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ON IMPROVING CONVERGENCE RATES FOR
NONNEGATIVE KERNEL DENSITY ESTIMATORS'

BY GEORGE R. TERRELL AND DAvVID W. ScoTT
Baylor College of Medicine and Rice University

To improve the rate of decrease of integrated mean square error for nonpara-
metric kernel density estimators beyond O(n'g), we must relax the constraint
that the density estimate be a bonafide density function, that is, be nonnegative
and integrate to one. All current methods for kernel (and orthogonal series)
estimators relax the nonnegativity constraint. In this paper we show how to
achieve similar improvement by relaxing the integral constraint only. This is
important in applications involving hazard function and likelihood ratios where
negative density estimates are awkward to handle.

1. Introduction. Estimating rates of convergence for various nonparametric
density estimators has been an important research topic over the last twenty-five
years; see Tapia and Thompson (1978). Since the shape of the density is of most
interest, the integrated mean square error (IMSE) is an appropriate criterion. For
kernel density estimates, Parzen (1962) proved that one can choose kernels so that
the IMSE = 0(n~%"/@"*D) for positive integers r; however, if » > 2 the kernel
estimate is not nonnegative. Thus for a bonafide density estimate (i.e., nonnegative
and integrating to one), the kernel method is limited by the rate O(n"g); see Farrell
(1972). Wahba (1975) has shown that rates of convergence like 0(n~2"/@"+D) are
possible for orthogonal series estimators, but again, these estimators are not
nonnegative.

Generally these estimates are negative only in the tails and, thus, for many
applications the lack of nonnegativity is unimportant. However for techniques like
likelihood ratio estimation and hazard rate estimation, the presence of 'negative
values poses theoretical as well as practical problems. A negative hazard rate
implies the spontaneous reviving of the dead. In this note we give an example of a
particular class of estimators based on ordinary kernel estimators that achieves the
goal of faster rates of convergence by relaxing the integral constraint rather than
the nonnegativity constraint. The method involved bias reduction in the logarithm
of the estimator.

2. Bias reduction by geometric extrapolation. Rosenblatt (1956) first consid-

ered estimating a density function f(x) given only a random sample x,, - - - , x,, by
the formula

2y 1 o, X — X
(1) M = k(57
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where K is a kernel function integrating to one and 4 is a positive smoothing
parameter. The bias of this estimator may be made of order A" by choosing a
kernel with “moments” m; = [y'’K(y)dy =0fori=1,---,r — 1 since

@ E(x) = nf o k(552 )0 a
JK(W)f(x — hw) dw

= 00 + 20, S 0 (ympt + orry

using Taylor’s theorem and assuming the existence of the necessary derivatives.
The variance is dominated by the term

3) Varf,(x) = n f[ %K( xT")rf(t) di

- FKOW e ~ ) dow

)

For a particular choice of r it follows from (2) and (3) that optimally IMSE =
O(n~2/@r+D) However, for r >2, K cannot be a nonnegative function and
therefore f;, is not nonnegative for all x. Thus to improve over IMSE = O(n'g)
using these estimators we must be willing to accept negative estimates.

It is of interest to obtain improved rates like O(n"g) by relaxing the integral
constraint rather than the nonnegativity constraint. We have done this by consider-
ing the logarithm of estimator (1). We shall limit our kernels to symmetric
nonnegative kernels so that the odd “moments” in equation (2) are all zero. Let
L(x) = Ef,,(x). Then we may rewrite equation (2) in the form

= e R B BT S
@) 5(x) f(x)[l R
where a; = (— 1))f(x)m;,/i!. Taking logarithms, we have
a ., a,f(x) — 34} 4
h* + h
A(x) f(x)?
by careful application of the series expansion for natural logarithms. We may
reduce the bias for a fixed kernel by eliminating powers of 4 to obtain, for example,

4a,f(x) — 2a2 T
fx)?

log[Z,(x)] = log f(x) +

% log I,(x) — % log I,,(x) = log f(x) —

or taking exponentials

5) L (07 = fx) + L‘j&&h ,oo

using a series expansion for the exponential function.
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The estimator we are proposing is actually the ratio of two ordinary nonnegative
kernel estimators with r = 2

-~ A ﬂ -~ _,—l
(6) T (x) = fi(x)2fu(x) "2
where we take f,’,*(x) = 0 whenever f,(x)=0. We can easily check that this
geometric estimator has the properties we claim; namely, bias = 0(h*) and variance
= 0(1/nh). Writing

f;,(x) =IL(x)+ Z

and

fon(x) = Ly(x) + W, .
we have shown in equations (2) and (3) that the random variables Z and W have

expectation 0 while the variances and thus the covariances of Z and W are of order
1/nh. Our estimator (6) may be written in the factored form

F O () = 1O _L% x)73 '—W——%
O MO = 401+ 5 e S~c]

1,(x) )
I2h(x)

L(x)iLy(x) 75 + %Z(

4
5i(x) 3
—lW( A ) +0[(Z + w)?
’ Ly(x) [( ) ]

using the expansion (1 + a)* = 1 + ax + 0(a?). From equation (4) it follows that
L(x)/ L(x) = 1 + 0(h?) by simple division. That the bias is 0(h*) follows from
equations (5) and (7). From equation (7) we may write

®) Var f*(x) = E[gz_%W]z + 0(n~Y)
= Var[ 4,0 — /(0] + 0(n ™),

which is simply 0(1/nh). Thus the optimal IMSE for the estimator (6) is 0(n~5).

The previous argument can be generalized as follows: Given a sequence of
nonnegative and symmetric kernel density estimates for a fixed point with smooth-
ing parameters whole multiples of a fixed parameter A, f;h(x) fori=1,---,s, take
a multiplicative combination of these with ith exponent

Cnic1 2s(s =D (s—i+ 1)
©) (=1 (s+ D(s+2)--(s+1i)

The resulting nonnegative estimate for f(x) can be shown to have asymptotic
integrated mean square error O(n~4*/@s+ D),

3. Example. Consider the geometric estimate of a standard Gaussian density
using Rosenblatt’s symmetric boxcar kernel K(f) =1 for |f| <3 and zero
elsewhere. From equation (4) the constants a, = A*f”(x)/6 and a, = h*(x)/120.
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Thus the bias of f,‘,"(x) is given by equation (5) and the variance is 25f(x)/(36nh) by
equation (8). A straightforward computation of the integrated mean square error
for the case of standard Gaussian samples gives

25 17 A8

-« -1
IMSE = 36n ¥ 327431 T 0077
which is asymptotically minimized by the choice
1
2573\° _u
(10) h = (—17— ) n °

with resulting IMSE = .550 n~ 5. For the O(n‘g) estimator (1) using the Rosenblatt
boxcar kernel it is well-known that IMSE = .339 ,,-3’ so the geometric estimate
represents an improvement over the boxcar kernel estimate for n > 232. A similar
comparison using a symmetric triangle kernel shows improvement for n > 142.

We performed some preliminary numerical experiments to observe the behavior
of the geometric estimator using (10) for simulated standard Gaussian data. For
twenty-five repetitions for the sample sizes 25, 100, and 500, we computed the
actual area of the density estimate. The average areas were 1.052 (.009), 1.028
(.006), and 1.015 (.003), respectively, with the estimated standard deviation given in
parentheses. It can be shown that the area will always converge to one from above
for any sampling density.

4. Discussion. Our approach to improved convergence rates was suggested by
extrapolation to the limit methods from numerical analysis [2]. In fact a linear
combination of estimates f,,i =1,- - -, s, using a fixed symmetric kernel with
coefficients from (9) gives a Parzen kernel estimator with r = 2s. The method of
this note is simply a multiplicative analogue. Our estimators are not unique.
Geometric estimates may be constructed from kernel estimators other than f, and
fs» for example f, and f3,. For the Rosenblatt boxcar kernel, the pair f, and Fotsn is
optimal but results in less than a 1% improvement in IMSE and is much less simple
to use in practice.
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