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ON ANALYSIS OF VARIANCE IN THE MIXED MODEL

By K. G. BROWN

National Institute of Environmental Health Sciences

An analysis of variance (ANOVA) is defined to be a partition of the total
sum of squares into independent terms which, when suitably scaled, are chi-
squared variables. A partition of less than the total sum of squares, but with
these properties, will often suffice and is referred to as a partial ANOVA.
Conditions for an ANOVA, and for partial ANOVAs selected to contain only
specific parameters, are given. Implications for estimation of variance com-
ponents from an ANOVA are also discussed. These results are largely an
extension of work by Graybill and Hultquist (1961).

With unbalanced data, conditions for an ANOVA and the number of terms
in it both can depend on which effects in the modél are fixed and which are
random. This is not taken into account by those procedures for partitioning
a sum of squares which distinguish between random and fixed effects only in
the calculation of expected mean squares. Several examples are given.

1. Introduction. The term “analysis of variance” was introduced by Fisher
(1918), who is responsible for its inception as a methodology and much of its
development as practiced today. At the time of writing of Scheffé (1959), a
general theory and treatment of the fixed effects model as elucidated by him was
judged to be in “fairly permanent form,” while the state of the art with respect
to random and mixed models was less developed. Shortly thereafter Graybill and
Hultquist (1961) presented a fairly general theory for the random effects model.

In the presence of random effects, the problem is one of determining when an
ANOVA exists and then generating it; the expected mean squares dictate what
inferences, by way of hypothesis testing and point or interval estimation, can be
drawn. This contrasts with the fixed effects case in which hypotheses to be tested
are generally decided in advance and the total sum of squares is partitioned
accordingly. In this paper we attempt to combine the separate approaches to
fixed and random effects models into a unified treatment suitable for study of
the analysis of variance in the mixed model. Within such a framework, fixed
effects and random effects models can be viewed as special cases.

The mixed model is described by

(1.1) Y=X6+¢

where Y is a random n-vector, X is a given n X m matrix assumed (for
convenience) to be of full column rank, 8 is an unknown m-vector of parameters.
Further, the error term has the linear structure

8=U1£1+ L +Uk£k

where U, is a given n X k; matrix, U, = I, §& ~ N(0, I6?), and terms £; and §; are
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independent, i # j. Then V(¢) = 2 = Y%, Vo7, where V; = U;U/. Letting ¢* =
(¢%, -+ -, 02)’, the parameter space of o2 is defined to be

Q={o2¢?=0,i=1,.--,k—1,08>0}.

The elements of X and U; are not limited to zeroes and ones, and for most of
what follows the covariance matrix of ¢ could be replaced by the more general
linear structure in Anderson (1973).

Analysis of variance (ANOVA) is formally defined as a partition of Y'Y into
symmetric quadratic forms which

(a) are mutually independent,

(b) when suitably scaled are distributed as (possibly noncentral) chi-squared
variables, .

(¢) have expectations which are different (beyond a known multiplicative
constant) parametric functions.

Requirement (c) implies a minimum number of terms. If A is a known nonnegative
definite matrix such that Y’AY < Y'Y with probability one, then a partition of
Y’AY with the properties of an ANOVA (except for summing to Y’AY instead
of Y'Y) will be called a partial ANOVA.

2. Full and partial ANOVAs. Let P be the perpendicular projector onto
w(X), the range of X, and define T=Y'Y,R=Y'PY,S=T—R. Whenm>1
it is generally of interest to partition 8 into some given set of subvectors, say
8=, ---,pB:),and write R = R; + ... + R,, where R, is the (least squares)
sum of squares for 8;, and R;, for i > 1, is the sum of squares for 3; adjusted for
B1, +++ , Bi-1. Let Py, - .-, P; be the perpendicular projection matrices such that
R,=Y'P;Y,i=1,..-,t,and P=P; + ... + P,, P;P; =0, i # . It is well known
that if k = 1 then {R;, - - - , R;, S} is an ANOVA.

If k> 1, then it is generally necessary to partition S further, say into quadratic
forms denoted by S, - - -, S;, to form an ANOVA. If, for example, the objective
is to test an hypothesis such as 8, = 0, then an F-statistic can be formulated if
one of the S; terms, say Si, is such that the expected mean squares of R, and S;
are identical under the hypothesis. There is no guarantee that such a match is
possible; however, it will be shown in Theorem 1 that {S, - - -, S;} is unique up
to order. Thus, the question of which partition of S is preferable does not arise,
only whether one satisfying the ANOVA definition exists at all.

ANOVA(B,, - -, B:, ¢2) will refer to a set of terms {Ry, ---, R, S1, - -+, Si},
where Y5, S; =S, which form an ANOVA. The first part of the following theorem
is essentially an extension of Theorem 6 of [9] to the mixed model.

THEOREM 1. An ANOVA@B,, ---, B:, o2) exists iffa) Py, -+, P,, Vq, -+,
Vi commute, and b) for each i =1, - - - , t, the nonzero characteristic roots of P;ZP;
(which may depend on ¢?) are all the same. An ANOVA(B,, - -, B:, 0®) is unique
up to order for any given choice of t, Ry, - - , R:.

REMARK. Theorem 1 is about ANOVAs that can be formulated by first
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partitioning Y'Y into R and S (Y’'PY and Y’(I — P)Y), and then partitioning
R and S further. If P does not commute with each V; (the n.s. condition for a
BLUE of an estimable parametric function), then R and S are not independent
and Theorem 1 is not applicable for any choice of Ry, - - - , R,. If P does commute
with each V;, and Vi, --., V, commute as well, then there is a unique partition
of S (not dependent on the value of ¢) with the independent and chi-squared
properties. Assuming one is successful to this point, then one only needs to check
if Ry, -+, R, form an ANOVA for Y'PY. If we drop the requirement that
an ANOVA be formed by partitioning R and S, then the commutativity of
Vi, -+, Vi is n.s. for there to be at least one ANOVA (of unspecified form) of
Y'Y [5].

PROOF (Sufficiency). Let 6(o2); be the nonzero characteristic root of P;ZP;
with multiplicity m; = rank(P;ZP;) = rank(P;), i = 1, --., t. By definition,
P =P, + ... + P, and the P; are disjoint perpendicular projection matrices. Let
L; be an n X m; matrix such that L/ L; = I and

(2.1) PZP.L; = 6(o?):L;, i=1,---,t.

Multiplying on the left by P; gives P,ZP;L; = 6(0?);P;L; = 8(o?%);L;, which im-
plies that P;,L; = L;. It follows that P, = L;L!,i =1, ..., t. By commutativity,
P;3ZP; = ZP;P; = ZP;. Multiply (2.1) on the right by L/ to get

(22) EP,' = 5(0’2),‘Pi.
Letting @ = I — P gives
2=3P+3Q=2P;+ - --- +ZP,+ 2Q =6(c*),P, + --- + 8(¢).P. + 2Q.

By commutativity, V;Q = QV;Q, which is symmetric, and V,Q, .-, V.Q
commute. This implies there exists a matrix K such that K’ = K™! and KV;QK"’
= D; is diagonal, i = 1, ..., k (Theorem J of [8]). Then KZQK’ = Y%, D;o?.
Let 8(0%):41, - - - , 6(d%), denote the different parametric functions on the diagonal
of Y%, D;o? (excluding the function of multiplicity m which is identically zero)
and let m.,, ---, m, be their respective multiplicities. (Note that 6(¢2); and
4(o?%); may be identical parametric functions if i, j < t or i < t and j > ¢, but not
if i, j > t.) Let L; be the n X m; submatrix of K’ consisting of characteristic
vectors associated with 6(¢?);,i=t+ 1, ---, u. Then

EQ = Lt+1Lt'+15(02)t+1 + ...+ LuL.',5(02)u.
Define C;=L;L!,i=1, --.,u. Notethat C;=P;,i=1, ---,t). Thus
(2.3) 2=C(6H).+ --- +C, 8(c?),,

where C; has rank m;, i = 1, .- -, u. By construction, Cy, - - -, C, are symmetric,
idempotent, and disjoint, and Y%, C; = I. Multiplying (2.3) on the right by C;
gives 2C; = C;6(d%);,i=1, - .-, u. It follows from Theorem 1 of [1] that Y'C,Y,
.-+, Y’C,Y are independent, and Y’C;Y4(s%);! has a chi-squared distribution
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with m; degrees of freedom and noncentralityvparameter
N=B8'X'CXBo(a)i,i=1, .-, u.

For i > t, C;P = 0 which implies \; = 0. Thus {R,, ---, R,, Sy, ---, S} is an
ANOVA(B,, ---, B, o) where R, = Y'C;Y,i=1, ..., tand S; = Y'C;,.Y,
j=1’ e 9s,s=u_t.

(Necessity). Let{R,,---,R: S, ---,S,} be an ANOVA(S,, - -, B, 02). For
i=1,..-,t define C;=P;fori=t+1, ---,u whereu=1t+s,let C;be a
symmetric matrix such that Y'C;Y = S,_,. Let 6(¢?);, i =1, ---, u, be scale
factors such that 5(¢%);*Y’C;Y has a chi-squared distribution for all possible
values of o € Q. Theorem 9.2.1(i) of [17] and the nonsingularity of = imply

(2°4) CiECi = Ci&(dz)i, 1= 1’ cee U
By Theorem 9.4.1(d) of [13],
(2.5) CiECj=0, 1#j, ,j=1,.-.-,u.

Identities (2.4) and (2.5) hold for all possible values of o € Q, which implies they
hold if Z = I. Thus C;C; = 0, i # j. Multiply I = C; + - .. + C, on the left by C;
togetC;=C?i=1,..-,u. ThusC,, - - ., C, are disjoint perpendicular projection
matrices.

Identity (2.4) implies that 6(o?); is a nonzero characteristic root of C;XC; and
the columns of C; are characteristic vectors associated with it. The multiplicity
of 8(a?); is rank(C;) = rank(C;ZC;), so the remaining characteristic roots of C;=C;
are zero, and this is true for all possible values of o2 € Q. This establishes
condition (b).

Using (2.4) and (2.5), v, Yj=1 C:2C; =

(2.6) 2=Cid(e?, + --- + C,6(c?)..

Thus Vio + ... + Vioi = C16(6?); + - -+ + C,6(c?),, for all possible values of
o2 € Q, which implies each V; is a linear combination of Cy, --- , C,. Let 2/ be
the linear space spanned by C, ---, C,. Since C,, ---, C, are idempotent and
disjoint, 2 is commutative (A, BE€ 2 = AB = BA). The matrices P, --- , P;,
Vi, -++, Vi are contained in 2/ (recall P;=C;,i=1, ---, t), so they commute,
which establishes (a).

(Unigueness). Let {Ry, ---, R, S1, ---, S;} be an ANOVA(B,, ---, B, o)
with C; and 6(o?); defined as in the necessity part of the proof. Fori =1, --. , ¢,
C; = P; is given and Y’C;Y4(0?) ;" has a chi-squared distribution which implies
that the (unknown) value of 4(c?); is unique. Thus A = Y%, C;6(0?); is uniquely
determined. Using (2.6) gives

(207) 2-A= Ct+16(0'2)t+1 + ...+ Cua(ﬂz)u,

which implies that 6(6%)1, -+, 6(c%), are nonzero characteristic roots of
2 — A. The definition of ANOVA implies that 6(-);1, ---, 6(-), are differ-
ent functions defined on Q, but the values of §(6%):4+1, - -+, 6(¢2), may not be
distinct. Let i be fixed with i > ¢t and define 7; to be the vector space formed by
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taking the intersection of the eigenspaces of 8(h);, as h ranges over Q. Then
7:= p(Ci + Yjec, C;) where G; = {k: 6(h); = 6(h), for all h € @} and u(-) indicates
range. As 6(-)¢+1, + -+ , 8(+), are different functions defined on , it follows that
G; is void. Thus 7; = u(C;), and since C; is idempotent and symmetric, it follows
that C; is uniquely the perpendicular projector onto 7;. 0

The random effects model discussed by Graybill and Hultquist (1961) is
obtained from (1.1) when ¢ = 1, X is a column of ones, and § is a scalar generally
denoted by u. Their definition of ANOVA corresponds to our ANOVA(, ¢2) plus
two additional requirements: s (the number of S; terms) must equal % (the number
of variance components); the scale factors to make S;, ..., S, chi-squared
variables must be different linear parametric functions. The first requirement
has been dropped here because s is unique (Theorem 1) and thus will equal &
automatically if possible. The second requirement is actually implicit here. The
scale factor of S; is uniquely E(S;), which is a linear parametric function of ¢2
and the definition of ANOVA implies that E(S;) are different parametric func-
tions. The condition in our Theorem 1 on the characteristic roots of P;ZP; does
not appear in their Theorem 6 because it is always satisfied when m = 1.

The conditions of Theorem 1 are very strong and one way in which they might
not be satisfied is if R;, for one or more values of i, violates the chi-squared or
independence requirement of an ANOVA. For a problem such as the one above
of testing H: 8, = 0, this is inconsequential for all R;, i # t. Thus, it is helpful to
know when a partial ANOVA consisting of only the terms R,, S, ---, S; is
possible. ANOVA (B;, o*) will refer to a set of terms {R,, S, ---, S,} where

#1S; = S, which form a partial ANOVA. Let L be a matrix such that L'L = I
and u(L) = u(P — P;)* where L means orthogonal complement. Then L’'Y ~
N(L'X.B:, X1 L' V;Lo?), where X, consists of the columns of X corresponding
to B;. Applying Theorem 1 to the model transformed by L’ gives the following
corollary.

COROLLARY 1. An ANOVA(B,, o®) exists iff a) P¥, L'V,L, ..., L'V,L
commute, and b) the nonzero characteristic roots of P¥L’ZLP¥ are all the same
parametric function of ¢ where P} is the perpendicular projector onto u(L’X,).
An ANOVA(B,, o?) is unique up to order for any given choice of t, R,.

In practice, Corollary 1 would be applied by taking ¢t = 2 and defining §8; and
B2 such that B, consists of the elements of 8 to be retained and B, contains
elements to be eliminated (adjusted for) by the transformation L’. The
ANOVA(B;, ¢°) then consists of R,, Sy, - - -, S, where R, is the sum of squares
for B, adjusted for 8;. By repeated applications of Corollary 1 in which B, is
redefined ‘as required, one may be able to construct some or all of the tests of
interest on the fixed parameters in this piecemeal fashion.

For inference on variance components alone, the R, terms is not required
which allows a further weakening of the conditions. ANOVA (¢?) will refer to a
set of terms {S, .- -, S}, where Y i_; S; = S, which forms a partial ANOVA. Let
W be a matrix such that W'W = I and u(W) = u(X)*, and define Z = W'Y,
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T:;=WVW,i=1, ..., k. Applying Theorem 1 to model (1.1) transformed by
W', ie.
(2.8) Z ~ N(0, 3k, Tio}),

yields the following corollary. Since the fixed effects have been transformed out
of the original model, uniqueness does not depend on ¢ or otherwise on a partition
of R.

COROLLARY 2. An ANOVA(e?) exists iff Ty, ---, Tr commute. An AN-
OVA(c?) is unique up to order.

The necessity of Corollary 2 is the only part which is new to this paper. Olsen,
Seely, and Birkes (1976) form a minimal sufficient statistic for a model with two
variance components (k = 2) and show that it has the properties defined as an
ANOVA(s?) here. LaMotte (1976), in treating the random one-way model, uses
the same procedure, and notes that it can be applied whenever the matrices
T\, - - -, Tk can be simultaneously diagonalized. The condition for a diagonalizing
transformation is the commutativity given in the corollary.

3. Estimation of ¢% in an ANOVA. An ANOVA is a useful summary of
the data from which tests and confidence intervals on fixed effects and variance
components can be constructed based on the chi-squared and independence
properties. An estimate of the variance components is also commonly constructed
from an ANOVA table, when possible, by equating the sums of squares involving
only the variance components, S, - - -, S;, to their expectations and solving for
the unknown parameters. This ANOVA estimator of ¢ (known as Henderson’s
Method I when reference is to the random effects model) is in a class & of
estimators which are quadratic in Y, unbiased, and translation invariant (invar-
iant of the transformation Y — Y + X4 for arbitrary fixed v).

We will say that o2 is estimable if & is nonempty. The condition of estima-
bility, given for example in [19], can be shown to be equivalent to linear
independence of T, ---, T.. This is, of course, the condition under which the
variance components are identifiable in (2.8).

We note that {S;, ---, S,}, from either a full or partial ANOVA, is a) a
minimal sufficient set of statistics for the family of distributions induced by W,
{N(0, 3k, Tie?): ¢®> € 2}, and is b) complete if and only if s < k. Both a) and b)
are straightforward extensions of the case when k = 2 [16, page 880]. All but the
“only if” part of b) can be shown directly by arguments along the lines of [9].
The “only if” part was first established under the conditions of [9] by Basson
(1965).

If s < k, then o2 is not estimable. This follows by first observing that E(S) =
Fo?, where S = (Sy, - -+, S;)’ and F is a known s X k matrix. It will be useful to
form the matrix F in the following way. By Corollary 2, the matrices T}, - --, Tk
commute so there exists a matrix K such that K’ = K™ and KT;K’ = D; is
diagonal, i = 1, ---, k. Let G be a matrix with the ith column identical to the
diagonal vector of D;. Then F consists of the distinct rows of G, up to order, and



1494 K. G. BROWN

the linear space spanned by the columns of F is of the same dimension as w, the
linear space spanned by T4, - - - , T%. Since F'is s X k, this common dimension is
equal to the rank of F, which is no larger than min(s, k). Thus, if s < k then the
dimension of w is less than k, which implies that Ty, ---, T} are not linearly
independent and o2 is not estimable.

For the remainder of this section, it will be assumed that ¢ is estimable, i.e.
¥ is nonempty, which implies s = k. When s = k, the ANOVA estimator of o2,
62 = F'8S, is defined and has minimum (uniformly smallest) variance in &, That
property is implied by the completeness in fact b) above. It also follows directly
from Theorem 2.2 of [16] when k = 2, and the more general version of that
theorem appearing in Kleffe and Pincus (1974), otherwise.

If s > k, the equations S = Fo? are overdetermined (in general) so that the
ANOVA estimator is undefined. But the class of estimators is not empty, by
assumption, so this raises the question of whether ¥ contains a minimum
variance estimator when ¢? is undefined and, if so, how to construct it. Since
completeness is not satisfied when s > k, one would suspect that such an estimator
does not exist. This is in fact the case, as will be shown in Theorem 2. We will
need the following result of Seely (1971) stated as a lemma here.

LEMMA. Let & be nonempty. There is an estimator of & of uniformly smallest
variance if and only if w is a quadratic subspace (A € w = A% € w). (Jensen (1975)
observes that a linear subspace is quadratic if and only if it is a Jordan Algebra.)

THEOREM 2. Let ¥ be nonempty. When there is a full or partial ANOVA
with s > k, there is no estimator in £ of uniformly smallest variance.

PROOF. Assume the contrary. By Corollary 2, w is commutative and by the

lemma it is also quadratic. By Lemma 6 of [19] there exists a basis Ry, - -, R

for w such that R? = R; and R;R; = 0, i # j. Since T, - - -, T} also form a basis

for w, there are k different parametric functions y(¢2%);, - -, v(0?) such that
b1 Tiel = W (Tky Vie)W =

(4.1) W'ZW = R]’Y(O’2)1 + ... + Rk'y(a2)k.

At the point

o6=1(0,:--,0,1)' €Q WZ,W=WIW=Riy(s8)1 + - + Rey(ad)s.

Multiply on the right by R; to get R, = R?y(03); = Riv(0}); which implies
v(ed)i=1,i=1,..-,k and R, + --- + R, = I. Theorem 1 of [1] is satisfied
with respect to the transformed model (2.8), and it implies that

(Y'R.Y, -, Y'RY}=1{S1, -, S,}.

By the uniqueness part of Corollary 2, s must equal &, a contradiction. 0

When there is a full or partial ANOVA it is immediately apparent from the
number of terms whether or not ¥ contains a minimum variance estimator, and
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it is simply constructed from the ANOVA terms when there is. If an ANOVA is
to be calculated anyway, this is much easier than verifying that v is a quadratic
subspace and then calculating the estimate separately as well. However, w can be
quadratic without being commutative, in which case there is a minimum variance
estimator in %, but there is not an ANOVA. Such cases would appear to be
uncommon.

It is not the intent of this paper to necessarily recommend the class £ of
estimators of variance components. Although it has been a focus of interest in
some of the literature, it has been introduced here because it arises naturally in
the discussion of the analysis of variance. The estimators in & are unbiased, but
at the expense of producing negative values sometimes. Maximum likelihood and
restricted maximum likelihood (REML) estimates are nonnegative but biased.
When data are balanced, the REML and ANOVA estimates of ¢2 are identical
provided the latter has no negative values. A review of these and other methods
is given by Harville (1977).

4. Further remarks and examples. The construction of a full or partial
ANOVA for a given example can be accomplished by simultaneously diagonaliz-
ing the matrices which are required to commute in Theorem 1, Corollary 1, or
Corollary 2, depending on which is satisfied. The sufficiency part of the proof of
Theorem 1 illustrates construction of a full ANOVA, and construction of a partial
ANOVA follows in like manner after a suitable transformation on the model. For
the examples in this paper, a computer program was constructed which would
accept any design conforming to (1.1), check the conditions of Theorem 1 and
its corollaries, and construct what is possible in the way of an ANOVA. Although
completely general in principle, this approach is limited in practice by the size of
n, k, and possibly ¢ which space and computing time will allow. Of course, in
well-behaved cases where explicit expressions for the terms of an ANOVA are
known, or can be constructed, these can be used to advantage.

In practice, it is common to construct an analysis of variance table by treating
the random effects as if they were fixed effects for the purpose of partitioning
the total sum of squares, and then to take the random effects into account when
calculating mean squares. If sums of squares are formulated by fitting effects
sequentially, while adjusting for the preceding effects, then this results in a
partition of R as described in Section 2 and a partition of S into exactly & terms
(possibly less than k if there is confounding between random and fixed effects).
In the well-behaved cases with so-called balanced data this is equivalent to
partitioning S as described here. With unbalanced data, however, the two methods
are generally different with s > k. In such a case, the partition of S into only &
terms will not have the ANOVA properties defined here since a partition of S
with these properties is unique (Corollary 2).

The simple unbalanced one-way random classification, which is well under-
stood, will provide a transparent example where s > k, and will also illustrate the
notion of a partial ANOVA. Also, LaMotte (1976) has treated this example and
provides additional details. In our preceding notation, t =1, k = 2, P, = (1/n),
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where n = n, + - -+ + n,, n; is the number of observations in the ith cell, and the
n; are not all equal. The matrix V, is block diagonal with blocks 3, ---, Jp,
where J; is an n; X n; matrix with every element equal to one. The matrices P;
and V; do not commute unless the n; are all equal, so by appeal to Theorem 1,
an ANOVA with Y’P,Y as a term does not exist. However, if we translate the
mean out of the model (which is almost never of interest anyway) by the
transformation W', the condition of Corollary 2 is satisfied so that a partial
ANOVA, an ANOVA(c?) in this case (or equivalently, a full ANOVA in the
model after the W’ transformation), exists and is unique. The value of s, the
number of terms in it, is the number of different eigenvalues of W'V, W + I, or
equivalently, the number of different nonzero eigenvalues of (I — P,)V (I — P;)
+ I. It is easy to verify that s > k(=2) since the n; are not all equal. Thus it is
clear that the method described above, which would partition S into only two
terms, would not produce an ANOVA in this case by virtue of uniqueness.

Continuing with the same example, a broader range of hypotheses can be
tested using the ANOVA(s?) (or expanded ANOVA in LaMotte’s terminology)
than the customary analysis of variance adjusted for the mean (Graybill, 1961,
page 353). The reason is simply that the ANOVA(s?) is a finer partition of the
sum of squares S. To illustrate, consider the simplest case with s > k, namely
s =3, and let Sy, S,, Ss be the terms of the ANOVA(s?) with f,, f, fs degrees of
freedom respectively. The expected mean squares are of the form a 0% + o2,
as03 + o2, o2, which we will let correspond to S;, S, Ss, respectively, where o3
and ¢2 are the between-block and within-block variances and a,, a, are known
constants. The customary ANOVA contains only k(=2) terms, denoted here by
SS;, and SS,, for sum of squares for between and within blocks. The correspond-
ence is SS, = S; + Ss, SS. = S;. Consider the null hypothesis H,:0%/02 (<, =,
=) ¢, for given ¢ = o. It is straightforward to construct a test statistic using
{S1, Sa, S3}, namely f5(S:/(a;c + 1) + So/(azc + 1)) /(f1 + f2)Ss, which is distributed
as F(fi + f2, fs) if 63/c% = c. For ¢ = o, the statistic reduces to the usual F
statistic obtained from {SS,, SS..} for testing of ¢# = 0. However, for ¢ > o,
construction of an exact test from {SS,, SS.,} does not appear possible.

The following examples serve to further illustrate the preceding results and
demonstrate that the utility of a design with respect to an analysis of variance
can be sensitive to which effects are fixed and which are random.

EXAMPLE 1. Suppose the following two-way uncrossed classification without
interaction is given, where the number in each cell indicates the number of
observations. It is assumed that the conditions of model (1.1) are satisfied.
Consider first the case where both row and column effects are fixed. If the usual
assumptions of a nested classification are appropriate, a; + @ =0, 71 + 7, = 0,
75 + 74 = 0, there is no difficulty forming an ANOVA. However, under the usual
assumptions of a two-way classification, ¥, 7, = 0 and a; + a2 = 0, there is
clearly confounding so that row and column effects cannot be completely sepa-
rated in an ANOVA, that is, the sums of squares for row effects will have to be
adjusted for columns or vice versa, so that there are two ANOVAs of interest
corresponding to two choices for R, R,, Rs.
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7j

a;

F16 .1. Two-way layout of Example 1.

If both row and column classifications are random, or if row effects are fixed
and column effects are random, then there is no longer a distinction from the
nested classification. In either case, S is partitioned into s = k terms, and there
is only one ANOVA of interest.

To make the example less familiar, suppose that a third row of observations
is added introducing a third row effect a3.

[l ]]

F1G. 2. Row to be added to Figure 1.

Consider the mixed case where row effects are fixed with a; + a2 + a3 = 0,
column effects are random with variance o2, and the error variance is denoted
by o2. Taking R, = ny? and R, equal to the remaining part of the sum of squares
for fixed effects defines P; and P,. Neither Theorem 1 nor Corollary 1 is satisfied,
but Corollary 2 is. The ANOVA(c?) has the following terms.

TABLE 1
ANOVA(s?) for Example 1 with three
rows, fixed row effects and random
column effects

Source S.S. d.f. EWM.S.)

lSl 1 o2 + o2

T ]S2 2 302 + o2
error Ss 6 o2
TOTAL S

As s = 3 > k = 2, there is not a minimum variance estimator of ¢® in &
(Theorem 2), although o2 is estimable. An F-statistic to test H: ¢% = 0 is given by
2(S; + 83)/Ss, but no test is provided for the hypothesis of zero row effects since
only an ANOVA(c?) was generated.

7j

Qi

1 1
1 1

F16. 3. Two-way layout of Example 2.
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TABLE 2
ANOVA(u, o2) for Example 2 with
random row and column effects

TABLE 3
Source S.8. df. E(M.S.) ANOVA(e?) for Example 2 with fixed
M R 1 262 + 202 + o2 + 8u? row effects and random column effects
Si 2 2062 + o2
o e S S.S. d.f. LS.
aand 7 S, 2 202 + o2 ouree S f EM.S.)
S; 1 262 + 202 + o2 T S, 2 202 + ¢2
error S 2 o2 error Se 2 o2
TOTAL T TOTAL S

ExaMPLE 2. Consider another two-way classification without interaction,
satisfying the assumptions of model (1.1). When both row and column effects are
random, with 7; ~ N(0, ¢?), a; ~ N(0, ¢2) and error e; ~ N (0, ¢7), this example
is given in [9] and is what Gaylor (1960) calls a BD2-8 design. Theorem 1 is
satisfied and an ANOVA(y, ¢2), where u is a term for the mean, consists of the
terms in Table 2.

Again, % does not contain a minimum variance estimator since s =4 > k =
3, although o? is estimable. Two independent F-tests of the hypothesis H: o% =
0 can be constructed using (S;, S3) and (S;, S4); similarly for H: o2 =0. An
F-statistic for H: o2 = ¢% = 0 is given by .4(S; + S2 + S3)/Ss.

Now let the row effects be fixed and sum to zero, and the column effects
remain random. Let P; and P, be the symmetric idempotent matrices such that
R, = Y’'P,Y is the sum of squares for the mean and R, = Y'P,Y is the sum of
squares for fixed effects adjusted for the mean. For suitable parametrization,
B = (81, B2)’, where 8, = u, the mean, and 3, is a 3 X 1 vector which is all zeroes
iff there is no row effect. An ANOVA(B,, o?) is of interest, but it does not exist
because P¥ZP# has two different parametric functions as characteristic roots,
2062 + ¢2 and o2, instead of only one (Corollary 1). However, Corollary 2 is
satisfied so an ANOVA(s?) is possible, with terms given in Table 3.

The ANOVA estimator is defined and is the minimum variance estimator in
% The usual methods of inference on the variance components in an ANOVA
with s = k are applicable, but no statistic is produced for a test on the row effects.
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