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AN EFFICIENT APPROXIMATE SOLUTION TO THE KIEFER-WEISS
PROBLEM

By MicHAEL D. HUFFMAN

Montana State University

The problem is to decide on the basis of repeated independent observa-
tions whether & or 6, is the true value of the parameter 6 of a Koopman-
Darmois family of densities, where the error probabilities are at most ap and
a;. An explicit method is derived for determining a combination of one-sided
SPRT’s, known, as a 2-SPRT, which minimizes the maximum expected sample
size to within o ((log a5)"/%) as ay and a; go to 0, subject to the condition that
0 < C: < log ao/log a; < Cz <  for fixed but arbitrary constants C, and C,.
For the case of testing the mean of an exponential density, extensive computer
calculations comparing the proposed 2-SPRT with optimal procedures show
that the 2-SPRT comes within 2% of minimizing the maximum expected
sample size over a broad range of error probability and parameter values.

1. Introduction. Based on a sequence of independent random variables X;, Xs, - - -
with common density f; with respect to some o-finite measure p, the problem is to test
Hy:0 = 6, against H,:8 = 6; where 6, < 61, with error probabilities at most ao and a;. A
test 7 consists of the pair (N, D), where N is an extended stopping rule with respect to the
sequence %, of smallest o-algebras with respect to which Xj, - .. , X, are measurable, and
D is an %y-measurable decision rule specifying which hypothesis is to be accepted once
sampling has stopped.

The performance of any sequential test is judged on the basis of its error probabilities
and expected sample sizes. Wald and Wolfowitz (1948) established the property that the
sequential probability ratio test (SPRT) (Wald, 1947) minimizes both Es N and Egq N
among all tests—sequential or not—with equal or smaller error probabilities. (Ey N denotes
the expected value of N when @ is the true parameter value). Even though the SPRT has
this remarkable optimality property, its performance is unsatisfactory for values of 8
between 6 and 6;. In some cases E4N is larger than the number of observations required
by a fixed sample size test with the same error probabilities. Much work has been directed
toward finding procedures which reduce the sample size of the SPRT for these parameter
values.

Let J{ao, a1) denote the class of all tests (N, D) which have error probabilities at most
oo and a;, and define

n(ao, a1) = inf{supy EsN | (N, D) € (00, a1)}.

The problem of finding a procedure (N’, D’) which minimizes the maximum expected
sample size subject to the error probability constraints ap and a;—that is, so that supsE;N’
= n(ao, a;)—is known as the Kiefer-Weiss problem. No optimal results (in the sense of the
optimality property of the SPRT) have been found for this problem. Kiefer and Weiss
(1957) proved structure theorems about tests which minimize E, N for a fixed = ¢, which
is called the modified Kiefer-Weiss problem. Weiss (1962) showed that the Kiefer-Weiss
problem reduces to the modified problem in symmetric cases involving normal and
binomial distributions, while Lai (1973) investigated the Wiener process case. More
recently Lorden (1980) characterized the basic structure of optimal tests for the modified
problem, with particularly informative results for the Koopman-Darmois families.

A test (N, D) with error probabilities ap and «; is customarily judged by its efficiency,
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which in the context of the Kiefer-Weiss problem is

n (oo, a1)

11 nl%, o)
(1.1) supeEsN

A procedure is said to be asymptotically efficient if (1.1) tends to 1 as ao and a; tend to 0,
and for such tests the rate of approach of (1.1) to 1 is of interest. In particular, finding
fairly simple procedures which are not only asymptotically efficient, but have efficiencies
close to 1 for practical values of ap and a;, has been an important problem.

Anderson (1960) studied a class of easily constructable procedures for the symmetric
case of testing the mean drift of a Wiener process. In a general context Lorden (1976)
studied a subclass of Anderson’s procedures related to SPRT’s and called 2-SPRT’s
defined as follows. Given 6 < 6 < 8, and 0 < Ay, A; < 1, the stopping rule M (6, Ao, A;) is
the smallest 7 (or o« if there is no n) such that

fam <
1.2) = A;
for either i = 0 or 1, where f;, = f,(x1)f;(x2) - -« f3(x.). The decision rule D rejects 6 if
(1.2) holds only for i = 0, and rejects 6, if it holds only for i = 1. If (1.2) is true for both
values of i, then any fixed rule can be used for deciding between 6, and 6;. A useful
alternative way to write the stopping rule is M (6, Ao, A1) = min(M, (6, Ao), M, (0, A1))
where M; (0, A;) is the smallest n such that (1.2) holds.

As Lorden pointed out, the method which Wald used to derive upper bounds for the
error probabilities of an SPRT is applicable to the 2-SPRT and yields a; < A; P (reject
9:),i=0, 1 so that setting A; = a; in (1.2) ensures error probabilities of at most ap and a;.
The main theorem in Lorden (1976) states that if ap and a; are the true error probabilities
of the 2-SPRT (M (6, Ao, A;), D) then

EyM (8, Ao, A1) = inf{E;N| (N, D) € (a0, a1)} + 0(1)

as ao, a1 — 0 where 0 is fixed. Thus, for any fixed 6, the 2-SPRT provides an asymptotic
solution to the modified Kiefer-Weiss problem. In the symmetric normal case, where 8 is
the mean and ap = a3, say the Kiefer-Weiss problem reduces to the modified problem for
¢ = (6o + 01)/2 (Weiss, 1962), where only procedures symmetric about ¢ need be considered.
So in this case, the 2-SPRT gives an approximate solution to the Kiefer-Weiss problem.
Lorden’s numerical results indicate that over a wide range of values of a, 6 and 8,, the 2-
SPRT has an efficiency of more than 99.2%.

Setting A; = a; so that the 2-SPRT’s are in J(ao, a1), Lorden’s theorem suggests that if
6 can be found so that E;M (8, ao, a1) is nearly maximized at 6 = §, then the resulting 2-
SPRT will be an approximate solution to the Kiefer-Weiss problem. The following section
describes an explicit method for determining 6 as a function of ao and a1, in the context of
the Koopman-Darmois family of densities, and states the main result, whose proof is
contained in Section 4. Section 3 describes the results of computer calculations comparing
the 2-SPRT with actual Kiefer-Weiss solutions in the case of an exponential density. A
method of computing the latter was developed, incorporating the technique of backward
induction for computing modified Kiefer-Weiss solutions. In addition the expected sample
sizes under 6 and #; and the maximum expected sample size of the 2-SPRT are compared
with those of the SPRT having the same error probabilities.

2. Formulation of the 2-SPRT and statement of the main result. X;, X;, ---
are assumed to be independent and identically distributed with one of the Koopman-
Darmois densities f;(x) = exp{6x — b(6)}, § < 8 < § with respect to a non-degenerate o-
finite measure u. The function b(f) is necessarily convex and infinitely differential
on (6, ), and its first two derivatives satisfy b’(§) = E¢(X) and b”(6) = Vary(X) =
%) (Koopman, 1936). Furthermore a simple calculation shows that the Kullback-
Leibler information numbers I(d, ¢) = Ejplog{fo(X)/f,(X)} are given by I(8, ¢)
=(0—¢)b'(0) — {b(0) — b(9)}.
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For the discussion in this section it suffices to choose A; = a; for i = 0, 1 which ensures
that all the 2-SPRT’s under consideration are in J{ao, a;). It will also be assumed that
there are fixed but arbitrary constants C; and C, such that

(2.1) 0<Ci<

Let S, =X, + X+ --- + X,forn=1,2, ..., and define the log-likelihood ratios (4,
n) = (60— 6:)S, — n{b(6) — b(6:)}, i =0, 1. Then (1.2) is equivalent to £(6, n) > log ai?,
and the 2-SPRT can be described graphically in the plane of n and S,.. There are two lines
given by

@ —6:)S, —n{b@ — b))} =log ai’’.
Defining I;(6) = I(6, 6;) and a;(8) = (6 — 6;)/1;(6) these lines intersect at (. (), v(6)) where

a (0)} {ao(0) — a:(0)} "

-1 —1
log a; @ (6) — log ao

@2) n) = { L.0) AT

and
log a5 log ai®

— ’ -1
(2.3) v() =n@)0b'(6) + {T@T AN }{ao @ — a1 (6)} .
By virtue of the fact that 5(f) is convex, I,(6) is strictly increasing, I, (f) is strictly
decreasing and both are positive on (6o, 6;).- Thus for any 8 in (6, 8,), a;1(6) < 0 < ao(6),
which implies that n(6) is positive. Therefore, the two lines are converging, sampling is
stopped as soon as the sequence (1, Sy), (2, S:), - - - leaves the triangular region bounded
by the lines, and the decision depends on which line is crossed.

The key to the theorem is to choose § so that the supremum over § of E,M (67, ap, a1) is
attained at 8, at least to within o ((n(§))/?). To determine how to choose, 8, first define 0*
so that

-1 -1
(2.4) LI LW
0(0%)  L(6%)

and let n* be the common value of the two sides (which by (2.2) equals n(8*)). Let af, I},
and o * denote the values of a; (), I;(f) and ¢ () for § = 8*. Also let M* = min(M¢g, M{*)
represent M (0*, ao, a1).

In the (n, S.) plane, relation (2.3) shows that the line determined by the points (n,
Ey.S,) = (n,nb’(6%)) for n =1, 2, - - . passes through the vertex (n*, v(6*)). So under 6*
the points (n, S,) will tend to drift toward the vertex. In general however, E,M* is not
maximized at § = §*. This is because for n < n* one of the boundaries will be closer to the
line (n, nb’(6*)) so that when #* is the true parameter value the fluctuations in S, will
cause the 2-SPRT to end too early by going over the closer boundary.

More precisely, essentially the same argument that will be used to show (2.9) of the
theorem can be extended to show that for § = §* + c(n*) "2 (where c is restricted to any

bounded interval)
(2.5) EoM* = n* — ¢*(n*)"’E (maxi-o,1 {a (Z + 0*c)}) + o((n*)"?),

where the expectation on the right-hand side is with respect to the standard normal
variable Z. Choosing 6 to maximize E,M * to within o ((n *) '/?) is then equivalent to finding
¢ to minimize the expectation on the right-hand side. With ®(x) and ¢ (x) as the standard
normal distribution and density functions, respectively, straightforward calculation shows
that the expectation equals

g*caf + (ad — af){o*c®@(c*c) + ¢p(c*c)}.
Differentiation with respect to ¢ shows that the minimum value occurs at ¢ = r*/o* where
af

(2.6) <I>(r*) T
(af — a?d)
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In addition the value of the expectation at ¢ = r*/0* is given by (a§ — af)e(r*).
Define # and 7 by

*

f=0* +— "
2.7) 6=20*+ 0*(n*)1/2
and
2.8) o) =——u@

T a@) - a@)

As above for M*,let M = M, ao, a1) = min(ﬂ%ﬂ 1) and define 7, I;, 5 and &; accordingly.
Then it turns out that the analog of (2.5) using M in place of M* is extremized by the same
choice of ¢, as stated in the following theorem.

THEOREM. Let 6 and F be determined by relations (2.4), (2.6), (2.7) and (2.8). If (2.1)
is satisfied then as ap and a; — 0, .

2.9) supoEoM = 1 — 6(do — G1)d(F)AY2 + 0 (5Y?)
and
(2.10) n(ao, o) = A — §(do — do(F)AY? + o(7"?),

where ¢(-) is the standard normal density function. Thus

n(ao, o1)

7 = 1 — -1y —1/2 .
supeEoM o((log ag’) ™)

(2.11)

Before giving the proof of the theorem in Section 4, the next section will describe the
results of extensive computer calculations comparing the 2-SPRT with Kiefer-Weiss
solutions and with the SPRT for the case of testing the mean of an exponential density.

3. Comparison of 2-SPR'I:s with Kiefer-Weiss solutions. The actual error prob-
abilities of the 2-SPRT using M can be evaluated asymptotically using the relations

Py, (veject 0;) = Py(reject 6;)A; Es[exp{log a;* — 4@, M) }| reject 6;1,

for i = 0, 1. Using relation (4.5) of Section 4, the limit distribution of T}, = S, — mb’(6)
where m = [7i — i/? log i] and arguments similar to those in Section 4.2, Pj(reject 6o) is
asymptotically P(Z > — ) = @:/(d: — do). Since 48, M) — log ag” is the excess over the
boundary when 6, is rejected, Theorem 5 of Lorden (1977) shows for the nonlattice case
that

Py, (reject 8y) ~ — at — Ao L(ﬂ,f’o)

a1 = o I,(9)

where L(0, 6) is defined by Lorden. A similar expression holds for the other error
probability.

In practice it seems advisable to use this information in defining the test, so that the
error probabilities attained by the 2-SPRT will be closer to those desired. The following
formulation, used for the calculations presented here, is recommended for practical use.
Define

_a1(8) — ao(0)
Ao(e) —Tw)ao
and
A () =Mm.

ao(0)
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Choose ¢ * to satisfy

log{4o(¢*)} " _ log(A1(¢*)) "
I(¢*) L™
and let n(¢*) be the common value of the two sides. Let
r(o*)
o(¢*){n(p*)}"

and use the 2-SPRT N = M (¢, Ao(¢), A1(¢)). The factors L (6, §)/Io(8) and L (6, 6,)/I; (6),
which are corrections for the excess over the boundary, could be used in the definitions of
Ao(6) and A;(6). However, since these factors generally will be close to 1, and the
computation of the L numbers is quite involved, their use is not recommended in practice.
Also, the theorem now holds for N, with ao and a; replaced by A(¢) and A, (¢) and 7, G,
d: and 7 determined by ¢, with the proof as contained in Section 4 going through nearly
unchanged.
Calculations were carried out comparing the above 2-SPR'T with Kiefer-Weiss solutions
in the case of testing the parameter 6 of the exponential density f;(x) = 8 exp(—6x), § > 0,
x > 0. In testing 8 = 6, against @ = 6, it can be assumed that 8, = 1, since that can always
be achieved by scaling the X’s. Desired values of ao and «; were used to define ¢ and N.
E;N, sup E,N and the actual error probabilities af and af of the 2-SPRT were computed.
Then, as is described in Section 6 and Remark 1 of Lorden (1980), the boundaries of the
Kiefer-Weiss solution with error probabilities a4 and a7 were calculated along with its
operating characteristics. This provided the values of n(ao, ai) used to compute the
efficiency n(ab, a})/sups EsN of the 2-SPRT.
Figure 1 pictures both the 2-SPRT and Kiefer-Weiss boundaries attained by this process
Tn

ol

$=9¢"+

Reject 6,

Reject 6,

_10.1.

Fi1c. 1. 2-SPRT and Kiefer-Weiss boundaries for testing 6, = 1 against 6, = 1.5 with ab = 4.5% and
o) = 4.4%.
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TABLE 1
Error probabilities and efficiencies, o= 1, 6, = 2
. % -
ao ax ab ai n(ab, al) supE,N efficiency EgsN
10 5 9.5 33 14.84 14.95 99.2 14.88
5 5 4.1 4.1 18.96 19.08 99.3 19.00
5 1 5.1 0.6 25.65 25.83 99.3 25.76
1 5 0.7 5.8 26.98 27.24 99.1 27.11
1 5 0.06 8.2 37.02 37.60 98.4 37.35
a; = desired error probabilities (in %).
ai = actual error probabilities attained by 2-SPRT (in %).
TABLE 2
Comparison of expected sample sizes of 2-SPRT and SPRT N,
00 = 1, 01 =2 ~
af  af EeN E¢N EN E,N supE,N supeEsN
95 33 10.60 9.93 12.33 11.15 14.95 16.48
41 41 1147 1036 1627  15.08 19.08 21.43
51 0.6 1730 16.08 18.21 15.22 25.83 31.85
0.7 58 12.33 10.07 24.38 23.13 27.24 3141

for testing 6o = 1 against 6; = 1.5 with desired error probabilities of ay = a; = 0.05. The
straight-line boundaries are those of the 2-SPRT, defined by ¢ = 1.25, which had actual
error probabilities of ay = 0.045 and a] = 0.044. The curved boundaries are those of the
corresponding Kiefer-Weiss solution. For convenience these were drawn in the (n, T,)
plane where T, = S, — ES, = S, — 0.8n. For this case, supsEsN = 51.72 whereas
n(ao, 1) = 51.39, resulting in an efficiency of 99.3%. A typical feature illustrated in Figure
1 is that the maximum possible number of observations with the 2-SPRT is much smaller
than that of the Kiefer-Weiss solution. The truncation point of the 2-SPRT for this case
is at 113 observations, while that of the Kiefer-Weiss solution is at 194 observations.

The most extensive calculations were carried out for the case §; = 2 and are recorded in
Table 1. The 2-SPRT is seen to have an efficiency of over 98% for a broad range of desired
error probabilities, with both the efficiency and the closeness of the actual error probabil-
ities to the desired ones decreasing as the ratio of ap to a; becomes extreme. The last
column records the values of E;N, which are in general within 0.5% of sup,E,N indicating
that ¢ indeed nearly maximizes E;N. Lorden (1976) indicated that in the symmetric normal
case the observed efficiencies depended on the desired error probabilities, but that over a
broad range they depended hardly at all on the parameter values. To confirm this for the
exponential density, two cases were computed for §; = 1.5. As stated earlier, the ap = a;
= 0.05 case resulted in 99.3% efficiency. The case ap = 0.1, a; = 0.05 attained ao = 0.11 and
a1 = 0.035 with an efficiency of 99.2%. Both of these efficiencies agree exactly with the
corresponding cases for 6; = 2.

In addition to the characteristics already mentioned, E(]Dﬁ and Ealﬁ were computed.
For the exponential case, Dvoretsky, Kiefer and Wolfowitz (1950) provide exact formulas
for the operating characteristic and expected sample sizes of.an SPRT. Typical results
comparing E,;ON, Ealﬁ and supeEyN with the corresponding quantities for the SPRT :ve
recorded in Table 2. For these cases the 2-SPRT requires on the average between 5% u..d
25% more observations than the SPRT if the null or alternative hypothesis is true, while
the SPRT requires between 10% and 25% more observations than the 2-SPRT at the
maximum expected sample size. So here the 2-SPRT will take between 1 and 3 more
observations at 6, or §; but save up to 6 observations for § between 6, and ;.
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4. Proof of the main result. The proof of the theorem consists of establishing
relations (4.1) — (4.3) below. (2.9) follows immediately from

(4.1 EiM = 7 — 6(do — G1)o(F)AY? — 0 (FV?)
and
(4.2) supeEoM =< 7i — G(do — G)o(F)AY? + o (AY?),

while (2.10) follows from these relations together with
(4.3) infst00,00) EGN = EGM — O(1).

It will be assumed in the remainder of this section that ay and a; are small enough so
that 8* and § are in a closed subinterval [¢o, ¢1] of (6o, 6;). This assures that a* , @; and the
information numbers are bounded away from 0 and oo,

Before continuing to the proofs of (4.1) — (4.3) given in the following subsections, some
relationships concerning the boundaries of the 2-SPRT will be given. Let T}, = S,, — nb’(f)
forn =1,2, --- and let § = v(d) — 7ib’(d). In the (n, T,) plane, the boundaries of the
continuation region for M are lines with slope —1/d;, intercept log a;'/(f — 6;), passing
through the vertex (77, §). So the boundaries are given by

Ui(n) =8+ (A — n)/a; =log o' /(@ — 6:) — n/d..

(Sampling is stopped as soon as either T}, = Uo(n) orT, = Ul (n), the decision depending
on which inequality holds.) Solving for log a;! yields

4.4) log ai'= (A + adHI,.
The final relationship is given by
(4.5)

-~

nyﬂ': —F+ o(1).

To show (4.5) it suffices to establish the same relationship with o*, n* and r* in place of

6, i and 7. This in turn follows in a straightforward manner by using the definitions of §
and n* and Taylor expansions for the information numbers involved.

4.1. Proof of (4.3). As pointed out, d;, I; and & are bounded away from 0 and o, so that
the following lemma yields (4.3).

LeEMMA 4.1. If 0 € (6o, 6,), then

(4.6) EsM (8, a0, 1) = infora.an EoN =< Tk { a?(0)0(6) + 1;"(50)2 }

PROOF. Let M and M; denote M (0, oo, a1) and M; (8, a;) respectively. Let (N, D) be
any test in J{ao, a1), and let {D = i} be the event that ; is rejected by that test. As in the

proof of Theorem 1 in Lorden (1972), define N; = min(M;, N{D = i}) where N{D=1i}=
N if D =i and o otherwise. Clearly for all §

(47) M-N=< Zg_o M; — N,)

By Wald’s equation L;(0)E,M; = log a;"' + 8, where § = Ey{¢:(, M) — log a7} is the
expected excess over the boundary log a;'. By Theorem 1 of Lorden (1970),

Vary/;(6,1) _ (6 — 6:)°0°(6)

S =—7® ~ 10

which implies

log aj!
L;(0)

(4.8) EM; < + a?(9)s*(0).
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An argument similar to the proof of Wald’s lower bounds on the expected sample size of
a sequential test (Wald, 1947, page 197) shows I;(6)- E;N; = —log Py (N; < ). Combining
this with the inequality Py (V; < ®) < 2q; yields
log a;' — log 2

L)

Taking expectations in (4.7) and using (4.8) and (4.9) shows that (4.6) is true.

(4.9) Ey4N; >

4.2 Proofof (4.1). Letm = [#i — i*%log 7i]. The derivation of (4.1) relies mainly on two
facts. First, with overwhelming probability under , the test requires at least m observations;
and second, once the m observations are taken, the behavior of the remainder of the test
is sufficiently predictable by the value of T',. More specifically, the first claim is given by

(4.10) P;(M <m)<0@H™)
and will be proved in Lemma 4.4 at the end of this section, while the second is given by the
following lemma. ’
LEMMA 4.2. On the event {M >m}
(411) E;(MIXM ctty Xm) =n- max;-o,1 {a"t(Tm - §)} - o(ﬂl/z).
ProoF. At time m the log-likelihood ratios have values /i(g, m) = (a@: T + m)I; for i

=0,1.IfM>m thgn based on observations Yi, Y,, e where Y, = Xon+r, let N; be the
first n such that ¢4, n) = K; = log a;* — (4; T\, + m)I;. Then on {M > m},

(4.12) E;M|X., - -+, Xn) = m + E;j{min(No, N1)}.

By Lemma 4.3 below there is a constant D such that

(4.13) E;i{min(No, N1)} = min;_o,1 {K;/I;} — D(mini-o,1 {K:/T:}) 2.
Substituting for log a;* according to (4.4) shows

(4.14) min;—o1 {K:/I;} = i — m — max;—o,1 {@:(T. — §)}

which is at most 7#'/2 log 7. Using (4.13) and (4.14) in (4.12) yields relation (4.11).
The following lemma establishes (4.13) by giving a general lower bound on E;M (6, Ao,
Ay).

LEMMA 4.3. Let D = % maxy, 41[{ao(0) — a:(0)}0(0)] and K = min;—o:{log A7 1y
I;(0)}. Then for any 8 in [¢o, ¢:]
(4.15) E;M(@9, Ao, A1) = K — D K2,

ProoF. As in the proof of inequality (1.4) in Hoeffding (1960), define Y;, = £(6, n)/

L@ fori=0,1andn =1, 2, e and Y, = Yo, — Yi,n. Clearly K < max(Youm, Yi,u) =
Y%(Yon + Yim) + % | Yar|. Therefore, since EqY;n = EsM by Wald’s equation,

(4.16) K = EoM + '4Es| Yu|.
Since E;Y; = 0, Wald’s second moment equation and a simple computation show
(4.17) Ey(Y%) = (EsM)Var, Y1 = {ao(6) — a1(0)}*0*(0)E,M.

Combining (4.16) and (4.17) with the inequality E¢| Y| < (E, Y?)¥2 and the definition of
D leads to K < E;M + D(E;M)'? from which (4.15) follows easily, proving the lemma.
Lemma 4.2 and the estimate of P; (M < m) in (4.10) give

EiM = i — Ej(max;—o,1 {G:(T — §)}) + 0o (A).
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The expectation on the right-hand side can be written
om'/? J P;[maxi—o; {(G:(T — 5)/6m*?} > t] dt.
0

The integrand is the sum of the probabilities of the inequality holding for i = 0 and for :
= 1. In the case i = 0, for example, this equals

T, t s t
Pil=—n>=++—1= PlZ>=+=—5 | +0(m™?),
ﬂ(amyz FA m1/2) ( do 1/2) ( )

where Z is standard normal, by virtue of the Berry-Esseen theorem (Feller, 1971, page
542), and the fact that Var; T; and E; (| T1|®) are bounded away from 0 and oo, respectively.
Since §/6 ii¥/*—and hence 5/ m'>—tends to —F, the first term on the right-hand side
converges to P{d(Z + 7) > t}. Together with a similar result for i = 1, this implies that
the above integrand converges pointwise to P(max;-o,1 {a, (Z + 7)} > t). Chebyshev’s
inequality shows that the integrand is also bounded above by a function that goes to 0 like
t~2 as t — . Therefore, by the dominated convergence theorem

E;M > 7i — 6AY2E (maxi—o,1 {G:(Z + 7)}) + o (i").

Evaluation of the expectation on the right now yields (4.1).
To complete the proof of (4.1), then, it remains only to establish (4.10), which is
contained in the following lemma (also to be used in the proof of (4.3)).

LEmMMA 44. Let B bea positive constant. Then Py(M < m) < O(i™") uniformly for
| — 8| < BR™V

Proor. It suffices to show

(4.18) Py(T=Uo(k)} =0(R7?), k=1,---,m,
uniformly in % and | § — §| = BAi~% Combined with a similar bound for P, {T% < Ui (%)},
the lemma follows by summing over k=1, --. , m.

The boundedness of @ together with (4.5) and the equations for the boundary Us(n)
imply there is a positive constant ¢ such that U (k) = cii'/? log i = y for all k£ < m. Now
for any ¢ = 0, Py(T = v) = Ps[exp (¢t(T: — y)} = 1], so that Chebyshev’s inequality gives

Py(Ty = v) < exp(—vt)[Eo{exp(tT1)}]*
= exp[—yt + k{b(t + 8) — b(6) — b’ ()}].

Taylor expansions of b(t + 6) about 8 and b’(f) about f yield positive constants ¢ and q’
such that
Py(T), = 7) < exp(—yt + ktq’BR™* + qkt?).

Replacing & by n on the right-hand side and setting ¢ = 2/(c/i'/?) establishes (4.18).

4.3. Proof of (4.2). 'The proof of (4.2) is divided into two parts; the first is to show that
there is a B > 0 such that

(4.19) sup( o-41>mi-v1 EoM < Fi — 6(Go — @1)o(F)AY? + 0 (B'?).

Only the case § > 6§ will be considered, as the case 6 < s similar.

The argument for (4.19) in the case § > f involves comparing M with M,. Theorem 1 of
Lorden (1970) shows that the expected excess of M, over log ao’ is at most
(6 — 6o )202(9)

4.20
*20 Eoto(6,1)
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For B’ > 0 (to be chosen below) there is a B > 0 such that 6 > 6 + Bii7'”2 implies
Ey4o(8, 1) = I, + B’A~"2 Thus for § > 8 + Bii~'/?, (4.20) is bounded, so that by Wald’s
equation

—1
EoM < EoM, <— log a0
L+ B r™"?

+0(1).
Replacing log ap" according to (4.4) and using (4.5) yields
E M <7 — (B'I5" + Gof6)i” + o ().

Choose B’ sufficiently large that (4.19) follows.

For the remainder of this section, let JJ denote the interval of values given by |8 — 4|
< Bfi"'/2, The second part of the proof of (4.2) parallels Lemma 4.2 by establishing a bound
on the conditional expectation of M given continuation past m.

LEMMA 4.5. On the event {M >m}
(4.21) Ey(M|Xy, -+, Xn) <A — maxi—1{G;(Tn — 5)} + 0(7"?)
uniformly for 6 in JJ.
ProOF. Assume T, = §; the proof for T,, < § is similar. Define N, and K as in the

proof of Lemma 4.2. Under 6 the expected excess of N, over K is bounded above by (4.20),
and is thus bounded uniformly on /. Hence

(i — Go(Tr — 5) — m) L, (6)
Eoto(8, 1)

uniformly for § in J. Since the ratio of Io(f) to Ey4 (6, 1) is uniformly 1 + O (") and 7i
— G (T — §) —m =<7 —m= 0®F?log 1), (4.22) implies that on {M > m}

EyM|Xy, -+, Xn) < A — Go(T,, — §) + O(log 7)

(4.22) Ey(M|Xy, -, Xn)<m+ +0(1)

uniformly for 4 in J, which yields (4.21) for the case T, = §, proving the lemma.
From (4.21)

EoM < ii — 67*Eo[maxi-o. {d:(Tw — 5)/67"*}1{(M > m}] + o (7",

where 1{-} denotes the indicator function and the inequality holds uniformly for 6 in J.
To complete the proof of (4.2) it will suffice to show

(4.23)  Eo[maxi-o1{@(Tn — 8)/61"*}1{M > m}] = inf, E[maxi—o,, {G:(Z + r)}] = 0(1)

uniformly on ¢J, since the right-hand side is at least (G — @1)¢(F) + o(1). To prove (4.23)
note that by arguing as in the paragraph following the proof of Lemma 4.3, for ¢ > 0.

Py[max;—o {d’i(T;,l — 5)/67"*} > t] = P[maxi—o,1{G:(Z + m*6'E, Ty + 7)} > t] + o(1)

uniformly in f
Since Py(M < m) — 0 uniformly by Lemma 4.4, the last relation yields for fixed L > 0

L
(4.24) J Py[max;—o, {(Gi(T — §)/67Y1{M > m} > t] dt
0

L
- J Py[maxi—o1{(G:(Z + m"26 By Ty + 7)} > t] dt + o(1)
0

uniformly for @ in J. Because 7 + mY%5 ™' E, Ty = F + m"257 {b’(8) — b’ ()} is bounded for
6 in J, there is a @ such that the integral on the right-hand side of (4.24) is at least
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L
infj,|=q j Plmax;—1{a@;(Z + r)} > t] dt
0

(4.25) = infj,|<¢ j P[max;—o.{d&:(Z + r)} > t] dt — j g(t) dt,

0 L
where g(-) is an integrable function which can be chosen to dominate the integrands (since
the range of r is bounded).

(4.24) and (4.25) establish (4.23) to within the last term in (4.25), which can be made
arbitrarily small by choosing L large. Thus, (4.23) follows and the proof of (4.2) and, hence,
the theorem is complete.
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research.
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