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CONSISTENCY PROPERTIES OF LEAST SQUARES ESTIMATES
OF AUTOREGRESSIVE PARAMETERS IN ARMA MODELS*

BY GEORGE C. T1iao AND RUEY S. Tsay

University of Chicago and Carnegie-Mellon University

A unified treatment of the consistency properties of the ordinary least
squares estimates in an autoregressive fitting of time series from nonstationary
or stationary autoregressive moving average models is given. For a given
model, the orders of autoregressions which produce consistent estimates are
obtained and the limiting values, hence the biases, of the estimates of other
autoregressions are investigated.

1. Introduction. This paper concerns the consistency properties of least squares
estimators of autoregressive (AR) parameters in mixed stationary or nonstationary auto-
regressive moving average (ARMA) time series models. Specifically, we consider the
following ARMA (p, d, g) model for the time series {Z;},

(L.1) ®(B)Z; = 0(B)a:

with ®(B) = ¢(B)U(B) where ®(B) =1 — ®B — ... — ®,.4B**?, ¢(B) =1 — ¢.B —
oo — B, UB)=1-UB~- ... —Us;B%and §(B) =1—- 6,B— ... — 6,B7 are
polynomials in B, B is the backshift operator such that BZ; = Z,_,, and a is the error term.
It is assumed that {a.} is a white noise process of i.i.d. continuous random variables with
zero mean, variance o2 and finite fourth moment E (a?) = k; + 30%. We shall require that
all the zeros of U(B) lie on, those of ¢(B) lie outside and those of (B) lie on or outside the
unit circle, and also that ®(B) and 6(B) have no common factors. Thus, U(B) and ¢ (B)
are, respectively, the nonstationary and stationary autoregressive parts of the model (1.1).
In recent years models of this form have been widely used in practice, primarily due to the
work of Box and Jenkins (1970).

In the literature properties of the ordinary least squares (OLS) estimates of the
autoregressive parameters in ®(B) of (1.1) when ¢ = 0 have been considered by a number
of authors. In particular, Mann and Wald (1943) considered the estimation of AR param-
eters in the stationary case (d = 0); Dickey (1976), Fuller (1976) and Dickey and Fuller
(1979) studied the case U(B) = 1 — B; Hasza and Fuller (1979) considered the case U(B)
= (1 — B)% Kawashima (1980) investigated the situation p > 0 and U(B) = (1 — B)%;
Graupe (1980) considered the general case of ®(B) but much of his proofs are in error; and
Anderson and Taylor (1979) went further to show the strong consistency results for the
case d = 0.

The asymptotic behavior of the OLS estimates for a pure autoregressive process (g =
0) with an ex‘blosive AR polynomial, i.e. some zeros of ®(B) are lying inside the unit circle,
has also been studied by several authors. For example, Rubin (1950), Anderson (1959),
Rao (1961) and Stigum (1974) considered the estimation problem when at least one
explosive root exists. Fuller, Hasza and Goebel (1981) discussed the case where either one
nonstationary or one explosive root exists with some fixed sequences in the independent
variables.
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Although the OLS estimates have attracted a great deal of attention from time series
researchers, to our knowledge, so far there has not been a comprehensive study of the
properties of such estimates for the general ARMA models. The principal purpose of this
paper is, therefore, to provide a unified treatment of the convergence properties of the
OLS estimates for the ARMA models.

We first show, for the ARMA (p, d, g) process in (1.1), (a) that the OLS estimates of an
AR(d) regression are consistent for the nonstationary AR coefficients in U(B) and ()
that the OLS estimates of an AR(p + d) fitting are inconsistent for the parameters in
®(B) unless the underlying process follows a pure autoregressive (g = 0) model. Further-
more, in the latter case the inconsistencies of the estimates are shown to be due to the
effects of the moving average (MA) polynomial §(B) on the OLS estimates of the stationary
AR parameters in ¢(B). In a later paper, Tsay and Tiao (1982), we then propose an
iterative regression procedure which yields consistent estimates of the AR parameters in
®(B).

For simplicity, we shall assume throughout that the initial values (Z_p—a+1, * + +, Zo) are
known.

2. Preliminaries. Let the symbol —p» denote convergence in probability, —; denote
convergence in distribution, = be asymptotic equivalence in probability, and A’ and det(A)
denote, respectively, the transpose and the determinant of the matrix A. We begin with
some fundamental lemmas.

LEmMMA 2.1. Suppose {X.,} is a sequence of random variables and C is a constant.
Then X, = C + O,(n"%), 8 > 0, implies that X, —p C.

This lemma follows directly from the definition of O,(n %) and that of convergence in
probability.
Next, we denote the magnitude of a u X v matrix A = (a;;) by

(2.1) Mag(A) = max| a;;]|.

Some useful properties of Mag(A) are summarized in the following lemma.

LeEmMMA 2.2. For any two matrices Wiy, and A,x,

(a) Mag(W) = Mag(W’)
(b) Mag(W + A) =< Mag(W) + Mag(A) ifk=uandr=v
(c) Mag(WA) = rMag(W)Mag(A) ifr=u

(d) | det(W) — det(A) | = (*D)[Y-: (;) Mag(W) “Mag(W — A)/]ifk=r=u=v.

The proof is straightforward and is left to the reader.

LEmMMA 23. For an ARMA(p, d, q) process {Z;} in (1.1) and a positive integer ¢, let
Y. =(Zt,Zi-1, + -+, Zs—s+1). If {Z;} is not a purely deterministic process, then, for n = 2¢,
A, =3"%+1Y,1Y! | is a symmetric and positive definite matrix with probability 1.

Proor. It is clear that A, is symmetric and nonnegative definite. To show positive
definiteness, let ¢ = (¢, - -+, ¢/)’ be an arbitrary vector and consider

c’Anc =2 Cf-1 ¢ Zvr-i)>
If ¢’A,c =0, then
2f=1 CjZH.z_j: 0, t= 1, cee, N — 4

which, since n = 2/, is a system of linear equations of £ unknowns in at least ¢ equations.
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In particular, consider ¥ %-; ¢;Zi+,—; =0for t =1, - .., ¢ Since Z, is continuous and not
deterministic, we have that det(Z) # 0 with probability 1 where Z is a ¢ X ¢ matrix whose
ith row is Y /+;—1. This implies that ¢ = 0 and the conclusion follows. [

The implication of the above lemma is as follows. For any ARMA process {Z;}, suppose
we have n observations and consider fitting an autoregression of order /,

Z¢=31Z¢—1+ oo +B/Z¢_/+€g, t=<¢+ 1, e,
where e, is the error term. Then, the OLS estimates of 8 = (81, ---, B,)  is
ﬁ = A'_zl 2';+1 Yt—IZt

and Lemma 2.3 implies that ﬁ exists for any positive integer ¢ provided 7 is large enough.
Since a linear model is usually written in the form Y = X8 + ¢, in what follows for
convenience we shall sometimes call A, the X’X matrix in fitting an AR(¢) regression to

Z, with n observations.
Next, we discuss some order properties of Z;. For the model (1.1), assume, for conven-
ience, that Z; = 0 and a; = 0 for ¢ = 0. We can then write Z, as

2.2) Zy= V" Y

where y; denotes the coefficient of B’ in the expression ¢(B) = Y& ; B’ and ¢(B) satisfies
the relation ¢(B)®(B) = 6(B). The y,’s are usually referred to as the y-weights of the
process. It is well known that for a stationary process, i.e. U(B) = 1, Y& ¢? < o which in
turn implies that Y7 Z?= O, (n). On the other hand, if Z, is nonstationary then Y& ¢? is no
longer bounded. However, in this case, we may factor U(B) into

(2.3) U(B) = U3Z(B)Ug(B),
where
UfB) =] (1—a:B) and Ug(B) =]]%-1 (1 - B;B)™

with m > m; = 0 and the «;’s and B,’s are all distinct. Thus, m is the highest multiplicity
of the characteristic roots of U(B). Note that we can denote m = 0 for the case U(B) = 1.

LEMMA 24. If Z, follows the model (1.1) with U(B) in(2.3) and m > 0, then Y7 Z? =
O, (n®*™).

Proor. Since U(B)¢(B)yr =0 for k> max{p + d — 1, g}, from (2.3) and solutions of
homogeneous difference equations, we have that

(2.4) =Yl af 37 bik+ N1 B X ¢ik?+ Ry

where R, satisfies ¢(B)R: = 0, and the b’s and ¢’s are constants. Since |a;| = |B;| =1, m
> m; and all the zeros of ¢(B) lie outside the unit circle, it follows that the order of y; is
determined by the first term of the right hand side of (2.4). Therefore, Y» = O(k™') and

%8 ¥4 = 0(n*" ).

By (2.2),
(2.5) Y1 Zi = aY' (Z)Y(Z)a
where a = (ay, - -, a,)’ and
1
%1 1
WZ) = - 21

Yn-1 - - o 1 nXn
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Since the /th diagonal element of ¥'(Z)Y(Z) is Y""¢ ¢} and each off diagonal term of it is
in the form Y, Yxy{».+» where A is a fixed integer, (2.5) can be rewritten as

Yt Zi=n"""a'G,a
where the symmetric # X n matrix G, = O(1). Thus the expected value and variance of
= Z7 are, respectively,
E(3? Z}) = n*'tr(G,)o% = O(n®™)
and
Var(¥1 Z7) = n*" " *[k4 Y 1=1 &% + 204tr(G)] = O(n*™)

where tr(A) denotes the trace of the matrix A and g; is the ith diagonal element of G,.
Therefore, Y"ZZ= 0,(n*").0

Note that the mean and variance of ¥ Z? in the above lemma are
E(XtZ}) =0t Y1 (n— t+ )Yl
Var(37 Z7) = (s + 202) =1 (T526 ¥2)? + 408 Tit Thersr (T626 babsj—)™.
We next show a generalization of the above lemma. For m > 0, suppose that U, (B) is

a factor of U(B) such that the highest multiplicity of the roots of U, (B) 'U(B) is m'.
Then, m =m’ =0 and X; = U, (B)Z; will follow the model

(2.6) U;'(B)U(B)¢(B)X; = 0(B)a,.

Lemma 2.5. If Z; and X, follow respectively the model (1.1) and (2.6) with m > 0, then
Y2 ZXein = Op(n™™)

where h is a fixed integer.

Proor. Let {1 (X) be the Yy-weights of X;. Then
2.7 ¥ Z Xern = a'V' (Z)HY(X)a

where a and {(Z) are defined in (2.5), ¥(X) is the matrix of y-weights of X, i.e. ¢(X) is
defined as {/(Z) with . replaced by ¥%(X), and H is a n X n h-step shift matrix whose
elements are either 0 or 1 depending on A. For example, if # = 0 then H is the n X n
identity matrix and if A~ = —1 then the first subdiagonal elements of H are 1 and all the
other terms are zero. From (2.7), the order in probability of ¥* Z,X,., is determined by
those of ¥" Yxyn+s(X). If m’ > 0, then, from (2.4) Y = O(k™ ') and Yr+»(X) = O(R™").
So 3" Y r+r (X) = O(m™"™ 1), On the other hand, if m’ = 0 then X, is stationary and
(2.8) ¥(X)(B) = ¢(B)'0(B).

Since ¢(B) has no root on the unit circle, by letting B = 1,—1 and e* in (2.8) respectively,
we may obtain that }'.¢ {1 (X) <, ¥¢’ (=1)"x(X) < 0 and & sin(kw)Pr (X) < . Next, by
Lemma A.1 in the Appendix, we have that ¥" Yxys+4 (X) = O(n™"). Consequently, (2.7)
can be rewritten as

(2.9) Zn ZzXz+h = n””'"'_la’Gna

where G, denotes a n X n matrix and G, = O(1). Moreover, since (2.9) is a quadratic form
of a we can rewrite it as

S Z Xern = n™™"1a'G *a

where G} is a symmetric n X n matrix and G,;¥ = O(1). Adopting an argument analogous
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to that in the proof of Lemma 2.4, we obtain
2? ZXosn = Op(nm+m')~ o

We remark here that if both m and m’ are positive, then the above lemma can be readily
obtained from Lemma 2.4 by the Cauchy-Schwarz inequality. However, the above proof
gives a tighter bound for the case m’ = 0.

We now turn to discuss the orders in probability of determinants of some X'X matrices
in fitting autoregressions to Z,. We begin with the order of (¥ Z7)™".

LEMMA 2.6. If Z, follows the model (1.1) with U(B) in (2.3) and m > 0, then (Y7 Z})™
= O,(n~?").

ProoF. By Lemma 2.4, n™*" Y7 Z? = O,(1). So, given any ¢ > 0 there exist M; > 0 and
an integer N; > 0 such that for n > N;

.

(2.10) Pnm Y Zi< M) =1—¢/2.
On the other hand, note that

(2.11) YiZi=nT (T Z)
(2.12) 1Zi=Y1Z¥

where Z} equals to either Z, or —Z,, and from (2.2)

(2.13) Var(SF Z) = 02 Yier (Shch ¥’

From the Y1 in (2.4), we have the following two cases:

() If Ki < n™|Y" ¥x| < K, for some constants K; > 0, then lim,_,.n~"®"*"Var(}" Z,)
= ¢; where c; is a positive constant. In this case, by central limit theorem, ="+ (3" Z,)®
— 1, c1xi where x? denotes a Chi squared random variable with one degree of freedom. By
(2.11), for the same & > 0, there exist M; > 0 and an integer N2 > 0 such that for n > N,

(2.14) Pn Y Zi>M)=1—¢/2.

Consequently, from (2.10) and (2.14), for any given ¢ > 0 there exist M; > 0, M, > 0 and an
integer N = max{Ni, N;} > 0 such that for n > N

PM;<n ™Y Zi<M)=1—¢
Thus, (X1 Z3) ™" = O,(n~*™).

(ii) If K1 <n%| X" ¢» | < K, and 8 < m, then some cancellations between the coefficients
of ™! exist in the Y-weights. In this situation we can define Z} = Z, or Z} = —Z,,
according to: the pattern of the y-weights, to nullify these cancellations and obtain
lim,,.n"%"*PVar(Y" Z#) = c, where c; is a positive constant. Thus, we have that, from
(2.11) and (2.12), 3" Z? = n™ (3" Z¥)? and that n~*"*P (3" Z¥)? - c2x3. We can then
adopt an argument analogous to that of part (i) to show that (3% Z)™ = O,(n"*™) also
holds in this case. 0

COROLLARY 2.6. Letr,=Y"Z,Z.++/Y" Z; be the lag k sample autocorrelation of Z;.
If Z, follows the model (2.3) with d >0 then U,(B)ry = O,(n™").

ProoF. Notice that U,(B)r: = (X" Z)) (X" Z,X,++) where X, = U,(B)Z, which has
the highest multiplicity of nonstationary characteristic roots m — 1. Hence, U (B)r, =
0,(n™") follows directly from the above lemma and Lemma 2.5. O

Corollary 2.6 can be regarded as a general proof of the fact that for nonstationary
ARMA (p, d, q) processes the sample autocorrelations r;’s satisfy asymptotically a homo-
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geneous difference equation, and it shows that the homogeneous difference equation is in
fact determined by those nonstationary characteristic roots of ®(B) which possess the
highest multiplicity. Some related results can be found in Findley (1980) and Quinn (1980).

Next, we consider a generalization of Lemma 2.6. From (2.3), if d > 0, the model (1.1)
can be written as

(2.15) UX(B)Us(B)¢(B)Z; = 6(B)a;.
Since all its roots are distinct and lying on the unit circle, U,(B) can be factored as
(2.16) U.(B) = (1 — B)*(1 + B)*[[~, (1 — 2cosw; B + B?)

where 8; and §; are either 0 or 1, 2A + 8; + 8: = di1, 0 < w; < 7, w; # w; and d; is the degree
of U,(B). Thus, each of the factor (1 — 2 cosw;B + B?) corresponds to a pair of complex
roots on the unit circle.

LemMA 2.7. If Z, follows the model (2.15) with d > 0; then det™(A,) = O,(n~>"%)
where d; is the degree of U,(B) and A, is the X’X matrix of an AR(d,) fitting on Z,.

Proor. For simplicity in presentation, we shall only discuss the special case of U,(B)
in (2.16) for which 8 = §; = 1 and A = 2, but it will be obvious that the techniques
employed can be extended to the general case. Let

(2.17) Xi,t = gl_l(B) U.,(B)Zz, i= 1, 2, 37 5

where g1(B) = (1 — B), g:(B) = (1 + B), gs(B) = (1 — 2 cosw; B + B?) and g5(B) =
(1 — 2 coswz B + B?), Further let x4,; = X341, X6,: = %5,.—1 and X; = (X1,¢, * - =, X,¢)’. It is then
clear that

Zn Xc—le—l = TAnT'

where T is a 6 X 6 nonsingular matrix determined by the definition of the x;s. Since the
determinant of T is a constant for given w; and ws,

(2.18) det™(A,) = Codet (3" X,—1X}-1),

where C, is a positive constant.
Notice that the transformed variates x;,;'s follow the following models

1-B)x,:=e
(1 + B)xz,g =é€
(1 =2 cosw; B + By, = e, with y; = x3; OF X4 441
(1 — 2 cosweB + B?)y; = e, with y; = x5, OF X6 141

(2.19)

where e; = U,(B)Z, which satisfies the model
Uz (B)Us(B)$(B)e: = 0(B)ay.

Hence the highest multiplicity of the nonstationary characteristic roots of autoregressive
polynomial for each x;, is m which in turn implies, by Lemma 2.6, that

(2.20) (3" x20) ! = Op(n~12™).

Moreover, by Corollary 2.6 and (2.19), (X"x%.) " (X"xs:xs:) —p cosw; and
(X %2 ) (X x5, %6,.) —p coswe. Next, by (2.19) and the y-weights of the x; s, it can also be
shown, see e.g. Lemma A.2 in the Appendix, that

N xixi: = Op(n®*™Y) for i#ji,j=1,2,3,5.
Therefore,

2.21) V(¥ x1xi) > p G
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where V = diag{}" 3,1, -+, 3" x8,-1} and G = diag{1, 1, G, Gz} with

1 COSw;
Gj = > ] = ]., 2.

COSW; 1

Since det(}," x,_1 x}_;) = det(V)det(V 'Y " x,_; x/_1) and det(G) is positive, it follows from
(2.18), (2.20) and (2.21) that

det™(A,) = O,(n72™) = O,(n~2"%), O

3. Convergence properties of the OLS estimates. In this and the next sections
we discuss some convergence properties of the OLS estimates in time series. The result
depends on the underlying true model of the process and the order of the fitted autoregres-
sion. For the nonstationary ARMA ( p, d, q) process in (1.1), (1) the OLS estimates of an
AR(d) fitting are shown to be consistent for the nonstationary AR parameters in U(B),
and (2) those of an AR(d + p) regression are shown to be biased for the coefficients in
®(B) if both p and ¢ are positive.

Before going into detailed derivations, it may be useful to point out at the outset that
(i) from the preliminaries in Section 2 it is very straightforward to establish these
convergence properties when m = 1; (ii) algebraic complexity arises mainly because of
multiplicities (m > 1) in the roots of U(B); (iii) the methods used rely heavily on first
transforming some of the regressors to linear combinations of the Z/s having lower
multiplicities, and this is motivated by the method used in Hasza and Fuller (1979) for the
special case U(B) = (1 — B)2

3.1 Convergence properties of OLS estimates of transformed regressions.
Rearranging the factors of U(B) in (2.3), if d > 0, one can write the model (1.1) as

(3.1) [[1=: U:(B)1¢(B)Z: = 6(B)a,

where Uy(B) =1 — Uy;B — - -+ — Ug;)B* are polynomials in B of degrees d; such that
U(a) Y21 di = d; (b) [[Z1 Ui(B) = U(B); (c) U;(B) is a factor of U;.1(B) and (d) the
multiplicity of any root of U;(B) is 1. For instance, if U(B) = (1 — B)*(1 —v2B + B?),
thenm =3, Uy(B) = Ux(B) = (1 — B) and Us(B) = (1 — B)(1 —v2B + B?). Notice that
in (3.1), (a) m is again the highest multiplicity of roots of U(B); (b) U;(B) = U,(B) in
(2.3) so that each root of U;(B) is a root of U(B) with multiplicity m; (c) each root, if any,
of Ui (B) U1 (B) is a root of U(B) with multiplicity m — i. Further let

Zl,t = Zt and
(3.2) {Zj.t= U_(B)Zj_1y, j=2 ++,m+1
Then, (a) Z;,; follows the model
[TIZ; U:(B)1o(B)Z;,. = 8(B)a..

where [[72,..1 U;(B) = 1; (b) the highest multiplicity of the nonstationary characteristic
roots of the AR polynomial for Z; ;is m + 1 — j; and (c) Z,.+1,. is a stationary process. Now,
with the above definition of the Z; s, the model (3.1) or (1.1) can be written in m
alternative forms as

3.3) Zi=Yia Y0 UenZjrn+ Zive i=1,+-+,m.

Note that the ith equation of (3.3) can be regarded as a linear regression model with
Z;+1,¢ the error term. For 1 =i <m, let

(3.4) Ain=Y"Yi1Yi:1 and D;n=Y"Y; ;1 1Zis1,:

where Yi,t = (Wi’p, coey Wg,p), and “7]‘,5 = (Zj,t, e, Zj,¢+1_dj)l,j = 1, LN i. Thus, Ai,n is the
X'X matrix of the ith regression equation of (3.3) with n observations while D; , denotes



CONSISTENCY IN AUTOREGRESSION 863

the corresponding transformed error vector in the least squares sense. Also, let
(3.5) hi=2Yia(m+1—-j)d; and ¢,=Yiad;, i=1 -, m.

We now prove two important lemmas.

LEMMA 3.1. For the ith regression equation of (3.3), if det™ (A, ,) = O,(n™™), then
the OLS estimates Uiy = Up(j) + Op(n/ ™Y, k=1, +++,dj;j=1, -+, i

Proor. First, since A, , is the X’X matrix of an AR(¢}) regression on Z;, by Lemma
2.3, the estimates (7,,(,) exist. Let B8; = (Uj, -+, U}) where U; = (Uygy, ++ -, Uq )’ be the
coefficient vector of U;(B). Further let 8; denote the vector of the OLS estimates of the
ith regression of (3.3). Then

(3.6) Bi—B=AilD;,= det™ (A, »)Adj(A; .)D;.
where Adj(A;,») denotes the adjoint of the matrix A, ,. By Lemma 2.5,
(3.7) 2" Wj,,_IZ,-ﬂ,, = Op (n2m+1—i_j)

because the highest multiplicities of the nonstationary characteristic roots of Z;, ; and Z;,1,,
are m + 1 — j and m — i, respectively. Now, we partition A, , into

A= {Gu}ixi
where Gy, = 3" W1 W ,—; with W, defined in (3.4). Then
(3.8 Guy = Op(n®™*27470),
Since each G, is a d., X d, matrix, from (3.8), we have that
3.9) Cof(Guv) = Op(nh2m-2rur)

where Cof(G.,) denotes the (u, v)th block of Adj(A;,.) corresponding to G, in A; .. Then,
the result of this lemma follows directly from (3.6), (3.7) and (3.9). 0O

LeMMA 3.2. For the regressions of (3.3), if det™ (A, ,) = O,(n™™) then det™ (A1)
=0,(n""),i=1,-..,m—1.

PROOF. Note that det(A;:1,») = det(A;,)det(Rii1,,) where Risr, =Y" ffy, £y is
the estimated residual from the multivariate regression

(3.10) Wiieci= Wi iayi+ «-o + Wiyt + £fio

fort=d+1, .-, n, the W, /s are defined in (3.4) and v; is a di+1 X d; matrix. Since (i)
from (3.5) Aiv1 = h; + 2(m — i)d;1 and (ii) det™(A;,,) = O, (n™™) by assumption, it follows
that to prove Lemma 3.2 we only need to show that

(3.11) det ' (Riss,n) = O, (n~20m—Ddur),

The main difficulty in proving (3.11) is to show that after proper normalization
det(R;+1,,) is bounded away from zero in probability. Before jumping into the details, we
shall briefly sketch the basic ideas of our proof. Consider the multivariate regression (3.10).
Since, for any fixed integer &, 3" W, ;_1Z;11,.—% and ¥.* W, ;_1Z;,1,; share the same order in
probability, we have, by Lemma 3.1, that the OLS estimates

(3.12) ‘?’j = Op (nj_i_l), ] =1... ’ L

Also, det™ (¥" Wis1,-1 W hi,e-1) = Op(n 2™ 9%) by Lemma 2.7. From (3.12), one might
attempt to argue by applying Slutsky’s Theorem that Riﬂ,,, and YY" Wiy1,,—1 Wiy, .- are
asymptotically equivalent statistics and hence (3.11) would follow. Unfortunately, since
¥ = Oy(n™") and ﬁm,n is obtained by summing f..f:1 over t fromd + 1 to n, this
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asymptotic equivalence argument is not valid. However, from (3.12), we see that if t < n
then

N
i1 = Wi

Hence,

(313) Sivim = Rivin, if mi<n

where Sii1,n, = 3™ Wisr,eiWhs,i—1 and Rivr,, = Y™ %/, By Lemma 2.7,
(314 det™(Sii,n) = Op(n 2" Ddn),

It follows from (3.13) that after proper normalization the det(R,-ﬂ,,,l) is bounded away from
zero. Next, note that the asymptotic behaviors of Rmm' and R, can be related through
the relationship between n; and n. It is then clear that in order to establish (3.11) 7; must
be a properly chosen “fraction” of n. The basic idea of our proof below is to show the
procedure of choosing n;. .

ProoF oF (3.11). For simplicity in presentation, we only demonstrate the proof of
(3.11) for the special case i = 1, but it will be clear (see Remarks below) that the techniques
employed can be readily extended to the general case 1 =i =<m — 1. Now, for i = 1, (3.11)
becomes

(3.15) det™ (Rz.q) = det (3" fi-iti-1) = Op(n 72" 0%)
where
(3.16) f';_l = W'z,t_1 — Wi,t—l?i(n),

$4(n) = A7xC, is a di X dp matrix, and C, = ¥" Wy, W4,.. From (3.14), det ' (Sz,») =
O0,(n7*™ V%) where Sy,», is a d2 X d; matrix. Therefore, given any & > 0 there exist M, >
0 and an integer N, > 0 such that for n; > N,

(3.17 P(ni2 ™% det(Sy,n) > M.) =1 —¢/2.
Now, by (3.12) and Lemma 2.5, we get
Mag(¥1(n1)) = Op(ni"), Mag(Ay,s) = O,(ni™),
Mag(Sz,») = 0,(n3™") and Mag(C,,) = O,(ni"™™)

where the definition and some properties of Mag(-) are given in (2.1) and Lemma 2.2.
Hence, given the same & > 0 there exist M, > 0, M; > 0 and an integer N, > 0 such that for
ni> Ny

(3.18) PMag(ni*™™8,,) <My =1—¢/4(dy — 1)
and |
(i) P(Mag(:1(n1)) < Mini')=1—¢/16
(3.19) (i) P(nr2™YMag(Ay,) < Minj) =1—¢/16
(iii) P(ni*™ "Mag(C,,) < Mini) =1 —¢/16.
Since My, M; and M, are fixed (after ¢ is given), the quantity
(3.20) 8(k) = 2diM3/(k — 1) + diM3/(k — 1)

is a positive function of the integer variable &, 2 > 1, and is strictly monotone decreasing
as k increases. So, there exists an integer k., > 1 such that

(3.21) M, = 21 (?) M§ /8 (k)’ < M./2(d3).
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Let N1 = Nok., then for n > N; we have that n; = [n/k.] > No, where [x] denotes the least
integer greater than or equal to x, and, therefore, (3.18), (3.19) and the following property
hold,

(3.22) P(Mag(§1(n)) < Min™') =1 —¢/16.

By (3.16),

(3.23) Rop =Y Boifis = 8o, — 71(0)Cr, — Cr31(n) + 91(n) Asn¥i(n).

Hence, by (3.19), (3.22) and Lemma 2.2,

(3.24)  P(ni¥™"Mag(Ss,n, — Ran) < 2diMini/n + diMini/n®) = 1 —¢/4.

From (3.20) and since n; = [n/k.], (3.24) implies that

(3.25) P(n72™ YMag(Ss,n, — Ran) < 8(k)) = 1 —¢/4.

Next, by (3.25) and Lemma 2.2(d),

(3.26) P(ni¥™1%| det(S,,,,) — det(Rs,n,)| = (d2!)A(S,n)) = 1 —e/4

where A(Sz,.) = Y21 (2)Mag(ni>™S,,,) “ 8 (k.)’. By (3.18),

(3.27) P(h(Ss,n) = Mz) =1 —¢/4

where M, is defined in (3.21). Finally, by (3.26), (3.27) and (3.21),
P(ni2™D%| det(Ss,n)— det(Rs)| = M./2) = 1 — /2

which in turn implies that

(3.28) P(ni2™ V%det(R,,,) = n2™ V%det(Sy,n) — M, /2) = 1 — &/2.

Consequently, from (3.17) and (3.28), for any given & > 0 there exist M, > 0, k. > 1 and an
integer N = max{Nok., N.k.} > 0 such that for n > N we have n; = [n/k.] > max{ No, N}
and

P(ni%m V%det(Ry,,) = M,/2) =1 —.
Thus,
(3.29) P(det(Ry,) = n2™ VEM*)=1—¢

where M* = M,/2k2™ V%, Since R, — R, is nonnegative definite, det(R,,,) = det(Rz,» )
and (3.29) implies that

P(detRy,) = M*n2m V%) =1 —¢,

Therefore, for aﬂy given & > 0 there exist M* = 0 and an integer N > 0 such that for
n>N

P(det(Ry,) = M*n*m V%) = 1 —e.
On the other hand, we also have that
det(Rz,) < det(S,n) = Op(n2™ V%),
It is then clear that det '(Rs,,) = O,(n 2" V%), O
REMARKS. Consider the function 8 (%) in (3.20) and the equations in (3.19) and (3.22).
From the above proof, it is clear (a) that all of them are motivated by equation (3.23), and

(b) that, apart from changing the subscript 2 to i + 1, those are the only places that have
to be modified to prove the result for the general case 1 < i = m — 1. Further, equation
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(3.23) can be derived from (3.10) for the general i. Therefore, the above proof can be
readily extended to cover the general case.
We can now establish the following theorem.

THEOREM 3.1. Suppose that Z, follows the model (3.1) with m > 0. Then, for any
given i, 1 = i < m, the OLS estimates of the ith regression of (3.3) are consistent.
Specifically, Uk(j) = Uy + (o) (n’ l_l) k=1, dj,_] =1,.

ProOF. Since Zi; = Z;, by Lemma 2.7, det™ (A1) = O,(n~"). Next, by repeated
application of Lemma 3.2, we have that det™'(A.) = O,(n™"). This theorem then follows
from Lemma 3.1. 0

3.2 Convergence properties of the OLS estimates for some autoregres-
sions. For the model (1.1) or (3.1) with d > 0, we have discussed in Section 3.1 the
convergence properties of OLS estimates of the transformed regressions in (3.3). Now, for
i=1..-,mlet

= Zi d, and (xi(B) =1- Oll(i)B — eee — a/i(i)B‘;' = Ht}':l UJ(B)
Consider the autoregression
(3.30) Zi=P1Zss+ oo+ BeZit e
where e, is the error term and /= ¢4 for some i, 1 <i < m.
THEOREM 3.2. For any nonstationary ARMA(p, d, q) process Z; and any given i, 1

< i < m, the OLS estimates of the AR(4) regression of (3.30) are consistent for the
coefficients of a;(B). Specifically,

Bi=aw+0pn™), j=1,---,4.
Proor. For any given i, using the Z;’s of (3.2) one can linearly transform the regressors
of (3.30) to obtain a new regression equation
(3.31) Zi=Y5a 39 Be Zje—r + €

where the Bi)’s are the new regression coefficients. From (3.30) and (3.31), the OLS
estimates of both regressions are linearly related by

(3.32) Yoo BB/ = Yioy Tt [T1524 Un(B)1BkwB*
where [[%-1 Un(B) = 1. Next, from Theorem 3.1,
ﬁk(v) = Uk(v) + Op(n”_i_l), k=1,..., dv; v=1 ..., i

In particular, By = U + Op(n™"), k=1, - -+, di. Hence, by (3.31) and the definition of
ai(B),

s BB = iy Y1 [T1573 Un(B)Uswy B* + Op(n™?) = ¥f=1 ayB’ + Op(n™).

Now, if i = m then &, = d and a,(B) = U(B). Thus, as one of its special cases, Theorem
3.2 shows that for any nonstationary ARMA(p, d, q) process the OLS estimates of the
AR(d) regression are consistent for the nonstationary AR coefficients in U(B).

4. Estimates of AR(d + ¢) regressions, ¢> 0. In this section, we shall consider for
the model (1.1) with d = 0 the autoregression

4.1) Zy=P1Z s+ -+ + BareZi-a—rc+ e

where ¢ > 0 and e, is again the error term.
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If Z, is stationary, i.e. d = 0, then it is easily shown that the OLS estimates of an AR( p)
fitting are inconsistent for the true AR coefficients in ¢(B) unless ¢ = 0, see e.g. Tiao and
Box (1981). Hence, in what follows we shall concentrate on the nonstationary case. For ¢
> 0, from (3.2) we may again linearly transform the regressors of (4.1) to obtain a new
regression equation

4.2 Zy= Y71 Yy B Zje—n + Nim1 Nilmrr—i + €.

In (4.2), Z,.+1,; is a stationary process following the ARMA( p, 0, ¢) model
&(B)Zn+1,e = 0(B)a..

From (4.1) and (4.2), the OLS estimates from both equations are linearly related by

(4.3) BB’ = 371 T [T15=1 Un(B)] Brw B* + UB)L L1 :B'.
Consider the two regression equations

(4.4) Zy =37 Y HepZjer + fo

and

(4.5) Zm+1t = Li1 Yimrre-i + &

and f; and ¢ are the error terms. We now establish the following lemma.

LEMMA 4.1. In the regression (4.2), the OLS estimates of the n.’s and the Bi’s are,
respectively, asymptotically equivalent to the OLS estimates of the v's in (4.5) and the
Hkm’s in (44) That is

(4.6) ni=9+0,n™"), i=1,-...,¢
(47) ,ék(j) = ﬁk(ﬂ + Op(n_l), J = 1) e,y k= 1) M) dj'

ProoF, From (4.2) the OLS estimate 4 of n = (11, - - -, 11/)’ can be written as
(4.8) 1=CQ"&18-1)'C" gt—lﬁ)
where ﬁ and @, are, respectively, the estimated residuals from (4.4) and the following
multivariate regression,
4.9) Whie-1= Y 1G + gi1

where Y, is defined in (3.4), Ws1,t = (Zn+1e, * 5 Zm+1,4+1-2)’ and G’ is a d X ¢ matrix
of coefficients. Let G;. denote the jth row of the matrix G. Then, by Theorem 3.1 and
Lemma 3.1 with i = m, the OLS estimate G;. of (4.9) has the property that

(4.10) G.=0,@), j=1,..-,¢

where @ = (21, ---, &) with @, = n”_”'_lldv and 15 = (1, -+, 1)1xa,. Note that since
Zm+1,: is a stationary process it follows that (3" Z,+1,) ™" = Op(n~'). So, from (4.10),
Lemma 2.5 and the definition of Z; /s we have G}.A,..G,. = 0,(1),i,j=1, - -+, ¢ Hence,
from (4.9),

(4.11) 2" E-18i-1=Y" Whir,-1Whs1-1 + Op(1).
Next, from (4.4) and (4.9),
(4.12) »r ét—lﬁ =" [Wp_1,-1 — GYm,t—l]ﬁ =y Wm+1,t—1;-t

because 3" Y, ,—1f: = 0. Moreover,
413 2" Wosseifo = 3" Wansre-1lZe = 351 Ty HunZe-s]
=YY" Whire-1Zm+1,e + Z;ﬂ=1 Zz]:l (Urijy— ﬁk(j)) 3" Wa1,e-1Zj,—k-
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By Lemma 2.5 and Theorem 3.1, respectively, we have that
2" Woire-1Zje—r = Op (nm_jH)

and
Usijy — Hep = Op(n/™71).
Therefore, by (4.12) and (4.13),

(4.14) Y &afo= 3" Wasrem1Zmere + Op(1).
Finally, by (4.8), (4.11) and (4.14),
(4.15) =" Wit et Wiat,e-1) (X" Winare-1Zm+1e) + O,(n™")

which establishes (4.6). On the other hand, consider the first d normal equations of (4.2).
It is easily seen that

416) B =A7nY" YmeiZe— Sl il Ann I Yoe-1Zmire—i] = H + Opn™)
where ﬁ and H are, respectively, the vectors of ﬁk( j’s of (4.2) and the H, ;s of (4.4), and
(4.7) is proved. O

Now, in terms of the ordinary AR(d + ¢) regression in (4.1) we have, by (4.3), (4.6) and
(4.7), that
“17) 2 BiBY = Yoy Sios [T1357} Un(B)1BuwB* + U(B) L 7:B"
Furthermore, consider the regression (4.4). From the linear transformation we get that

T T [[157 Un(B)] B B* = 31 X,B

where X,- are the OLS estimates of the regression
(4.18) Zy= Y31 NiZ—j + fr.

Therefore, by letting BB) =1 —Y%{ BB, \(B) =1 — Y%, A\;B’ and ¥(B) =1-
Y71 y:B’, we have that

(4.19) B(B) = \(B) — U(B) + U(B)¥(B).

In other words, the convergence properties of the OLS estimates of (4.1) are asymptotically
determined by the OLS estimates of the regressions (4.5) and (4.18). By Theorem 3.2,

(4.20) N=U+0,(n™).
But, from the results of the stationary case,

() yi=¢di + Op(n?*) onlyif{=p andg =0
(ii) ¥: will be biased otherwise

(4.21) " {

where it is understood that ¢; = 0 for p < i < ¢ Thus, by (4.19)-(4.21), we obtain the
following results:
(a) If /= p and q = 0 then

(4.22) B(B) = ®(B) + 0,(n"?)

so that the /s are consistent in this case.
(b) If /< p or g # 0 then

(4.23) B(B) = U(B){(B)

so that ﬁ(B ) is biased because ¥ (B) in inconsistent. It is also clear that the biases actually
come from the stationary AR estimates y(B) only.
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(c) Finally, notice that from (4.19) and (4.20) 8(B) can also be written as
(4.24) B(B) = X(B){(B).

The implications of (4.22)-(4.24) can be summarized in the following theorem.

THEOREM 4.1. For a nonstationary ARMA(p, d, q) process Z; in (1.1) where d > 0,
the OLS estimates of an AR(d + ¢) regression, ¢ > 0, can be asymptotically obtained
from the OLS estimates of an AR(d) fitting of Z: and those of an AR(¢) fitting on W,
where W, = U(B)Z, is a stationary ARMA (p, o, q) process. The OLS estimates of the
AR(d + ¢) regression on Z, are inconsistent unless ¢ = p and q = 0; and the biases of the
estimates arise from the biases of OLS estimates corresponding to the AR(¢) fitting on
Wt.

5. Conclusion. In conclusion, it seems worthwhile to point out some practical impli-
cation of the main results of this paper. Theorems 3.2 and 4.1 suggest that the nonstationary
factor U(B) of the autoregressive polynomial ®(B) in (1.1) can be fairly precisely
determined by successively fitting autoregressions of increasing orders and calculating the
zeros of the fitted autoregressive polynomials. Once the order of the fitted polynomial
exceeds d, all the zeros correspond to U (B) should remain stable. Thus, the stability of the
estimated zeros near the unit circle in successive fittings will serve to signify the order of
U (B). This provides a useful alternative to the current practice of differencing the series
on the basis of a slowly decaying sample autocorrelation function which only covers the
situation U(B) = (1 — B®)” and also can often be misleading. Our results on the
inconsistency in estimating ¢ (B) when §(B) is present can in fact be resolved through a
process of iterated regressions, leading to the development of what we call “extended
sample autocorrelation function” which can be used to help specify the order of the general
ARMA(p, d, q¢) model. Details are given in Tiao and Tsay (1981) and Tsay and Tiao
(1982).

APPENDIX

LemMA A.1. Let {c;} be a sequence of real numbers such that the partial sum satisfies
Y7 ¢i=0(1). Then ¥t j™c; = O(n™) for any finite nonnegative integer m.

Proor. Let Ci. = Y% ¢; and, for given n, let b; = (j/n)™. Then

n Y = X1 ¢jbj = Cnbn+1 — Xi=1 Cr(br+1 — be).
Since Y7 ¢; = O(1), | Cx| < M for all £ where M is a positive constant. Hence
|n™™ 37 j™¢j| < Mbps1 + M(bps1 — b1) = M(2bns1 — b)) < 2Mby1 < 2"'M.

Thus, }1* j™c;=0(n™).0

COROLLARY A.1. (a) Y7 j™sin(jw: +y) = 0((n™),

(b) Zi‘j’"sin(jgol + y) sin(jwe + x) = O(n™) and
(c) XTJ™(=1)’sin(jw +y) = 0(n™)

wherem =0, 0 < w; < 7, w1 # w2 and X and y are constants.

Now, suppose that Z; follows the model (2.15) with m > 0 and U.(B) = (1 — B)(1 +
B)(1 — 2 cos w1B + B?)(1 — 2 cos wzB + B?) and that x;, and e, are respectively defined
in (2.17) and (2.19).

LEMMA A2. Y"xxj0=Op(n?™Y) for i%j i,j=1,23,5.
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Proor. Denote the y-weights and the n X n y-weights matrix of x;; by y»(x;) and
Y (x;) respectively. Then

(A1) 2T xiexe = a'Y (XY (x5)a.

From (A.l), it is clear that the order of }" x;.,x;, is determined by those of
S 22% Uk (x:)Yn+n (x;) where h is a fixed integer. By the expression of y-weights, e.g. see (2.4),
the order of yi(x;) is in turn determined by the highest multiplicity of nonstationary
characteristic roots of x;, and by its corresponding roots. On the other hand, from (2.19),
the highest multiplicity of each x;, is m and its corresponding roots are 1, —1,e* and
e ™, e™: and e “: respectively for i = 1, 2, 3, 5.

Therefore, to check the order of Zk;{' Yr(x:)Yr+n(x;) we only need to consider the
following equations.

Yr(x1) = k™" + Rp(x1), d(x2) = ca(=1)*2™"" + Ry (x2),
lllk(xs) = 03k""lsin kwl + Rk(xs) and 4/]; (x5) = csk'”_lsin sz + Rk (xs)

where ¢; are constants and R (x;) denote the remaining terms in each equation which, of
course, have no effect on our order determination. Now, by Corollary A.1 and the result

Tic (DR + B)"T = O (07,
we have that
AP () 4n (x7) = O(n®™72).
So, (A.1) can be rewritten as
T X% = n*"*a’Gija

where G;; is a n X n matrix such that G;; = O(1). Using the same techniques as those in
the proof of Lemma 2.5, we get Y7 x;.x;: = O, (n®*71). 0
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