
gression. It can be verified that

(26) Q) = T(YY,/n— Y X/n(XX/n) XY, /n) T,
where
27 T, = n~ V%Y, = Y X/n(X'X/n) X)X

Note that T. = n~ VXY, — Y/ X/n(X'X/n)"'X"e if H, holds.

r,q’

LemMma 2.1. Suppose that (C1) holds. Let b > 0. Then, under H,, we have
the following:

(1) 3 is invertible; 3., and A, are continuous in r;
() X'X/n - 3 a.s,;
(i) sup_; ., <Y, X/n — A,l = 0,(1), where | - | denotes the norm = square
root of sum of squares of all entries of the matrix;
(iv) for everyr € R, 3, — A,3 7N, is positive definite;

Yr,Yr K_’X X'X -1 XIY,. -1 1
(v) sup - ( ) - (3, - A3,
—b<r<b n n n n
= 0,(1);
(vi) sup |T, —n~Y?Y'e — n~ %A, 37'X'e| = 0,(1).
—b<r<b

The proof of the lemma is given in the appendix. In the rest of this section,
assume H, is true. Let C = A,37" and write C = (¢;;). In view of (vi) in
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Lemma 2.1, asymptotically,

nTY23e,[L(X,_g) —c11 — €1aXe 1~ CipanXip]
(28) T.= n V236 [ X, 1I(X;_g) —Coy —Co2 Xy g — c2(p+1)Xt—p]
n_l/zzst[Xt—qu(Xt—d) —Cqg+n1 — T T c(q+1)(p+1)Xt—p]

Each component of T. is a normalized sum of a martingale difference
sequence. Employing the Cramer-Wold device and a martingale central limit
theorem [see, e.g., Theorem 23.1 in Billingsley (1968)], it is readily seen that T,
converges to N(0,0%(3, — A, 37 A")) weakly. As 6%r) — o? in probability,
A(r) is asymptotically x? with d.f. = ¢ + 1.

In the general case, r is only known to lie inside’ R. Let

(2.9) 6% = mig&z(r)

and

(2.10) A =supQ(r)/62,
reR

which is a monotone increasing function of the LRT statistic. Let {¢,, — <
r < «} be a Gaussian process with zero mean function and covariance kernel
K(r7 §) = 2“min(r,s) - ArS‘—IA’s'

Let > 0. Let D,(—,») (D,[—b,b]) denote the function spaces of all
functions, mapping R ([—b, b]) into R*, that are right continuous and have
left-hand limits. Equip D,(—, ) (D,[—b, b]) with the topology of uniform
convergence over compact sets. Let C,(—o, ) be the subspace of D,(—®,x)
consisting of functions continuous everywhere. See, for example, Pollard (1984)
for more details on these spaces. Now, {T,, — < r < o} lives on D, ,(—, »).

The argument showing that T, converges weakly to o, can be adapted to
show that {7} converges to {d¢,} in terms of finite dimensional distributions.
To derive the asymptotic null distribution of A, we need the following theorem.

THEOREM 2.2. Suppose H,, and condition (C1) hold. Also, assume that &,
is Gaussian. Then {T,} converges weakly to {0¢,} in D, (—»,). Further-
more, each realization of {£,} belongs to C,, (—%,) a.s.

SKETCH OF PROOF. Let b > 0. It suffices to verify the tightness of
{T., —b < r < b} componentwise. Without loss of generality, consider the last
component of {T., —b < r < b}. It is tight iff g,(r) = n"'/23¢,X,  I(X,_,)is
tight. Under (C1), the Gaussian process (X,) is p-mixing with an exponential
decreasing rate, i.e.,

30 < 7 < 1suchthat p(m) = O(r™), m € N, where p(m) =
sup|corr( f, g)l, the supremum being over all square inte-
grable f and g which are measurable w.r.t. {X,, ¢ < 0} and
{X,, t > m}, respectively.

(C2)
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For a proof of this result, see Kolmogorov and Rozanov (1960). Let —b < s <
r < b be two arbitrary numbers. Let M,, M;, M,, K, and K, be constants
independent of n. Then

(2.11) &.(r) —8.(s) =n"12%3e, X, I(s<X,_4<r).

Fori=1,2,...,q,6 =1,2,3,4, we have

E(letXt—iI(s <X, 4< r)la)

(2.12)
<E(1+le*)E(I(s <X,_g<r)E(1+ Xt |X,_4))

Now, the conditional distribution of X,_; given X,_; is N(u + v(X,_; — w),
2(1 — y?), where u = E(X,), 02 = variance of X, and y is the correlation
between X, ; and X,_,. Therefore, 3 M,, independent of b, such that
EQ + X} X, ;) < M,(1 + X} ;). Thence,

(2.13) E(|e,X,_I(s <X,_g<7)[) < ME[(1 +|X,[*)I(s <X, < ],
and hence
E(le, X, I(s <X,y <7)[) < My(r —s),
i=1,2,...,q,6 =1,2,3,4.

(C3)

Let {, =n"'%,X,_,I(s <X,_4 <r). Now by an inequality, for a p-mixing
process, in Peligrad [(1982), Lemma 3.6], we have

E(lg.(r) - £.(s)[") = Ki(n4g ]l + n2/202,0)"

(2.14)

< Kz((r -s)/n+ (r— s)z),
where | - ||; denotes the usual L? norm. The second line in the preceding
inequalities follows from (C3). Let u >0 and {-b=ro<r; < :++ <r,=b}

be a partition of [-b, bl with r; =r,_; +u,0<j<L-landr, —r,_; <u.
Let ¢, ; = n~Y%e,X,_(r;_; <x,_4<r).Then, Vi, forr,_,<r<r,

(215) |gn(r) _gn(rz)l < 2(/,t,i‘
Using Peligrad’s inequality and (C3), it can be verified that

(2.16) sup3y, ; = u0,(n'/?).

Now, we can adapt the proof of Theorem 22.1 in Billingsley (1968) to show the
tightness of {g,(r), —b < r < b}.
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THEOREM 2.3. Suppose that condition (C1) holds and ¢, is Gaussian. Then

() under H,, 6% - o2 in probability;

(ii) the asymptotic null distribution of A is given by the distribution of

sul_)g;(E, - A,E‘IA’,)_lfr.

reR

Proor. Without loss of generality, assume R < [—b, b]. Define the func-
tional

L:x(:) € D, ,[-b,b] > supx(r)(3, - A,E_IA',)_lx(r).
R

Now (3, — A7 )~! is a continuous matrix function over [—b, 5] and
supzlx(r)| < « for each x(-) € D[—b, b]. Thus, L is a continuous functional.
Similarly, the functional supg|x(r)| is also continuous. It follows from Theo-
rem 2.2 that supg|T,| = O,(1). Using results in Lemma 2.1, it is easy to see
that supg Q(r) = supg T,/(3, — A, 2"N)7'T, + 0,(1). Now, &% = 6§ —
supp Q(r)/n. Hence, 6% > o in probability and A converges weakly to
Sup}—? §r"(2r - Arz_lA’r)_lgr' O

ReEMARK. The Gaussian assumption of ¢, in the previous results can be

replaced by (C2), (C3) and

€, has zero mean, finite fourth moment and is absolutely
(C4) continuous with a continuous pdf, say g, which is positive
everywhere.

Also, under (C4), it follows from (2.12) that (C3) is equivalent toV 6 > 03 M
suchthatV —b <s <r<b,

E(X ,I(s<X,_y4<r))<M(r-s), i=1,2,...q.
As can be readily seen from the proofs, the conclusions of Lemma 2.1,
Theorems 2.2 and 2.3, continue to hold if (C1)-(C4) are satisfied.

3. Contiguous alternative hypothesis. As a first step to understand-
ing the asymptotic power of the test proposed in the previous section, we
consider local alternatives. For each N, the null hypothesis is

Hyn: (X,, X;,..., Xy) follows the model H with ¢, = 0,0 <i <gq,
versus the alternative hypothesis ‘

H y: (X,, X,,..., Xy) follows the model H with ¢, = y,n"'/2,
O<i<gandr=r,eR.
Here, v = (vg, Y1,--+»7g) € R?*! is a fixed vector, and r, is a fixed scalar. Let

P,y and P, be the probability measure of (X, X,,..., Xy) under H,y and
H, y, respectively.
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THEOREM 3.1. Suppose that (C1) holds and g(-), the pdf of ,, has finite
Fisher information, that is,
g'(x)
8(x)

Then {P,y} is contiguous to {Pyy}. Furthermore, under H,y, the log likeli-
hood ratio Ay is equal to

(C5) 0<I(g) = j( ) g(x) dx < co.

q
n‘1/221,0(X,_d)(y0 + X ijt_j)g’(et)/g(et)
Jj=1

q 2
+I(g)3L (X,_g)|vo + )y Yth—j) /(2n) + 0,(1).
j=1

Proor. This follows from Theorem 12 in Jeganathan (1988). The only
nontrivial condition that needs verification is to show that, under H,y, the
sequence of pdf of (X,,..., X;_;) under H,, tends to that under H,y in
probability. However, this can be done by adapting the proof of Theorem 2.2 in
Chan and Tong (1986). O

THEOREM 3.2. Suppose that (C1)-(C5) hold. Then

() under H,y, {T,} converges weakly in D, (—»,») to {o¢, + m,}, where
¢, is as in Theorem 2.2 and m, = (G pincr, vy = A 27N, Dys

(ii) the asymptotic distribution, under H,y, of A = supy Q(r)/é
by

2 is given

sup (¢, + 07 'm,) (3, - A,E‘IA’,)_I(gr +o7'm,).
R

Proor. First, the tightness of {T,} under H,  follows from the tightness of
{T.} under H,y in view of contiguity. So, it suffices to show the convergence,
under H,y, of finite dimensional distribution of {T,} to those of {c¢, + m,}.
This can be done as follows. From Theorem 3.1 and a martingale central limit
theorem, under H,y, (X%_ 1¢;T,, A,) converges weakly to a multivariate nor-
mal distribution with cov(2¢,T,,A,) = Sc?m, . Then, the required conver-
gence follows by applying Le Cam’s third lemma [page 208 in H4jek and Sidak
(1967)]. This proves (i). As (ii) follows readily from (i), its proof is omitted. O

It is instructive to examine the results in a special case: p = ¢ = 0. Then
the covariance kernel K(r,r") of ¢, is equal to s(min(r, r')) — s(r)s(r"), where
s(r) = E(I(X, < r)). Let r(s) denote the inverse function of s(r). Hence, ¢, ,,
is just a Brownian bridge. Thus, the asymptotic null distribution of A is given
by the distribution of supg B2/(s — s?), where B, stands for a Brownian
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bridge and S c [0, 1] is the image of R under the map s. Tabulation for A in
this special case is then possible. For details, see Chan and Tong (1991).

As m, = y(s(min(r, ry)) — s(r)s(r,)), the asymptotic distribution of A un-
der the contiguous alternative,

Hiy: X, -0 -n" V2 I(X,_y<19) =5,
is given by the distribution of

sup (B, + o~ Yy(min(s, s,) — sso))z/(s - s?),
S
where s, = s(r).

APPENDIX

Proof of Lemma 2.1. Part (i) is obvious and part (ii) follows from the
ergodicity of (X,).

To prove part (iii), it suffices to demonstrate the desired uniform conver-
gence entrywise. Consider, the (i, j)th entry of Y/X/n, S,(r)=
SI(X,_ )X, ; X, ;/n. From ergodicity, for each r, S,(r) - S(r) =
E(I(X,_)X,_;X, ;) as. Let ¢ <d be two arbitrary numbers in [-b, b].
Condition (C3), as stated in the proof of Theorem 2.2, implies that
max,_,; E(X2 ,I(c <X,_; <d)) - 0 as d > c. Then, by routine analysis,
we can show the uniform convergence of S,(r) to S(r), over —b <r < b, in
probability.

For part (iv), first suppose ¢ = p. Then A, = 3,. Since 3, and 3 — 3, are
positive definite, 3 invertible @ and diagonal D such that @3Q' =1 and
Q3,Q' = D, and with all diagonal entries of D being strictly between 1 and 0.
Hence, 3, — A, 3" '\, is positive definite. The general case can be proved
similarly.

Parts (v) and (vi) follows readily from the other parts of the lemma.

Acknowledgment. I am grateful to the two referees for much useful
advice, leading to an improvement in the presentation, the elimination of an
error in a previous draft and to a strengthened version of Theorem 3.1.
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