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PSEUDO MAXIMUM LIKELIHOOD ESTIMATION:
THEORY AND APPLICATIONS'

By GAIL GoNG AND FRaNcCISCO J. SAMANIEGO
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Let X, - -+, X, be ii.d. random variables with probability distribution Fj,
indexed by two real parameters. Let p = p(X,, ---, X,) be an estimate of p
other than the maximum likelihood estimate, and let f be the solution of the
likelihood equation 8/86 In L(x, 6, p) = 0 which maximizes the likelihood. We
call § a pseudo maximum likelihood estimate of §, and give conditions under
which § is consistent and asymptotically normal. Pseudo maximum likelihood
estimation easily extends to k-parameter models, and is of interest in problems
in which the likelihood surface is ill-behaved in higher dimensions but well-
behaved in lower dimensions. We examine several signal-plus-noise, or con-
volution, models which exhibit such behavior and satisfy the regularity con-
ditions of the asymptotic theory. For specific models, a numerical comparison
of asymptotic variances suggests that a pseudo maximum likelihood estimate
of the signal parameter is uniformly more efficient than estimators proposed
previously.

1. Introduction. Probability models abound for which the analytical derivation of
the maximum likelihood estimate of model parameters is virtually impossible. For many
such models, one among the wide variety of numerical algorithms available for approxi-
mating the MLE will prove satisfactory. For other models, numerical methods are unreli-
able or converge too slowly to be of use. There has been particular difficulty with the
likelihood approach to estimation in the presence of nuisance parameters. Godambe (1974,
1977) has referred to this area as the major failure of the likelihood approach, and has
developed the theory of estimating equations in part to fill this void. The difficulties in
obtaining the MLE for models with nuisance parameters has led to the investigation of
alternative estimation procedures which have the spirit of likelihood procedures, but are
compromises due to the intractability of the preferred approach. Several likelihood-based
procedures are discussed by Kalbfleisch and Sprott (1970). The method of maximum
partial likelihood estimation was introduced and studied by Cox (1975). Optimality results
for several such methods have been obtained by Andersen (1970), Godambe (1976) and by
Liu and Crowley (1978).

A comprehensive review of the literature on estimation in the presence of nuisance
parameters is given by Basu (1977). To the extent that approaches to estimation in
nuisance parameter problems have focused on the elimination of nuisance parameters
through conditioning or data reduction, the approaches have limited applicability. Many
problems of practical importance do not give rise to convenient factorizations or to the
existence of useful sufficient or ancillary statistics. The convolution models considered in
this paper are models in which the approaches mentioned in the preceeding paragraph
fail. It is precisely the characteristics of these models that has led us to the approach
studied here.
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In general, pseudo maximum likelihood estimation consists of replacing all nuisance
parameters in a model by estimates and solving a reduced system of likelihood equations.
The method is a reasonable one in problems in which lower dimensional maximum
likelihood estimation is feasible while higher dimensional maximum likelihood estimation
is intractable. As we shall see, the method is in this sense ideally suited for application to
many convolution models. Pseudo maximum likelihood estimation has a natural counter-
part in testing theory, namely, the C(a) tests introduced and studied by Neyman. In his
fundamental paper on testing composite hypotheses, Neyman (1959) proposed a test
statistic whose construction involves replacing nuisance parameters by vn-consistent
estimates. The asymptotic distribution of the test statistic was given under conditions
more stringent than we will impose. Specifically, a condition equivalent to Neyman’s that
the test statistic be uncorrelated (under the null hypothesis) with the logarithmic derivative
of the likelihood with respect to nuisance parameters would guarantee in our context an
efficient estimator of the structural parameter. We investigate here the asymptotic behav-
ior of pseudo MLE’s under less restrictive conditions, and indicate some applications of
our results.

In Section 2, we develop the asymptotic theory of pseudo maximum likelihood esti-
mators in problems with a single structural parameter. Under fairly standard regularity
conditions, the consistency and asymptotic normality of pseudo MLE’s are established
there. In Section 3, we describe the special features of certain convolution models which
identifies them to be a natural domain for application of the method of pseudo maximum
likelihood estimation. We discuss the regularity of such models and the asymptotic relative
efficiency of specific pseudo MLE’s. We make some concluding general remarks in Section
4.

2. Asymptotics. Let X, ..., X, be a random sample from a member of the two
parameter family # = { F,,} of distributions on the real line. We will assume throughout
our development the existence, for every (6, 7), of the density or probability mass function
f(x|6, m) with respect to some sigma-finite measure p on #. The method of pseudo
maximum likelihood estimation may be viewed as follows. Given a sample of size n from
F, ., an estimate 7, is developed for the parameter 7 by some technique or approach other
than maximum likelihood estimation. The pseudo MLE is then obtained by maximizing
the log likelihood #,(6, 7.), viewed as a function of the single parameter §. The pseudo
MLE 4, should have good large sample properties when 7, does. The consistency of the
pseudo MLE is expected when 7, is consistent, and is established here under simple and
natural regularity conditions. The efficiency of §, will of course depend on the relative
efficiency of #,. The asymptotic distribution of 8, is derived under regularity conditions
when the estimator 7, is vn-consistent and asymptotically normal. The asymptotic theory
for pseudo MLE’s is developed here for a two-parameter problem rather than more
generally because of the resultant ease of exposition and simplicity of notation. We trust
it will be apparent to the reader that our result easily generalizes to the case when 7 is
vector valued. The extension to vector valued 6 will not be pursued here.

We will make use of the standard symbols 0,(-) and ¢,(.) for convergence and
boundedness in probability (see Mann and Wald (1943)). We make repeated use of the
following elementary yet fundamental lemma.

LEMMA 2.1. Let X, ---, X, be i.id. random variables from a distribution F. on the
real line, with w € I1 C A. Let my € I1 be the true value of the parameter, and let 7, =
7 (X1, - -, X,,) be such that 7, — m, in probability. Let y(x, #) be a differentiable function
of m for m € B, an open neighborhood of my, and for almost all x in the sample space ¥,
and suppose E| Y(X,, m) | < . If

= M(x)

@.1) '% U,

for all m € B, where EM(X,) < w, then
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(2.2) %ZL; (X, 7.) = EY(X,, mo) in probability.

Proor. Consider the Taylor series expansion

1 . 1 ) 1 }
(2.3) =YX, 7)) ==Y WX, m0) + (7 — mo) - — =1 — Y (Xi, ) + 0, (1)
n n n om

where 7, is between 7, and 7,. By our hypotheses and the weak law of large numbers, it
will suffice to show that 1/n ¥ 7-; (8/67 Y(Xi, 7.) = (,(1). To this end, let € > 0, § > 0, and
define
S. = {7, € B}
and
1

There exists an integer N = N(g, 8) such that if n > N, P(S,) > 1 —¢/2and P(T,) > 1 —
€/2. We then have V n > N,

7|3
n

completing the proof.

We now define the notation to be used in the sequel. Let X;, - .-, X, be i.i.d., each with
density or probability mass function f(- | 6o, ) defined on the sample space % C #, where
8, € A, A open with A C ® C # and m € B, B open with BC IT C £. Let

®(x|6, 7) =In f(x]6, 7)
Zn(0,m) =In[]i=; f(x:| 0, 7) = Yie1 D(x: |60, 7)

4 .
=1 . VX, 7n)

= EM(X,) +8> =P(S.nT,)>1—¢

_ 1
ZLn(l, m) = - %n (0, ).

We will occasionally suppress the subscript n in the latter expressions. Partial derivatives
are denoted with subscript notation; for example, ®;, = (8°/8736)®. Throughout this
section, we view @ as a structural parameter and 7 as a nuisance parameter. We will make
use of the following regularity conditions.

(Al) For all x and for all (¢, 7) € A X B, the following partial derivatives exist: @y,
q)ﬂﬂy Qﬂﬂﬂy q)'”y q)lhry q’ﬂﬂw; q’(hnn

(A2) Interchange of differentiation and integration of f is valid for first and second
derivatives with respect to 6 and for the mixed partial derivative with respect to 6 and .

(A3) 4. and S exist with %, > 0, where % = Ey, . (®5) and S, = Ey, . (D - D).

(A4) Forall (4, 7) € A X Bandforall x € %,

9 f(x|6, m)

py n——_—f(xl%,w) < M(x, 0)

where EM(X,,0) <~ V6€ A.

(A5) The following third partial derivatives are bounded by integrable functions:
(1) | Dogs (x| 8, m) | = M(x) V@, 7 €AXB,Vx
(ii) | @po- (x| b, ) | = M(x) V7€ B, Vx
(iii) | Dy (x| 00, 7) | = M(x) VY7 € B, Vx,
where EM (X)) < oo,



864 GAIL GONG AND FRANCISCO J. SAMANIEGO

(A6) For any (6, m) % (6, m),
Pgn_,,”{f(Xl | 0, 7) = f(X] |00, 770)} <1.
We first establish the consistency of the pseudo MLE.
iid. R . .
THEOREM 2.1. LetX,, ---, X, ~ Fy ., and let 7, = 7,(Xy, - -+, X,) be a consistent

estimate of m,. Suppose that regularity conditions (Al), (A4) and (A6) hold. For e >0, let
A, (€) be the event that there exists a root 8, of the equation

3 .
55 ﬁ,,(ﬂ, 77!1) - O
for which |8, — 6,| < e. Then, for any € >0, P{A,(e)} — 1.

Proor. Let § € A be fixed and define
Y(x|m = D(x|6, 7) — (x| 0, 7)

f(x|0 77)
f(x|00,

By (Al), Y(x| =) is differentiable for 7 € B, and by (A4),
| Ya (x| ) | = M(x) V7 € B, Vx.

=In

Thus, by lemma 2.1,

f(Xl | 0, o)

2.4) gn(o, 7?") - :fn(a 3 An.) E 7T 1 v 10 .
( N AT )

in probability.

It is easy to show that E ., ¢(X:|m)" < o in general, and we thus claim that L8, )
— Y. (6o, 7,) converges to a negative number (possibly —x) if § € A — {6,}. This claim
follows from Jensen’s inequality and condition (A6) since

f(X1[0,7To f(X1‘0 770)
f(Xllao,'”o) f(X1|00,7To)
Because of the convergence demonstrated above, we may find, for any €, § > 0 for which
(6o — €, 0y + €) C A, an integer N = N(e, 8) such that n > N implies that P(#, € B) >

1 — 4, and that for 8 = 6, + ¢, P(éﬁ ), 7,) < ZL.(8, 7,)) > 1 — 8. Thus, for n > N,
P(%,(6, 77,. ) has a local maximum 8, € (6, — €, 8, + €)) > 1 — 36. By (A1), #, satisfies the

E”m’”u ln < l Eg T

equatlon $ (8, 7,) = 0, completing the proof.

Theorem 2.1 establishes only that the pseudo maximum likelihood equation has a
consistent root. In all applications considered in this paper, however, the pseudo maximum
likelihood equation has a unique solution and the pseudo MLE is indeed consistent. This
follows from the fact that the logarithmic derivative of the pseudo likelihood in each of
these applications is a decreasing function of the structural parameter. We turn to the
asymptotic distribution of the pseudo MLE.

THEOREM 2.2. Let X), ---, X, 1id Fo,n,, and let 7, = 7,(X1, -, X,) be such that
(7w — m) = 0,(1/vn), and suppose
25) 7 [.z’ 2 (6, 770)] ﬁ<0’ s [zu g])
Tn — To 22

Then, under regularity conditions (A1)-(A6), the pseudo MLE . is asymptotically



PSEUDO MAXIMUM LIKELIHOOD ESTIMATION 865

normal, that is, Vn(6, — 6) /o converges in law to a standard normal variable, where

1 A
2.6 P (B H — 22 0).
(2.6) o o j%( 22712 12)

Proor. By condition (Al) and the consistency of 8. and #,, we may expand Zy(6,,
) about 8 as follows:

o 0= VnZy (B, 7ta) = V0o, 7n) + N1l — 00) Lo (8o, 7)
. + ]/2‘/;(9,: — 00)2Loeo (B, 7,) + op(1),

where 8, lies between 6, and §,. We may rewrite (2.7) as
28)  =VnZy(by, #n) = Nn(Bn — 60)[ Lon(b0, ) + % (8, — 60) Lon B, 7)] + 0, (1),

We examine several terms in equation (2.8) separately; using conditions (A1), (A2), (A3)
and (A5) and the consistency of 6, and #,, we establish the following three identities:

(@) VnPu(bo, #2) = NnZa(6, m) — V(. — )12 + 0p(1). To see this, we expand
Zo(8, 7,) about m, yielding

2.9) N Zy(lo, 7n) = Nn Lo, m0) + n(F — m0) Lon (80, )

+ V(i = 1) Lonn(Bo, 7a) + 0,(1).

where 7, is between 7 and #,. Arguing as in Lemma 2.1, one can show that %;..(6, )
is bounded in probability. This establishes that Jﬁ(v‘r" ~ 70)° % 400, 7,) = 0,(1), which
together with the fact that Vn(d, - 70 L o-(0o, m) + F12] = 0,(1), proves identity (a).

(b) Zi(6, #n) + F11 = 0,(1). This follows easily from condition (A5), (ii), and Lemma
2.1.

(¢) (B, — 60) Lus(8,, m) = 0,(1). To see this, it suffices to show that Fyy(F,, #,) is
bounded in probability. This follows from condition (A5), (i), and an argument similar to
that made in proving Lemma 2.1. Applying the three identities above, we see that
Vn(8, — 6,) is asymptotically equivalent to { Vn.Z(6y, m) — Vr(#, — m).%12} /%11, This
variable converges in distribution to .4#(0, %), where o, given in (2.6), may be obtained by
noting that 2, = #,.

REMARKS. The regularity conditions under which the results of this section are proven
can undoubtedly be weakened. We have made no effort to do this, but are satisfied with
conditions that are fairly standard and are reasonably easy to check. Moreover, the
applications of interest to us satisfy the stated conditions. We note that if .#2; = Ej, ., (®2)
exists and is positive, and if 7, is asymptotically equivalent to the MLE of 7, then 2, =
0, 2o = Sn/(IIn — Fh) and o = Fn/(I1 50 — S%). Thus, in this case, §, is
asymptotically efficient.

3. Applications to signal plus noise models. Let X be a random variable whose
distribution is that of the sum of independent variables Y and Z. The distribution of X is
thus the convolution of Fy and Fz, and may be thought of as a model for signals in additive
noise. Data obtained by a Geiger counter may serve as the prototypical example of signal
plus noise data since these observations may be viewed as sums of counts due to the
presence of a radioactive substance and counts due to noise or static. The wide applicability
of continuous and discrete convolutions is discussed in Sclove and Van Ryzin (1969) and
in Samaniego (1976).

Estimation problems for specific signal plus noise distributions have been examined by
several authors, notably by Gaffey (1959) and by Sclove and Van Ryzin (1969). Due to the
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cumbersome nature of the likelihood function for convolution models, maximum likelihood
estimation has met substantial resistance. We describe below a characteristic shared by a
number of convolution models that facilitates maximum likelihood estimation in one-
parameter problems and pseudo maximum likelihood estimation in multiparameter prob-
lems.

Let fy(x) represent the probability mass function or density of the variable X, where 6
is a real valued parameter. While fy(x) may depend on other unknown parameters, such
dependence, if any, is suppressed in the present discussion. Suppose f,(x) satisfies the
system of differential equations :

3
(3.1) a_of”(x) = folx = 1) — fo(x)

for all appropriate x and 6. It follows that the likelihood equation %,(#) = 0 may be written
as

fe(xt - 1) =n
folx) ’

where x is the vector of observations. It thus becomes clear that the behavior of probability
ratios of the form

(3.3) fola)/fs(b),

for @ < b is relevant to this estimation problem. The distribution of X is said to have
parametric monotone decreasing ratio (PMDR) in @ if ratios (3.3) are decreasing in @ for
all @ < b in the support of the distribution of X. PMDR in 6 is well defined in
multiparameter problems if we consider all parameters other than @ to be fixed. If a one-
parameter model satisfies (3.1) and has PMDR, then the likelihood equation (3.2) has at
most one solution, and the MLE is easily found numerically. The PMDR property is easily
shown to be equivalent to monotone increasing likelihood ratio, but is a more convenient
formulation of the notion in our context.

A number of signal plus noise models have the character described in the preceeding
paragraph. For example, discrete convolutions of the Poisson or the binomial distribution
satisfy the system (3.1) (see Samaniego (1976), (1980)), and many such convolutions have
the PMDR property in the structural parameter. Several continuous convolution models
have these same features (see Gong and Samaniego (1978)). The solvability of one-
parameter estimation problems such as those described above provide the key to the
feasibility of pseudo maximum likelihood estimation in convolution models, since for many
convolution models, the pseudo MLE of a single parameter is easily found when all other
parameters have been replaced by estimates.

Demonstrations that a given model satisfies a series of technical regularity conditions
are inherently tedious and uninteresting. We therefore omit the details of such regularity
checks and state without proof that the following convolution models satisfy the regularity
conditions under which the asymptotic theory of pseudo maximum likelihood estimates
has been developed: Poisson signals in binomial or normal noise, binomial signals in
Poisson or normal noise. We refer the interested reader to Gong and Samaniego (1978) for
a detailed investigation of regularity.

For the signal plus noise models we have discussed, we have established the consistency
and asymptotic normality of the pseudo maximum likelihood estimate of the signal
parameter, provided the noise parameter is estimated appropriately. The method of
moments, for example, yields estimates of the noise parameter that satisfy the requirements
of Theorems 2.1 and 2.2. The efficiency of the resulting pseudo maximum likelihood
estimates will now be examined. We present below evidence in support of our conjecture
that these pseudo MLE’s are uniformly more efficient asymptotically than the method of
moments estimators of the signal parameter. We study here the asymptotic relative
efficiency of PMLE’s both for Poisson signals in binomial noise and for binomial signals in

(3.2) =1
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Poisson noise. Moment estimators of the binomial and Poisson parameters were proposed
by Sclove and Van Ryzin (1969).

Let Xi, .-+, X, be a random sample from 2(6,)« Z(N, po) with N known, and suppose
we are primarily interested in estimating the (signal) parameter 6,. It is easy to show that
the moment estimators of po and 6, are g, = V(X — s*)/N and 8, = X — Np,, where X and
s* are the sample mean and variance, provided X = s% which occurs with limiting
probability one as n — . It is shown in Gong and Samaniego (1978) that

(¢
(3.4) \/71[’22(00"’0)] . M (0,5)
pn _pO
[ 0
where x= |:0 t*(Tr — 2193 + 1_‘33)}

Wlth t= 1/2Np0, ng = 00 + Npo(l —po), P23 = 0() + Npo(]. —po)(l - 2])0) and P;}g = 0() +
2{8 + Npo(1 — po)}2 + Npo(1 — po){1 — 6pe(1 — po)}> Note that

EXEE e
~ =8 1 ,
Pn 2

where g, given by gilty, b, t3) =t

to — t3
N il

and &t ta, t3) =

is a totally differentiable transformation. We may thus define

1 0 O
A= [0 t —t]'
and obtain (3.4) from the 8-method theorem, with & = AT'A”. We now record the
asymptotic variances of the maximum likelihood estimate (MLE), the pseudo maximum

likelihood estimate (PMLE) and the method of moments estimate (MME) of the signal
parameter 6:

) B2
35 - I R
( ) OMLE u«u.ﬂzz — f%z
. 1 7
(3.6) obMLE = Z + 7%—? t3(T9a — 2T93 + T'ag)
3.7) odme = (1 — Nt) Ty + 2Nt(1 — Nt)Tas + (Nt)T 5.

We have not been successful in comparing these expressions analytically. For a specific
range of parameters, we have approximated .#; with errors no greater than 1077, and have
used these approximations in computing the asymptotic efficiency of the PMLE relative
to the MLE and of the MME relative to the PMLE. The parameter values examined are
the following: 6, = .1, .25, .5, 1(1)10; po = .1(.1).9; N = 1(1)10. For the parameter values
above, we find

.57288 = ARE(PMLE/MLE) < 1
42712 = ARE(MME/PMLE) < 1.

From this computation, we are led to conjecture that this pseudo maximum likelihood

estimate of @ is uniformly more efficient asymptotically than the moment estimator of 6.
We obtained similar results for the pseudo MLE of the binomial parameter using the

moment estimator of the Poisson parameter. Specifically, for the same parameter set,

.63983 = ARE(PMLE/MLE) < 1
.34036 = ARE(MME/PMLE) < 1.
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4. Discussion. This paper advances a method of estimating a subset of parameters
in multiparameter models, and investigates its numerical and asymptotic characteristics.
We have given general conditions under which the PMLE of a single structural parameter
is consistent and asymptotically normal. For the signal plus noise models discussed in
Section 3, we have demonstrated the numerical feasibility of the approach and have
verified that the asymptotic properties of the general method obtain. Moreover, a numer-
ical investigation suggests that pseudo maximum likelihood estimates lie strictly between
the MLE and the method of moments estimate for the signal parameter in terms of
asymptotic efficiency. In general, we view the process of solving a reduced system of
likelihood equations as a technique which promises to improve the asymptotic behavior of
estimates of specific parameters. The applicability of the method extends well beyond the
convolution models we have discussed. Applications that seem promising include pseudo
maximum likelihood estimation in mixture models, multiparameter models without a
closed form MLE (for example, PMLE’s for the scale parameter of the Weibull distribution
have been recommended for use—see Johnson and Kotz (1970)), and “regular” nuisance
parameter models.

It is worthwhile calling attention to the fact that the asymptotic theory developed here
is not directly comparable to the asymptotic theory for maximum likelihood estimates or,
more generally, for best asymptotically normal (BAN) estimates. In a sense, the require-
ments on the model are slightly less stringent (vis-a-vis the nuisance parameter) for pseudo
maximum likelihood estimation than for these other methods. A full discussion of the
differences in regularity conditions is somewhat academic, however, since the models we
have examined are fully regular under either theory, as are many models of interest. It
remains true that the method of pseudo maximum likelihood estimation may be applicable
in situations where the standard theory for MLE’s or BAN estimates breaks down. Be
that as it may, it is clear that the main virtue of PMLE’s is their tractability in problems
in which optimal approaches are computationally unfeasible.

An iterative procedure based on the method of pseudo maximum likelihood estimation
may provide more efficient estimates than the single iteration we have discussed. In a two
parameter model F ,, for example, one might estimate p by the method of moments, and
obtain alternately the pseudo MLE of 6, then of p, and so forth. This algorithm guarantees
that the likelihood increases with each iteration. Under regularity conditions, the algorithm
should converge to the MLE, but the speed of this convergence may preclude its use.

Added in proof: L. B. Klebanov has called our attention to his note with 1. A.
Melamed entitled “On a certain method of construction of statistical estimates of the
parameters of families of distributions” (1977) published (in Russian) in Bull Acad. Sci.
Georgian SSR, 87, 553-4. In that note, a result giving conditions for consistency and
asymptotic normality of a solution of a certain pseudo estimating equation is stated
without proof. Their regularity conditions differ from ours.
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