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BOUNDED REGRET OF A SEQUENTIAL PROCEDURE FOR
ESTIMATION OF THE MEAN

By Y. S. CHow! AND A. T. MARTINSEK

Columbia University and University of Illinois

Let X, Xz, - - - be independent observations from a population with mean
u and variance ¢% and suppose that given a sample of size n one wishes to
estimate pu by X,, subject to the loss function L, = Ac® %X, — p)> + n, A >
0, 8 > 0. If o is known, then the optimal fixed sample size no for minimizing
the risk R, = EL, can be computed, but if o is unknown there is no fixed
sample size procedure that will achieve the minimum risk. For the case when
o is unknown, a number of authors have investigated the performance of
sequential estimation procedures designed to come close to attaining the
minimum risk R,,. In this paper it is shown that for the class of sequential
estimation procedures with stopping rules

Ta=inf{n=na:n"' Tr, (X; — X,)2 = A~ VPn%F)}

the regret Rr, — R, remains bounded as A — ®, under suitable assumptions
on the moments of X; and the delay na, but (unlike previous results of
bounded regret) without any assumption about the type of distribution of X;.

1. Introduction and summary. Let X;, X;, ... be independent observations from
a population with mean p and variance ¢ Given a sample of size n, we wish to estimate
4 by the sample mean X,,, subject to the loss function

(1.1) L,=Ac**X,—w?+n, A>0, pB>0.

For a fixed sample size n, the risk is

(1.2) R.=Ac*EX, —p)?+n=A0"%n"+n,

which is minimized (when ¢ is known) by taking the sample size ny, where

(1.3) [A2%6P] < no < [AV%6*] + 1,

P

with [a] meaning integer part of a. The corresponding minimum risk is
(1.4) R., = 2A4"%"~.

However, if o is unknown there is no fixed sample size procedure that will attain the
minimum risk R, . For this case we use the stopping rule

T=Ts=inf(n=ns:n=A*n"'YL, X; - X,)?)*?*}
(1.5)
=infln=na:n' YL X, — X,)2 < A7VERYEY,

where n,4 is a positive integer which may depend on A, and estimate u by Xz. This type of
sequential estimation procedure was first considered by Robbins (1959), in the normal
case.

The performance of the sequential procedure with stopping rule T is usually measured
by the risk efficiency R, /Rr, and by the regret Rr — R,,, where Ry is the risk using the
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sequential procedure. When the distribution of X; is normal, the asymptotic risk efficiency
(i.e., Rr/R,, — 1 as A — ) has been established by Starr (1966) for 8 = 1 as well as for
more general loss functions. Starr and Woodroofe (1969) have proved that the regret
remains bounded as A — o in the normal case (again 8 = 1), and Woodroofe (1977) has
given second order approximations for the expected sample size and the regret. In all three
papers the delay n4 does not depend on A.

When X; has an exponential distribution, Starr and Woodroofe (1972) have obtained
the bounded regret of a sequential estimation procedure whose stopping rule is different
from (1.5), and Vardi (1979) has established a similar result in the Poisson case.

Recently Chow and Yu (1981) have proved the asymptotic risk efficiency of the
sequential procedure with stopping rule 7, without any assumption about the type of
distribution of X;, as long as E|X:|* < o for some p > 1 and the delay na obeys certain
growth conditions as A — o (as shown in their paper, the delay n4 must depend on A in
order to achieve asymptotic risk efficiency even in the Bernoulli case). Results of asymp-
totic risk efficiency have also been proved by Ghosh and Mukhopadhyay (1979), assuming
El X 1 |8 < 0o,

In this paper we obtain the bounded regret of the sequential procedure with stopping
rule T, provided that E| X, |% < o for some p > 1 and that n4 grows at a certain rate as A
— o0, but without any further assumptions about the nature of the distribution of X;. The
main results are summarized in the following two theorems, whose proofs are given in the
next section.

THEOREM 1. Let X1, X,, .- beiid. with EX; = p, Var(X;) = 0’2>0,and E| X, |* <
o for some p > 1. For A > 0 and B > 0, define T by
T=Ts=inf{n=na:n"' T (X; — X,)> < A7 VPn%F},
where AV* < ns = 0(A'?) as A — w, for some § > 0. Then
ET —no=0(1) as A— .
THEOREM 2. Let X1, X,, -+ be iid with EX; = p, Var(X,) = 6> >0, and E| X1|* <
o for some p > 1. For A > 0 and B > 0, define T by
T=Tys=inf{n=ns:n"' Y X; — X,)> < A VEn*F},
where 8A* = ny = 0(A'?) as A — », for some 8 > 0. Then

Ry — R, =0(1) as A— oo,

The major difficulty in obtaining these results is that the difference L+ — R, , unlike the
ratio Lr/R,,, is not uniformly integrable in A: in fact,

E|Lr— Ry |~ \AY2 as A— x,

where A is a positive constant. Thus uniform integrability results are not enough to prove
boundedness of the regret, and some sort of cancellation is needed on taking the expectation
of Lr — R,,. In the next section this cancellation is achieved using two main ideas. First,
heavy use is made of the defining relation for 7', as in equations (2.7) and (2.20) below, to
write parts of the regret in terms of the stopped sum of squares. Second, Wald-type
equations for moments of stopped martingales are applied to obtain the desired cancellation
(see especially (2.8), (2.12), (2.17) and (2.22)).

2. Proofs of Theorems 1 and 2. Without loss of generality, assume p =0 and o = 1,
and define S, = Y X,, X, = n”'S,, and V,, = ¥7 (X; — X,)®. We shall make frequent use
of the fact that V,, = V,.; for all n. Also, for integrable f, define

E'(f) = E{flir>na1} and E"(f) = E{fIr-nn} = E(f) = E'(f).
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Equations (2.1), (2.2), (2.3), (2.5) and (2.6) below follow from Lemmas 2, 4 and 5 of
Chow and Yu (1981), while (2.4) follows from Theorem IV-3 of Yu (1978).

E|X1|2t< o, t=1n4=0AY?) as A—
2.1)
= {(A7Y?*T)": A = 1} is uniformly integrable;

E|X/|*<w, ng >8AY* for some &>0
(2.2)
= {(A™Y?T)"%:A =1} is uniformly integrable for all ¢ > 0;

E|Xi|* <o, na=8AY* forsome &§>0= P[T< (1-6)AY?]
(2.3)
=0(A77% as A— forall ¢ >0, ifd € (0, 1);

E|Xi|*<ow,t=2,8AY"=ns=0(A"%) as A—
(2.4)
= {|A™4T — A*)|':A=1} is uniformly integrable;

E|X||*<o,t=1,n4=0(A"") as A— o
(2.5)
= {|A7Y*Sr|*:¢t =1} is uniformly integrable;

E|Xi|¥ <o, t=2ns=0(A"Y%) as A— »
(2.6)
= {|AT4XTX? - T)|':A=1} is uniformly integrable.
ProoF oF THEOREM 1. By the definition of T,
2.7 (T-1)"P <AV Vi <= AVPVr < AVEST X2
on {T > na}, so by Wald’s Lemma and (2.3), as A — o,

E"™YKT - 1) = E[(T - V"*¥F1= AVPE(T) + ni***P(T = na)
(2.8)
=AYH{E(T - 1) + 0(1)}.

Therefore, by (2.1),

EYMT-1)=AY(1+ 0A?)}, E(T-1)=A"{1+0AV})}F?2=A"*+0(),
and hence
(2.9) ET =AY+ 0Q).

To prove the reverse inequality, note that from the definition of T, a Taylor series
expansion, and (2.3),

E(T-AY)=AVE' AT - 1) + 0(1) = AVE[(T™'V)*? = 1] + O(1)
(2.10) = (B/DAVE [T (Vs — T)]
+ (B/4)(B/2 = DAPE'IN(T'Vr — 1)1 + O(1),

where A is a random variable lying between 1 and T 'Vr. If 8/2 < 1, by the defining
property of T, Holder’s inequality, (2.2), (2.5) and (2.6),

E'[NP2T Wy — 1)2] < E'{(T™'Vr — 1)1 + (T"'Vr)#?272]}
<E'[(T™'Vr— 11 + O[T - 1)"'Vr1]#27%}]
S E(T7'Vr— D*(1 + O[ATVAT — 1)F1727%)]
< E'((T7'Vr — 1)*{1 + O()A™**PT"4F}] = O(A7'?).

(2.11)
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By (2.3), Wald’s Lemma, Holder’s inequality, (2.2), (2.4) and (2.6), since E| X;|* < o,
AYVETT Y (Vr—T)] = AVE[T Y (Vr — T)] + O(1)
(2.12) =AYVE[T ST XI - T)]+ 0(1)
=E[T'(AY? - T)(XT X} - T)]+ 0(1) = 0(1).
From (2.10), (2.12), (and (2.11) if 8/2 < 1), as A — o,
(2.13) E(T-AY*)=0(Q),
yielding Theorem 1 by (2.9).

REMARK. The results of Lai and Siegmund (1979) are designed to give second order
approximations to expected stopping times in a wide variety of situations. In the present
case, applying their results would require checking a*number of rather complicated
conditions (as in their Theorem 3), and undoubtedly would involve a much higher moment
assumption than the one needed here. Their paper also gives second order approximations
to the variance of the stopping time in the special case of ordinary renewal theory; since
the variance of T is an important quantity in the proof of Theorem 1 above, it would be of

interest to obtain such second order approximations in this case as well.
The following lemma is needed for the proof of Theorem 2.

LEMMA. Let Xi, Xz, - - beiid. with EX; =0, EX}=1,and E|X;|* < o. ForA>0

and B > 0, define T by
T=Ty=inf{n=ns:n"' Y (X; — X,)> < A VEn%F},

where na = O(A'?). Then for every A= 1,
(2.14) ES%—T)*=4E Y%, S8, + E(X? — 1)’ET + 4E(X})E(TSr) < oo,
(215) ES%—YL, X)) =4EY% 82 <0, E(XT X? - T)* = E(X} — 1’ET < »,
(2.16) E{(S}—T)STX?—T)} =0(A"?), as A — .

ProoF. {{S2—n), %,)} is a martingale with martingale differences (X2 — 1) + 2X,,S,1,

where %, = ¢(X1, +--, X,). Also, from (2.1), ET? < o, and Chow, Robbins and Teicher
(1965) (see Chow and Teicher, 1978, Theorem 7, page 241), for fixed A, as n — «

J |S,2,—n|dst S?.dP+J' TdP=E(S%An)—j S% dP + o(1) = o(1).
[T>n] [T>n] [T>n]

[T<n]
Therefore, from Theorem 1 and Lemmas 6 and 8 of Chow, Robbins and Teicher (1965),
ES}-T)=EYL, E{(X} -1+ 2X;S-1)*| F-1}
=EY i {E(X1— 1)+ 45} + 4E(X})Sj-1}
= E(X} - 1)’ET + 4E 371 S}-1 + 4E(X})E(TSr) < o,
proving (2.14). Similarly for (2.15). Finally, by (2.14), (2.15), Wald’s lemma and (2.1),
2E{(S% — T)(X] X7 — T)} = — {(E(Sh — X1 X1)* - E(S7 - T
—-EQTX:-17%
=—-(4EY{ S} - EXi- 1)’ET
-~ 4E(X’1’)E(TST) —4EYT 8%, - E(X} - 1)’ET}
= 4E(X})E[(T — AV*)Sr] + 2E(X} — 1)’ET

(2.17)
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=4EX3)E[(T — AY*)Sr] + O(A'?), A— .
But from (2.4), (2.5) and Holder’s inequality,
(2.18) E|(T—AY)Sr|<EV*T - A?|’E'2|8r>=0(A"?) as A— oo,
and (2.16) follows from (2.17) and (2.18).

PRrOOF OF THEOREM 2. From Theorem 2 of Chow, Robbins and Teicher (1965),
Ry — R,, = E[ST(AT™*)] + ET — 2A"* = E[S7(AT* — 1)] + 2ET — 2A"?
=E[S3AT*-1)]+ O(1) as A— o,
by Theorem 1 above. It therefore suffices to prove that
E[S3 AT -1)]=0(1) as A— oo,
By Taylor’s Theorem, )
(2.19) E[S}(AT% - 1)] = —2E[S}(A7V*T — 1)] + 3E[SFA*(A™V*T — 1)?],

where A is a random variable lying between 1 and A~2T. From (2.2), (2.4), (2.5) and
Schwartz’s inequality, the second term on the right side of (2.19) is bounded in A. The
main point is therefore to establish that

E[S3A 2T - 1)] = 0(1) as A —.
Using the definition of T, (2.5), (2.3) and (2.1), for some A between 1 and 2,
E{SH(T 'Vr)#* = E{S¥A™*T)} = E{SF[A™VAT - 1)]} + 0(1)
= E/{ST[(T- 1)"'Vr-117?} + 0(1)
= E{S}[(T - 1)'Vr]*?} + 0(1)
(2.20) = E{S¥(T"'Vr)**} + E(ST(T"'Vr)"”
([T/(T-1]7* - 1)} + 0(1)
< E{SH(T'Vr)*?} + E{ST(A7*T)(B/2)[(T- 1)
+(%)(B/2 — 1I(T — 1)72AP2721} + 0(1)
= E{S}(T"'Vr)#?} + 0Q1).
Hence
E{S}(A7'2T — 1)} = E{SF[(T"'V7)#? — 1]} + O(1)
(2.21) = (B/2E'[SFT ' (Vr — T)]
+ (B/4)(B/2 — )E'[SIN>"XT'Vr — 1)?] + O(1),

where A is a random variable lying between 1 and 7' V7. As in (2.10), the second term on
the right side of (2.21) is bounded in A. Therefore, from (2.21), (2.3), (2.5) and (2.2), Wald’s
Lemma, and (2.4), (2.5), (2.6) together with Holder’s inequality,

E[SHA™T - 1] = (B/DES¥T (Vs — T)] + O(1)
= (B/2)E[SF*T '(Vr — T)] + O(1)
(2.22) = (B/2E[SFT\(TT Xi — T)] + O(1)
= (B/2E[(SF - T)T (T X} - T)] + 0(1)
= (B/2AT’E[(SF — T)(XT X7 - T)1 + 0(1).
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It follows from (2.22) and the Lemma that
(2.23) E[S?}(A7”’T—-1)]=0(1) as A— o,

which proves Theorem 2.
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