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ON THE DENSITY OF MINIMUM CONTRAST ESTIMATORS

By IB M. SKOVGAARD

Royal Veterinary and Agricultural University

Conditions for the existence of the density of a minimum contrast
estimator in a parametric statistical family are given together with a
formula for this density. The formula is exact if multiple local minima
cannot occur; otherwise the formula is an exact expression for the point
process of local minima of the contrast function. Although it is not in
general feasible to compute the expression for the density, the formula can
be used as a basis for further expansion of the large deviation type. When
the estimate is sufficient, either in the original model or after conditioning
on an approximate or exact ancillary, the formula simplifies drastically. In
particular, it is shown how Barndorff-Nielsen’s formula for the density of
the maximum likelihood estimator given an ancillary statistic is derived
from the formula given here. In this way the nature of Barndorff-Nielsen’s
formula as an asymptotic approximation and its appearance as an exact
formula for certain cases are demonstrated.

1. Introduction. The theorem given in this paper provides conditions for
the existence of the density of the maximum likelihood estimator of a (vector)
parameter, together with a formula for this density. The formula is an exact
expression of the intensity of the point process of local maxima of the likeli-
hood function, which is the same as the density of the maximum likelihood
estimator if multiple local maxima cannot occur; otherwise it exceeds this
density by an amount stemming from cases when a local maximum occurs that
is not global. Typically, in the case of n independent replications, this differ-
ence decreases at an exponential rate in n. The formula was given as Lemma
4.2 in Skovgaard (1985b) under much stronger conditions, within the frame-
work of exponential families. There it was used as an intermediate step toward
a large deviation expansion of the density of the maximum likelihood estima-
tor, which turned out to be identical to the one derived by Field (1982) by quite
different methods. Field, working with the more general class of M-estimators,
assumed the existence of the density of the estimator and proceeded to derive
the large deviation expansion by a combination of the methods of Edgeworth
expansions from Bhattacharya and Ghosh (1978) and a saddlepoint expansion
for the score statistic evaluated at the point at which the density of the
estimator was to be calculated. Pazman (1984) derived the same formula for
the case of nonlinear regression along a third line of reasoning [cf. Hougaard
(1985)]. In the present paper we shall consider the kind of continuity condi-
tions required for the existence of the density of the estimator, a problem that
was not addressed for more general families of distributions in any of the
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papers mentioned above. Another purpose of the present paper is to consider
the exact formula in itself, because it may be used to derive more refined
approximations for special classes of models, in particular in connection with
conditional inference. Thus, as a main example, Barndorff-Nielsen’s formula
(3.1) [cf. Barndorff-Nielsen (1980, 1983)] is shown to be an easy consequence
and its exactness properties may be more transparent in view of the formula
given here.

In Section 2 the theorem on the existence and the formula for the density
for the estimator are given. The result is stated in terms of minimum contrast
estimators, because the method of proof does not rely on any particular
properties of the likelihood function. The proof of the theorem is given at the
end of that section. Some readers may want to skip this and go directly to the
next section.

In Section 3 we discuss the implications of the formula, mainly for condi-
tional inference, in which case it simplifies drastically. In particular,
Barndorff-Nielsen’s formula is discussed in this section.

2. A formula for the density. Let {Pg; B € BCR”} be a family of
probability measures on some measurable space E, where the parameter space
B is some subset of R?. Consider an estimator § of the parameter 8 that
minimizes the contrast function

_‘Y(y;B), yEE’BEB’

as a function of B when y € E is the observed data point. For analogy
with the special case when y is the log-likelihood function we prefer to
consider the maximization of the negative of the contrast function. The
function y: E X R? —» R is required to be measurable with respect to the
product of P, and the Borel measure on R” for any B. For any ¢ > 0 and
v € R?, define

(2.1) U(v) = {x € RP;||lx — v|| < &}

as the e-neighbourhood of v in terms of the usual Euclidean norm and let
A, = vol(Uy(0)) denote the volume of the unit ball. Given a fixed parameter
value B, € B, we shall consider the existence of the B,-density of B at another
fixed point b € int(B). Thus all probabilities, expectations, densities, etc., in
the sequel are, unless otherwise stated, computed with respect to P, . Define

(2.2) g(b;B,) = lin})(sPAp)—lP{'y(y; B) has a local maximum in U,(b)},

which is the intensity of the process of local maxima of the function y(y; 8) at
the point B = b. It may also be interpreted as the density of a local minimum
contrast estimator or, if multiple maxima can be ruled out, the density of the
global minimum contrast estimator. Let D,(8) denote the column vector of
first partial derivatives of y(y; 8) with respect to the coordinates of B and
Dy(B) denote the matrix of second derivatives. The abbreviations D, and D,
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are used for the values at the point B =b. We shall need the following
conditions.

(C1) With probability 1, y(y; B) is three times differentiable at g8 = b.

(C2) Conditional densities f(d,|dy; B,) of D, given D, with respect to the
Lebesgue measure exist and satisfy

f(dild2; By) < F <,
for almost all d; and d,, where F is some constant.
(C3) Let
M(e) = sup{|(d/dh)*y(y; B + hv)

where the derivative is evaluated at A = 0, be the maximal norm of the third
differential of y(y; B) in the e-neighbourhood of 4. Then two constants, n > 0
and ¢ > 0 exist, such that 0 < ¢ + (p — 1)n < 1 and that for any v € R?,

;B € U,(b),v € RP, |lv] = 1},

E{|UTD2v|p/n} < oo,
where v denotes the transpose of v and
E{[M(&)]?/*} < .

THEOREM. Assume that the conditions C1, C2 and C3 hold. Then g(b; B,)
exists and

g(b§.30) = E{f(O|D2;BO)lDZIIneg(DZ)}
= fl(OaBO)E{I D2|Ineg(D2)|D1 = O}y

where |D,| denotes the absolute value of the determinant of D, I,,,,(D5) is the

indicator function that equals one if D, is negative definite and zero otherwise,
and f, is the marginal density of D, with respect to the Lebesgue measure.

(2.3)

The conditions as stated in the theorem are not optimal. Some minor
technical improvements have been sacrificed to avoid obscuring the theorem
too much. For example, M(¢) needs to be well defined only with probability
1 —0(e?) as € > 0 and the conditional density in C2 needs only to be
uniformly bounded for d; in some neighbourhood of zero. In fact, the exis-
tence of this density with respect to the Lebesgue measure is required only in
such a neighbourhood. It is easy to see from the proof that these relaxed
conditions are sufficient.

ProOF OF THE THEOREM. Define the function

(2.4) 7(y;B) = v(y;0) + DI(B —b) + 3(B — b)'Dy(B - b)
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and the events
(2.5) L(g) = {y € E;y(y; B) has alocal maximum in U,(5)},

(2.6) L(¢) = {y € E;$(y; B) has a local maximum in U,(b)}.

The quantity we seek is given in (2.2), but it will appear from the proof that it
can also be calculated as the limit

(2.7) £(b;B,) = lim (e24,) " "P(L(e)},

which is identical to (2.2) except that L(e) is replaced by L(¢). It follows from
the condition C3 by use of Chebyshev’s inequality that the event

(2.8) S(e) = {y €E;||Dy|| < ¢ and M(s) < &%}

has probability 1 — o(e?) as ¢ > 0, where 7 > 7 and {> ¢ are two fixed
constants chosen to satisfy { + (p — 1)7 < 1 and || D, is the largest absolute
eigenvalue of D,. Within the event S(a) we have the estimate

(2.9) 1v(:8) = 7(3; B)| < §a®M(a) < §a’a”,

for any B € U,(b). Therefore, if y € L() N S((1 + 8)¢) such that the function
¥(y; B) has a local maximum at B;, say, in U,(d), then for some sufficiently
small 6 > 0 and v € R? with |jv|| = 1 we have

¥(¥;B1) — v(y; By + 8ev) = —38%%0'Dyv + (v(¥;81) — 7(¥;B1))

2.10

(210 —(v(¥; By + 8ev) — 7(y; By + 85v)) = —38%20 Dyv £ (1 + 8)%>,
where we have used (2.9) with a = (1 + 8). Notice that on the set L(e) the
matrix D, must be negative semidefinite and hence the first term on the right
in (2.10) is nonnegative. We want to infer that (2.10) is, in fact, positive for any
v when ¢ is sufficiently small and hence that y(y;B) is larger at B8, than
anywhere on the boundary of U; (B,), implying that L(e(1 + 8)) has occurred.
To do this we must be able to exclude the event

(2.11) R(e)= U {y €E;|v"Dy| < ce' ¢}
flvll=1
for ¢ = ¢(8) = 367%(1 + 8)3. On this set the smallest absolute eigenvalue of D,

is bounded by ce'~¢, while the remaining eigenvalues are bounded on the set
S((1 + 8)¢) by <. Hence, if y € L(¢) N S((1 + 8)¢) N R (&), then

(2.12) |D,| < cet{(e7$)P 7" = cel~{-r-Di = (1)
as ¢ = 0 for any ¢ > 0. If 7(y; B) has a local maximum in U,(b) we must have
(2.13) D, € —D,(U,(0)),

which is the set of vectors —D,v with v € U,(0). This set has the volume
(2.14) vol{ —D,(U,(0))} =|Dy|e”A,,.
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By use of the assumption that the conditional density of D, given D, is
bounded, it follows immediately from (2.12), (2.13) and (2.14) that
(2.15) P(L(e) nS((1 +8)e) NR(¢)) = o(eP)

as ¢ = 0 for any ¢ > 0. Together with the fact that S((1 + 8)¢) has probability
1 — o(eP) as ¢ — 0, this implies that

£(b; Bo) = lim (24,) " P{L(e)}

(2.16) L
= !EI})(SPAP) P{(L(e) N S((1 + 8)e)) \R (&)}

It now follows from (2.10) that
(L(e) N S((1 + 8)e)) \ R 5(e) < L(e(1 +8))
and hence that

£(b:B,) < lim (e4,) "L(e(1 + 9))
= (1+8) lim (en(1 + 8)7A,) L(s(1 +9))

=(1+ 6)pg(b;ﬁ0).
Since this holds for any (sufficiently small) § > 0 we have proved that
(2.17) £(b;B,) < &(b;By)-

The other inequality is proved along the same lines although some of the
arguments are slightly different. Thus, assume that y € L(¢) and let B, € U,(b)
be a local maximum point of y(y; 8). Then the derivative of y with respect to
B at B, is zero, i.e.,

d
0= ﬁ‘)’(y;ﬁﬂ

=D, + Dy(B, — b) £ 3°M(¢)
=D, + Dy(B,—b) £ 16274,

if y € S(¢), where the notation + is used for any vector with a length limited

by the quantity indicated. Hence
D, € ~Dy(U,(0)) + 36>,

As in the first half of the proof we want to exclude the possibility that D, has
numerically small eigenvalues, i.e., the set R (¢) from (2.11) for some appro-

priate c. As above an occurrence of the event R (¢) implies that
vol{ —D,(U.(0)) + 16270} < (e + 1e270) (6177 + %sz'f)p_l
< clgp+1—f—(p—1)ﬁ = o(&P)

(2.18)

as ¢ > 0, where ¢, > 0 is some constant. As in calculation (2.16), this shows
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that the set R (&) may be ignored for any ¢ > 0. For any v € R? with v =1
and any y € S(¢), the inequality

(2.19) |v™Dy(By)v — v'Dyv| < eM(e) < &'7¢

shows that also the set on which Dy(B;) has any eigenvalue less than or equal
to ce!~¢ may be ignored because it has probability 1 — o(¢?). We still have the
bound (2.9) for any y € S(a) and therefore for any y € (L(e) N
S((1 + 8)e)) \ R (¢) and any v with |v|| = 1:

¥(¥5B1) — 7(y; By + d¢ev)
= y(y;B1) — ¥(¥; By + 8ev) + §(1 +8)°e>~¢
= —18%20"D,(By)v + {3(1 +8)%3~ + 1(8¢)% ¢}
>0

if the constant ¢ is chosen appropriately. Thus, it follows that ¥(y; 8) has a
local maximum in the set Us.(B;) € U, .5(b) and the inequality opposite to
(2.17) is derived by the argument analogous to the one leading to (2.17). We
conclude that

(2.21) g(b;By) = &(b;By)-

On the set of negative definite D,’s the local maximum of y(y; B) is located
at b — D;'D,, which has the conditional density

|D2|f(d1|D2;Bo)

at the point b — D;d,, given D,. From the arguments above it is seen that
the set of singular D,’s, as a subset of R (¢), does not contribute to the limit
(2.7) and, therefore, the density g(b; B,) of the local maximum of y(y;B) at b
equals the first expression in (2.3). The second expression in (2.3) is a simple
recast of the first. O

(2.20)

3. Application to conditional inference. In this section we demon-
strate the use of (2.2) to derive approximate formulas for the density of the
estimator. In particular it will appear that Barndorff-Nielsen’s formula for the
conditional density for the maximum likelihood estimator given an ancillary
statistic may be derived from (2.3). In the sequel we abandon any kind of
rigour in the sketched proofs. The point is to show the potential of the
theorem, not to provide new proofs of known results. In particular the
technical problems related to the possibility of multiple local maxima are
ignored. Throughout the section we consider only maximum likelihood estima-
tion, i.e., the function y(y; B) is the logarithm of the density of y at B. We
shall denote this function by /(8;y) in the sequel. The likelihood considered is
the likelihood from the model, even when we consider conditional inference, in
which case an alternative would have been to maximize the conditional
likelihood. In particular, it should be noticed that the functions D,(B) and
D,(B) are the first two derivatives of the log-likelihood, unaffected by condi-
tioning. However, we may want a formula for the conditional density of the
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(unconditional) maximum likelihood estimator given some exact or approxi-
mate ancillary statistic; then the theorem of the previous section applies to the
conditional distributions, i.e., in the conditions and the resulting formula (2.3),
all densities and expectations are conditioned on the ancillary.

Barndorff-Nielsen’s formula [cf. Barndorff-Nielsen (1980, 1983)] for the
conditional density of B at the point b given the event A(y) = a, where
A = A(y) is an exact or approximate ancillary statistic, is

(8.1)s  g(bla;Bo) ~ c(a)]j(b;¥)]"* exp{I(Bo;¥) — 1(b59))},

where c(a) is a constant depending only on a, j(B;y) equals —D,(B8) and
y = ¥(b, a) is any data value for which A(y) = a and B(y) = b. Thus, for the
formula to be well defined it is required that the joint statistic (B8, A) be
sufficient, in which case the formula does not depend on which of the possible
data values y is chosen. The constant c(a) is usually taken either as the
general approximation (27) /2 or as the normalizing constant for which the
integral of g with respect to b is 1. Some virtues of the formula are that it is
exact for transformation models, it is equivalent to a saddlepoint approxima-
tion for full exponential family, it is an accurate approximation for subfamilies
of exponential families and the formula applies to a large class of ancillary
statistics. Several proofs of its validity as an asymptotic approximation for
curved exponential families have been given [cf. Barndorff-Nielsen (1980),
McCullagh (1987, Section 8.6) and Fraser (1988)], so the reader may well
question the desirability of yet another. However, the main point of the
following derivation, apart from its simplicity, is that it sheds some light over
some features of the formula (3.1), including cases of exactness, its nature as
an asymptotic approximation, its relation to the saddlepoint approximation
and the appearance of the observed rather than the expected Fisher informa-
tion in the formula. In the original proof of the general asymptotic nature of
the approximation in Barndorff-Nielsen (1980), the observed information re-
mained to some extent an optional choice compared to the expected informa-
tion. This choice was, however, fully justified by a number of cases for which
the formula turned out to be exact.

The discussion below is related, in particular, to the one in Fraser (1988). A
difference is that Fraser, as McCullagh (1987), works with the score function
at the point B,; another is that the formula (2.3) applies also to cases of
nonsufficiency for which other saddlepoint-type expansions may be derived
from it [cf. Skovgaard (1985b)]; a third difference is that we focus our attention
on the nature of (3.1) as an asymptotic expansion of the large deviation type.

To see how (3.1) follows from the theorem in Section 2, let us rewrite the
last expression in (2.3) as a product of three factors,

g(bla; B) = {£(0la; 5){ f(0la; Bo) /f (0la; b)}
X {EBO(I D2|Ineg( Dy)|D, =0, a)},

where the conditioning on A = a is included as opposed to (2.3). Now, as is
always the case when (3.1) is applicable, we require (B3, A) to be sufficient.

(3.2)
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Then, for a fixed b, (D,, A) will also be sufficient because of the one-to-one
correspondence, at least locally, between these two pairs of statistics. From
Neyman’s factorization criterion it follows that D, is a function of (D,, A) and
hence that the conditional expectation in the third factor in (3.2) trivially
equals |Dy| = |j(b;y)|. Thus, we may rewrite (3.2) as

(3.3) g(bla; B) = {£(0la; b)}{ £(0la; Bo)/f(Ola; b)} j(b;5)].

We now discuss the reduction of (3.3) to the approximation in (3.1). We
consider the case when A is exactly ancillary and then the general case of an
approximate ancillary. We also discuss the two cases of special interest, namely
the full exponential families and the transformation models.

Full exponential families. In the cases of full exponential families the
formula (3.1) is known to be equivalent to a saddlepoint expansion for the
density of the score statistic. In this case there is no conditioning since
the maximum likelihood estimator § is itself sufficient. Hence, recalling the
sufficiency of the score function D, at any parameter value for this class of
models, the second factor in (3.3) equals exp{l(B,; ¥) — 1(b; y)}.

The mean of D, is zero and its variance is —D,, which equals the observed
as well as the expected information. Therefore the normal approximation to
the P,-density of D, at zero is

(3.4)  F(0;b) ~ (2m) P?|vary(D,) | "* = (2m) *?| j(b;¥)|

Thus (3.1) follows from the approximation (3.3). Notice that the only
approximation involved is (3.4), which is a normal approximation to a density
at its mean. This approximation is identical to a saddlepoint approximation to
the density of D, at zero and results in a relative error of O(n™!) in (3.4) and
consequently also in (3.1) for the case of n independent replications.

Exact ancillaries. If A(y) is exactly ancillary, as is the case in transforma-
tion models where the maximal invariant statistic is used, the second factor in
(3.3) equals exp{l(By; y) — I(b;y)}. The first factor is the density at zero of the
score statistic D; at the point & in terms of the conditional distribution
induced by the parameter value b. The expected value in this distribution is
zero, and consequently the normal approximation to the density at this point
becomes
(3.5) f(0la;b) ~ (27) p/2|varb(D1|a)|

1/2

Viewed together with the separation of the first two factors in (3.3), this
approximation is entirely identical to a saddlepoint approximation as was the
case for the exponential family.

It remains to obtain an approximation to the conditional variance of D,
given A. As argued above, D, is a function of D, and A. Consider the case of
n independent replications and assume that the ancillary statistic is in one-to-
one correspondence with a function of the minimal sufficient statistic and that
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this function does not depend on the number of observations. This is the case
if A is chosen, e.g., as the affine ancillary in a curved exponential family
[cf. Barndorff-Nielsen (1980)]. Then, perhaps after a one-to-one transformation
of A, we may write

n~'D, = h(n~'D,, A),

where h is a function that is independent of n. Under mild conditions this
function may be expanded as

1 1 1
(3.6) —D,~h(0,A) + —h'(0, A)D, + 5—DIA"(0, A)D; + ---,

where, in a formal notation valid for each coordinate of D,, we have used A’
and A" to denote the first two derivatives of A with respect to its first
argument. If we take expectations on the right in (3.6) for fixed A, we see that
the expectation of D, equals its value D,(0, A) as a function of D, = 0 and A,
apart from an error term which is O(n~1). But the expectation of —D, in the
conditional distribution equals the conditional variance of D, if A is exactly
ancillary, and therefore the conditional variance of D, may be approximated
by —D,(0, a) which is identical to j(b;y). On combination with (3.3) and (3.5),
we arrive at (3.1) with ¢ = (27) "P/2. Notice that the argument related to (3.6)
shows why the observed rather than the expected Fisher information appears
in the formula.

Transformation models. For the case of a transformation model the ancil-
lary statistic is the maximal invariant which is exactly ancillary. From the
discussion above it follows that the only remaining step to prove that (3.1) is
exact is to prove the transformation invariance of the expression

| i(8;3)]"* f(Ola; b)

for y = y(b, a), ie., b = f(y) and a = A(y). Then it follows that this expres-
sion is a function of a alone and (3.1) is therefore exact if c(a) is chosen
correctly. To avoid the theory of group actions we shall not verify this
invariance; the arguments are given in Barndorff-Nielsen (1983). The reader
may easily check the result in the case of a location model for independent
identically distributed random variables, even if the model is reparametrized
from the location parameter to a smooth function of this.

Approximate ancillaries. So far we have neglected the problem that A
need not be exactly ancillary and as a consequence the only approximation
involved was to the first factor in (3.3), based on the expansion (3.6). This
approximation is of the large deviation type, i.e., it involves an error, here
O(n~1), which is added to a term that is bounded away from zero for b in a
compact set. Thus, the resulting error is a relative error of this order of
magnitude as n — «. In particular, the relative error remains of this order of
magnitude if b is kept fixed as n — o, which is a sequence of large deviations
in the standardized distribution of . The saddlepoint expansion has the same
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characteristics whereas, e.g., Edgeworth expansions provide bounds only on
the additive errors to the density. The approximation derived above, for exact
ancillaries, is not normalized. If the error involved is differentiable as a
function of b, a renormalization obtained by dividing by the integral over some
compgct set will reduce the order of magnitude of the additive error to
O(n~—3/2),

Compared to the case of an exact ancillary, three more approximations are
generally required. The second factor in (3.3) is not exactly equal to the ratio
between the marginal likelihoods. Instead it equals the ratio of the conditional
likelihoods, and consequently the error introduced by use of the marginal
likelihoods equals the ratio of the densities of A at a with respect to the
parameters b and B,. If A is a first order ancillary, e.g., as the Efron and
Hinkley (1978) ancillary, this ratio is, by definition, 1 + O(n~'/2). A renormal-
ization again improves the error of the resulting approximation to O(n~1). For
a second order ancillary the error of the approximation is O(n~1), or O(n~=3/2)
when renormalized. It should be noticed, however, that the approximation
only applies to normal deviates of the ancillary A whenever this is only
approximately ancillary since we have no control of the ratio between the two
densities of A at @ outside a set of normal deviations. If extreme accuracy is
required, a remedy is to use the conditional likelihoods in (3.1) [cf.
Barndorff-Nielsen (1983)].

The other two inaccuracies that appear when A is only approximately
ancillary occur in the approximations to the conditional mean and variance of
D, given A = qa. If A is a first order asymptotic ancillary, then the variance of
the conditional mean of D, given A is O(1); see, e.g., Skovgaard (1985a).
Hence the conditional mean, having mean zero over the distribution of A, is
itself O(1) and since the variance of D, is of order n, the error involved in the
normal density approximation (3.5), due to the bias, is O(n 1)

For the conditional variance of D, given A we notice that the argument
based on the expansion (3.6) is still valid for a first order approximate
ancillary, but the linear term in D, in (3.6) now contributes an amount
O(n~'2) to the expectation, and an amount of the same order of magnitude is
due to the fact that the variance of D; given A is no longer exactly equal to
the conditional mean of —D,. If the ancillary is of second order, both of these
contributions to the error become O(n™1).

It should be noticed that even for an asymptotic ancillary statistic that is
only first order ancillary, the resulting expansion (3.1) is still of the large
deviation type in the sense that it keeps a bounded relative error in a fixed
interval around B,. Therefore the order of magnitude of the additive error can
be improved to O(n~!) by renormalization. The error is also improved to this
order of magnitude, without renormalization, if we restrict attention to nor-
mal deviates of B, i.e., to values of b within a neighbourhood of size O(n~1/2)
around B,. This is so because any first order ancillary is a local ancillary of
second order [cf. Cox (1980) and Skovgaard (1985a)]. In this connection it is of
interest to notice that Amari and Kumon (1983) have proved that in a (%, p)
exponential family, a second order ancillary of the type in (3.6) exists, but in
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general no higher order ancillaries that are independent of the sample size as
required in (3.6).

The general conclusion is that the formula (3.1), like the saddlepoint
expansion, has the features of a large deviation type expansion, namely by
keeping a uniform relative error over a fixed interval of parameter values. If
the approximate ancillary is of first order, the error is O(n~'/2); if it is of
second order the error is O(n~1). In any case the additive error is improved by
one order of magnitude by renormalization. However, the formula applies only
to normal deviates of the ancillary A unless this is exactly ancillary.
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