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SOME THOUGHTS ON EMPIRICAL BAYES ESTIMATION®

By HERBERT ROBBINS

Columbia University

Examples are given to illustrate the “linear” and “general” empirical
Bayes approaches to estimation. A final example concerns testing the null
hypothesis that a treatment has had no effect.

1. The component problem. Let (6, x) be a random vector such that (a) 6 has a
distribution function G, and (b) conditionally on 8, x has a probability density function
f(x| 8) of known form with respect to a o-finite measure m. We want to estimate g by some
function ¢ = #(x). The mean squared error of estimate with regard to the random variation
of both 4 and x is

(1) Et-6):= ff (t(x) — 0)*f(x| 0) dm(x) dG@).

For given G we can try to minimize (1) within any desired class of functions ¢ The
minimum of (1) within the class of linear functions A + Bx is attained for

. s,
@ i) =9+ 2000 gy,
Var x
and is equal to
2
3) E(G— 0y =Varg S0

Var x

The minimum of (1) within the class of all Borel functions is attained for

fOf(x|0) dG(0)
@ £*(x) = B6] 2) =

’

ff(xlﬂ) dG(9)

and is equal to
(5) E(t* — 6)® = E Var(0| x).

If, as we shall assume, G is unknown to the statistician, then neither  nor ¢* can be used
directly to estimate 6.

2. The empirical Bayes approach. Suppose that we are dealing with a large
number N of independent versions of the component problem: (6;, x;) fori=1, - -, N are
iid. random vectors such that the §; have distribution function G, while the probability
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714 HERBERT ROBBINS

density function of x; conditionally on 6; is f(x|#8;). By observing xi, ..., xy, which are
ii.d. random variables with marginal p.d.f.

(6) fx) =jf(x|0) dGe9),

we can try to gather enough information about G to approximate (2), a modest aim, or
even (4), a more grandiose one. It is not obvious how this is to be done, nor whether we
should try to approximate (2), (4), or perhaps something else.

One reason that we might be content with approximating (2) rather than (4) is that (2)
involves only the constants Ex, Var x, E6, and Cov(6, x), which for some families f(x | 8)
are easy to estimate from x;, - .., xy. In addition, (2) often provides a minimax value of
(1) within the class of all G with given Ef and Var §. We may even believe that G belongs,
or is close to belonging, to some special parametric family of distribution functions for
which (4) is in fact a linear function of x, so that (2) and (4) are equal.

We refer to methods that seek to approximate (2) as linear empirical Bayes (1.e.B.),
and to those that seek to approximate (4) as general empirical Bayes (g.e.B.). For some
families f(x | 8) it might be desirable to replace the class of linear functions by the class of
functions of the form (x + A)/(x + B), or by some other class. We would then try to
approximate whatever function in that class minimizes (1), referring to this as a restricted
empirical Bayes (r.e.B.) method. For N — « the g.e.B. approach, when feasible, would
seem to be better than any restricted approach, such as the linear, but for moderate N a
suitable restricted approach with rapid convergence as N — o may be better than a
general one that converges slowly.

If the 6; are regarded not as random variables but simply as N arbitrary unknown
constants, and if the loss function is the sum of the N squared errors of estimation, then
the problem of simultaneously estimating all the 6; is called a compound estimation
problem. The same methods that apply to the e.B. problem will also apply to the compound
problem, as indicated in Robbins (1951). Stein’s (1956) inadmissibility result and the
James-Stein (1961) estimator belong to the compound theory, but were put into an e.B.
context in a series of papers by Efron and Morris; e.g., (1973). Except in Section 7 we
confine ourselves in what follows to the e.B. theory, starting with l.e.B.

3. Linear empirical Bayes estimation. We shall assume for simplicity that f(x|8)
is such that for all §
(7) E(x|6)=4.
Then
8 Ex=Ef, Cov(,x) =Varl, E(x—0)’=Varx— Vard=E Var(x|9),

and (2) and (3) can be written as

o Var 6 - Var @ . E Var(x| 6
9) t(x) =Ex+Va.rx (x — Ex), E(t—0)2=Var0+EV§((x|| 0; .
We shall also assume, in addition to (7), that for some known constants a, b, ¢
(10) Var(x|6) = a + b0 + c6>.
Then

(11) Var x = E Var(x |0) + Var E(x|0) = a + bEG + cE?%) + (¢ + 1)Var 6,
so that

Var x — (@ + bEx + cE%x)
Var § = .
c+1
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This suggests as an approximation to #(x) the function

~ cs’+ a + bx + cx?
12 =i - =
(12) O(x) = x + [1 T D ](x x),
where Ex and Var x in the first equation of (9) are conventionally estimated by
_ 1 1 _
(13) X = N Z{v x; and si= No1 Z{v (x; — X)2

(Of course, other estimators of Ex and Var x could be used. Moreover, the term in square
brackets in (12) is an estimate of Var 6/Var x, which by (8) lies beween 0 and 1, so that we
should truncate this term accordingly if sampling fluctuations of X and s so require. We
shall not bother to indicate this notationally.)

We call

cs?+ a + b + cx? (i — &)
(c+1)s® . :

(14) 5.~=é(x.~)=f+[1—

an lL.e.B. estimator of 6;, and under some mild restrictions on the nature of G we hope that
with reasonable rapidity as N — o

E@ - 8)* =LY E@ - )" > B - 0)?
(15) N
_ Varg.EVar(x|6) Var8

= = — 2
Var 0+ E Varw[0)  Varz 2* 0

where for large N

Var§ _ Var 6 ~1_csz+a+b.f+cfz
Varx a+ bEO+ cE% + (c+ 1)Varf (c + 1)s®

(16)

When the x; are such that the last quantity is appreciably less than 1 it will seem
advantageous to estimate 6; by 6; instead of by x;, even if a decision to do so was not made
in advance.

The most familiar case of (14) is that where for a known o > 0, and for m = Lebesgue
measure,

17 f(x|8) = ¢(" ; 0) / o,

where ¢ is the p.d.f. of some random variable with mean 0 and variance 1, such as the
standard normal. Then

(18) E(x|0) =6, Var(x|6) =d?

so that @ = 0%, b = ¢ = 0 in (10), and (14) becomes

-~ 02
(19) 05=f+|:1—-s—2i|(x.'—f),
with
Var Var 6 o?
(20) me_o2+Vm0=1_?'

The estimator (19) is a variant of the James-Stein (1961) estimator of a multivariate
normal mean referred to at the end of Section 2 above.

Before considering other examples, we shall generalize slightly the assumptions of
Section 2 on the vectors (6;, x;), which we now assume to be independent but not
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necessarily identically distributed, and such that
(21a) the 6; have the same mean E# and the same variance Var 6 for all i
(21b) E(x:|6:) = 6,,
(21c) for some known constants a;, b;, c;,
Var(x;| 6;) = a; + b;0; + c;6?.

Then with s? defined by (13),
(22) Ex;=Ex=Ef6, Es’=1/NYY Varx,=a+ bE0+ cE% + (¢ + 1)Var 9,
where @ = ¥ a;/N, etc. If, without regard to efficiency, we simply estimate

Ef by =z,

s? — (@ + bx + ¢x?)

Var 4§ by =71 Y

and

Var x; = E Var(x; | 6:;) + Var E(x;|0;) = a; + b;E0 + c;E? + (c; + 1)Var 8

_ _ (c;+1) _ - __
) ) 52 2 _ 2
by a;+ b;x + ¢;x* + ) {s (@+ bx + cx*)},
then we can approximate
(23) Hx;) = E9 + vard (x: — E6)
Var x;
by
5 ¢+ 1)(a; + b;X + ¢;%* ;{8 — (@ + bx + Ccx* _
24) 0i=f+[1_ (€+ 1)(a; + ;X + ¢;x%) + ¢ {s (a+bxj—cx)} ](x,-—x).
€+ 1)(a: + b:iX + ¢;X%) + (¢; + 1){s? — (@ + bx + ¢c&x?)}

We continue to call (24) an l.e.B. estimate of §; under the assumptions (21). When a; = a,
b; = b, ¢; = ¢, (24) reduces to (14).

4. Examples of l.e.B. estimation.

ExampPLE 1. Fori=1, ..., Nlety;for j=1, ..., n; be independent, conditionally on
61, -+, On, with mean 6; and known variance o?, and let

1
(25) Xi=— Yje1 ¥y = ith sample mean.
Then
o?
(26) E(x;:|6:) = 6;, Var(x;|6;) = ;L = a;.

Assuming that the 6; are independent with a common mean and variance, (24) yields the
Le.B. estimator

a ](xi —.‘f).

Of course, it is inefficient to estimate Ef by & instead of by the weighted average
(28) Y (nixi/a}) /3Y (nifo?),
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and in practice we would use (27) only when the a; are nearly equal. Many other
modifications of (27) could be made to improve its performance for moderate N. We shall
not pursue these questions here, although they are important in the practical application
of L.e.B. methods.

EXAMPLE 2. As in Example 1 but with the ¢7 unknown. Defining

1
ni—l

(29) si= Y%, (5 — x:)? = ith sample variance,

and assuming that the n, are large, we could replace the a; = ¢7/n, in (27) by a; = s?/n; and
still regard (27) as an le.B. estimate of ;. However, if the y; are normal, then setting
r; = (n; — 1)/2 we have

(30) E(s?|o?) =0?, Var(s?|e?) =o0i/r,

so that (21b) holds with 8; replaced by o7 and x; by s?, and 21c) holds with a; = b, =0, ¢;
= 1/r;. If we regard the o7 as independent random variables with a common mean and
variance, we obtain from (24) the l.e.B. estimates (cf. Robbins (1982), formula (49))

R*+q¢*
R*+ q* + ri(R* — ¢q*)

(31) Gi=q"+ [1 - ](S? -9°),
where by definition

1

1 1 i 1
(32) ¢ =gIsl, Ri=5—F (I-¢"), e=5I'~

ri

For large N we could then use (27) with a; = 67/n; to obtain “doubly” Le.B. estimates of
the population means 6;. The assumption of normality for the y; can be dropped by a
suitable generalization of (31).

Another lLe.B. approach that dispenses with normality to the simultaneous estimation
of many population means 6, ---, 8y is the following. Let F, ..., Fy be iid. random
distribution functions, and for given F; i = 1, ..., N) let the y;; (j =1, ---, n;) be
distributed according to F;. Define x; by (25), s? by (29), & and s® by (13), and let

6; = f t dF;(t) = random mean of population i = E(y;| F;),

o= f (t — 6;)% dF;(t) = random variance of population i = Var(y;| F;).

Then 6y, - - -, Oy are i.i.d. random variables, as are o3, - - -, . We observe that
Ex;|F;) =6;,, Ex;=Ef;=Ef0=Ex, Cov(f;, x;) = Varé,
Var x; = E Var(x;| F;) + Var E(x;| F;) = E Var(x;| F;) + Var 6
Es?= (1/N) Y¥ Var x; = (1/N) ¥ E Var(x;| F:)+ Var 0,
so that (23) can be written as
Es® — (1/N) Y¥ E Var(x;| F))
Es? + E Var(x;| F;) — (1/N) YV E Var(x;| F})
But, defining ¢ by (32), we have

2

Var(x;| Fi) = :T E(s?|F:) = o}, Es!=Eo?=FEo®=Eq’

(33) t(x;) = EO + [ ](x,- — E§).
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so that for large N,
E 2 2
E Var(x;| F; =T"_e%, Es*=s’, Ef=%

i i

Hence, we can approximate £(x;) by (27) with
2 1/1
(34) ai=q_.=-—.<']\_] {VS?),

in contrast to a; = ¢2/n; known, a; = s?/n, or a; = 67/n; with 67 given by (31) when the F;
are normal.

ExaMPLE 3. Let y; denote the number of successes in n; Bernoulli trials with success
probability p;, and let x; = y;/n;. Then

E(x:|p:) =pi, Var(x:|p:) =p:(1 - p)/n,
so that in (21c) a; = 0, b; = —c; = 1/n;, and the l.e.B. estimate (24) of §; = p; becomes

Y~ #(1—-%x)—s’ _
i = 1- = i A
P x+[ #1 - %) — s* + n{s* — bx(1 —f)}](x o

This estimate was introduced by Copas (1972) with a slightly different motivation.

EXAMPLE 4. Returning to (14), let x denote the number of successes before the first
failure in a sequence of Bernoulli trials with success probability p = 1 — g. Then

(35) fx|p)=¢gp* (x=0,1,---)

and

(36) E(x|p) =p/q, Var(x|p) =p/q".

To satisfy (7) and (10) we introduce 8 = p/q as the parameter to be estimated, so that
(37) E(x|6) =86, Var(x|6)=26(1+8),

with @ = 0, b = ¢ = 1 in (10). Then (14) becomes

_s2+f(1+f)

(38) b;=x+ [1 = ](xi - %),

which by (15) and (16) improves on x; for large N by thé factor

Varf _ Var 6 - (1 +x)
(89) Varx_E0(1+E0)+2Var0={1 52 }/2

5. G.e.B. estimation; an example. The problem of estimation for the examples
f(x]8) of the preceding section, along with many others, can also be considered from the
g.e.B. aspect of approximating (4) instead of (2), when the component problems are
identical and N is large. We shall treat here only Example 4, the geometric distribution
with parameter 8 = p/q, for which (6) becomes

(40) flx) = J qp” dG(p)
0

and the unrestrictedly best estimator of 8 is

1

(41) t*(x) = E@| x) = J p*" dG(p)/f(x).

0
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Since

(42) P = Y0 gp™,

we can write ¢*(x) in terms of f(x) as

(43) t*x) =[flx+1) + flx+2) + ---1/f(x).

This suggests defining a g.e.B. estimate of 6; by

(44) o = number of terms x;, - - ., xy that are greater than x;
number of terms x1, - - -, xy that are equal to x;

We remark that, contrary to the situation in Example 4 of the preceding section, it is
easy to obtain a g.e.B. estimator of p; itself rather than of 8; = p;/q;. Since

1
(45) E(p|x) = J g™ dG(p)/f(x) = f(x + 1)/f(x),
0
it is natural to define a g.e.B. estimate of p; by
(46) . number of terms x;, - - -, xy that are equal to (x; + 1)
b= number of terms x;, - - -, xy that are equal to x;

We have in (38) and (44) two quite different e.B. estimators of 8; = p;/q; for the case
(35). But when G belongs to the Beta family, with

’ —_ — 1 a—1_b-1
47) G'(p) =g(p) = Ba D) p*q (a, b>0),

then (2) and (4) are equal, so that (38) and (44) are approximations to the same thing. In
fact, when (47) holds (40) becomes

=B(x+a,b+1)

(48) f(x) Bab

and hence by (41)
Bx+1+a,b) x+a

“9) P = BerasrD 5 @
From (7), (8), and (11) it follows that
(50) Ex+Varx;\];J:r(i+Ex)(x_Ex)=x-ll)-a,
so that
2 Var x 2s?

“Varx—Ex(1+ Ex) s —x(1+3)

.| Var x + Ex(1 + Ex) ~f{32+£(1+.f)}
®D a=Ex [Varx—Ex(1+Ex)]= sT—x1+%x)
2 4 = =
x;az£+[l—f——-‘-—%%—t—ﬂ](x—f)=(38)withx,-=x.

Thus, for the family of Beta priors the l.e.B. estimator (38) of 6; is an estimate by the
method of moments of ¢*(x;). (The g.e.B. estimator (44) is a more generally valid estimate
of t*(x;), but presumably converges more slowly to (41) as N — «.) We could, of course,
estimate a and b in (49) by maximum likelihood, finding for given x1, - - -, x5 the maximum
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with respect to a, b of

I Bx;+a, b+ 1)
t=1__B(a’ b) ’

but this is a dubious procedure if there is a possibility of a non-Beta prior. The virtue of
(38) would seem to lie in the fact that for large N it is nearly equal to (2) for any G. (It is
also true that

Var 6

(52) 10 = B0+ por T Toy vz var g &~ EO

is minimax in the class of all priors with given Ef and Var 6, but no great importance
attaches to this fact in itself.) For very large N, (44) would seem to be preferable to (38).
unless there is some iron-clad reason to believe that G is Beta. A method of combining the
best features of l.e.B. and g.e.B. is given in Robbins (1980), but finding a more or less
optimal way of treating both moderate and large values of N will require considerable
theoretical and computational study.

6. Prediction and testing. We have thus far considered only the usual e.B. problem
of simultaneous estimation of many parameters. We consider now a problem (cf. Robbins,
1977) in which no parameters at all are to be estimated.

Let 8y, - - -, Oy be i.i.d. with unknown distribution function G, and conditionally on 6, let
x; and y; be independent random variables with same probability density function f(- | ;).
Thus, (x;, y;) fori=1, ..., N are i.i.d. random vectors with joint marginal p.d.f.

(63) flx, y) = J f(x|0)f(y|8) dG(©).

We suppose that the x; have been observed but not the y;; the 6;, in practice, will never be
observed. Let A be some set of interest in the x-space, and let

(54) S=Y:eayi

be the sum of all the not-yet-observed y; values for which the corresponding observed x;
values belong to A. Problem: find a good function g(x;, - - -, xn) to use as a predictor of S.

For example, N typists are chosen at random from some population about which
nothing is known, and each types a text until he or she makes an error. Let x; denote the
number of symbols typed correctly by typist i, and let » denote the number of typists
whose x; values are = a, where a is some fixed positive integer. These v typists are to be set
to typing again, until each makes an error. Let S denote the total number of symbols that
will be typed correctly by the v typists in this second round. From the values xi, .- -, xn,
predict S. (It is assumed that for typist i, the typing of a correct or incorrect symbol forms
a sequence of Bernoulli trials with constant probability p; of success throughout both
rounds, p; being characteristic of typist i but varying with i in some unknown manner,
since nothing is known about the population from which the N typists were randomly
selected.)

Clearly, v times the average of x;, - - -, xy will generally underestimate S, while the sum
of the v values of x; that are = a will generally overestimate S. What, then, is a reasonable
predictor for S, and how accurate is it likely to be? We shall treat this as a g.e.B. problem.

For the density (35), (53) becomes

1
(55) flx,y) = J a°’p*" dG(p),
0
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a function of x + y only. It follows that

conditionally on the value of z = x + y,

(56) the distribution of x is uniform on the set {0, 1, 2, --.,2}.

From now on we ignore the explicit form (55) of f(x, ¥) and assume only (56), which is

more general.
Let (x, y) be any random vector with x, y = 0, 1, ... such that (56) holds, and let
(xi, i), i =1, --+, N, be i.i.d. with the same distribution as (x, y). Let

(57) S= Zx,za Yi = Z{V u(x:) yi,

where by definition
1 if x=a

(58) u(x) = 0 if x<a.’
By (56),
1 . _ _1+2+-o-+(z—a)
(59) Elu(x)y| 2] —;I—IEH (z—x)= P

for z = a, and is 0 for z < a. Now define

s+ _x—a if x=a
(60) v() =(z-a)" = if x<a’
and observe that

1 o, 1424+ (z—a)
z+lzx=a(x @) = z+1

(61) Efv(x)| 2] =

for z = a, and is 0 for z < a. Since z was arbitrary, it follows from (59) and (61) that
E[u(x)y] = E[v(x)], and hence that the statistic

(62) T =37 v(x:)
has the same expected value as S. Thus,
(63) S — T =3 (ux;)y — v(x:))
is the sum of N i.i.d. random variables with mean 0, so that as N — o
(64) S-T N(0,1) in distribution,
ovN
where by definition
(65) o’ = E[u(x)y — v(2) ] = E[u(x){y — v(x)}],
and
E[u(x){y — v(x)}?| 2] = E[ux){z — x — (x — @)}*]| 2]
= Efu(x){z — 2x + a}?| 2] =-73 Yz, (z —2x + a)?
__1 k — 97)? = > —
(66) =271 Yico (B — 2i)° where k=2z-—a

_kE+1)(R+2)
T 3(z+1)

for z = a, and is 0 for z < a.
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We now define
(67) wkx)=(x—a) (x—a+1),
and observe that

kk+1)(k+2)

1
E[w(x)| 2] =———IZ§=a (x—a)(x—a+1) =z-:- 12?-0 G+1) = 3G+

2+

for z = a, and is 0 for z < a. Hence Ew(x) = o>
It follows that as N — o

(68) (1/N) ¥¥ w(x;) > Ew(x) = 6> in probability,

and hence from (64) that as N — o

(69) —S5=T . NO1) in distribution,

\ /Zi‘ w(x;)

so that for large N an approximately 95% prediction interval for S is given by

(70) Z{V (x; — a)* + 196\/211V (x—a) (x;,—a+ 1).

This quantifies in the case of (56) the general phenomenon of “regression toward medio-
crity.”

If it should turn out that S does not lie in the interval (70), it would be reasonable to
suspect that the v typists with scores x; = a on the first round have changed their
performance characteristics p; on the second round. If some “treatment” has in fact been
given to these typists between the first and second rounds, we can test the null hypothesis
H, that the treatment has had no effect even though no randomly chosen subset of the v
has been singled out as a control group; cf. Robbins (1982).

7. Concluding remarks. Neyman (1962) brought the compound and e.B. ap-
proaches to the attention of the general statistical public, and gave great impetus to the
subsequent development of the theory. According to a recent note of Forcini (1982), the
e.B. approach was anticipated by Gini in 1911.

We conclude with the following estimation theorem (cf. T'sui and Press, 1982), the proof
of which is an interesting elementary exercise. Let x;, ---, xy be independent Poisson
random variables with respective means 6y, -+, Ov, and let £ = ¥ x;/N, § = ¥ 6;/N, a =
8/(1 + ). Then for any N = 2

(71) E 124”——5— < +l(1— H<1
N j=1 0,' a N [+4 .

As stated, (71) belongs to the compound theory; it becomes e.B. if the 6;, as well as the
x;, are random variables, possibly dependent, but with finite expectations. Then the same
inequality holds, with a equal to p/(1 + p), p =Y, E6;/N.

I think that Neyman would have appreciated this result.
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