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MOST ECONOMICAL ROBUST SELECTION PROCEDURES FOR
LOCATION PARAMETERS'

By S. R. DALAL AND W. J. HALL
University of Rochester

Consider samples of size n from each of k symmetric populations, differing
only in their location parameters. The decision problem is to select the best
population—the one with the largest location parameter—with control on the
probability of correct selection (PCS) whenever the largest parameter is at least
A units larger than all others, and whenever the common error distribution
belongs to a specified neighborhood of the standard normal. It is shown that, if
the sample size n is chosen according to a formula given herein, and Huber’s
M-estimate is applied to each of the k samples with the population having the
largest estimate being selected as best, that the PCS goal is achieved asymptoti-
cally (as A}0)—the procedure is robust. Moreover, no other selection procedure
can achieve this goal asymptotically with a smaller sample size—the procedure
is most economical. Comparisons with other procedures are given. These results
are based on a uniform asymptotic normality theorem for Huber’s M-estimate,
contained herein.

1. Introduction and summary. Let X; (j=1,---,n;i=1- -, k) beinde-
pendent observations from k populations with respective distribution functions
(df’s) F(x — §,), and let §;; < - - - < 6§, denote the ordered §’s. We consider the
problem of selecting the ‘best’ population, namely the one with the largest location
parameter ; the methods are readily extended to other ranking and selection goals,
as introduced by Bechhofer (1954) and treated recently by Ghosh (1973); see also
Gibbons, et al., (1977).

Let A (> 0) and P* (> 1/k) be specified and write S = S, for the subset of the
parameter space R* of @ = (8,, - - -, 6,) where f; > 6 _, + A. The problem is to
choose a value, say N, for the (common) sample size n and a selection procedure for
choosing the best population which assures a PCS (probability of correct selection)
of at least P* whenever € S. When F is ®—and the errors are thus standard
normal—Bechhofer (1954) showed that, by choosing N = d?/A* (or >) with
d= P~'(P*) and
(1) P(d) = f<I>"“()f + d) d®(x),
the procedure which selects the population with the largest sample mean meets this

goal: PCSy(®, ) > P* when 0 € S,, with equality at a least favorable configuration
(Ifc) where all but one of the populations have the same #-value and the remaining
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1322 S. R. DALAL AND W. J. HALL

population’s #-value is A units larger. Hall (1959) showed this procedure to be most
economical, in the sense that no competing procedure could meet the goal with a
smaller sample size.

Other authors have introduced various competing procedures, especially proce-
dures based on various nonparametric statistics (e.g., Lehmann (1963), Randles
(1970) and Ghosh (1973); other references are in Ghosh). By selecting as the best
population the one with the largest location estimate, now using a nonparametric
estimate . of location, the procedures are not so sensitive to the assumption of
normal errors. However, they are not fully nonparametric, even asymptotically, in
that the rule for choosing N is: N ~ d*?2/A? (as A|0) where 72/n is the (asymp-
totic) variance of the location estimator 7, used by the selection rule. And
t = 7(F), so now assumptions about F are needed in order to determine N. For
example, one may use the Hodges-Lehmann location estimate and then =
(2(3)3[f?)~2, assuming F has density f (Ghosh, 1973); specifically, 73(®) = = /3.
The ratio of N’s for procedures based on a location estimator 7, and on the sample
mean, respectively, is asymptotically 7%(®)—assuming both N’s were chosen to
meet the PCS requirement at F = ®. Such ARE’s are discussed by Ghosh.

Asymptotically, the choice of N = N(8) = d*r*(®)/A? + o(A~?) works for other
F’s with the same or smaller 7(F) in that lim, sinfe,s PCSys)(F, @) > P* for each
such F. However, one can not claim that, for some small A = A(e),
infg,sPCS y(a)(F, 8) > P* — ¢ for each such F; for this, we would need the o(A™?)
term above to be uniform in F, thus allowing the insertion of an “inf over F” in
front of the PCS. Thus, the asymptotic formulation of the problem is: find a
sequence of selection procedures (one for each sample size) and a sample size formula
N = N(A) such that

) lim inf, oinfr g, ge 5,PCSniay(F> 8) > P* (> 1/k).

A procedure satisfying (2), for some suitable % containing ®, is said to be
asymptotically robust at ® € ¥ —since we have P*-protection at F’s near ®. If
every other procedure satisfying (2), but with N = N’(d), has the property
lim inf, o[ N'(d) /N(A)] > 1, then the procedure is asymptotically most economical
for 4 as well—N is minimal.

Thus our approach differs in that we set out to choose a suitable family ¥ of
possible error distributions and determine N (minimally) so as to meet the PCS
goal for every F € F—specifically for a least favorable F° in &. This continues
the same minimax spirit of these selection procedures: we not only guard against a
least favorable configuration of location parameter values, but against a least
favorable error distribution as well—the roles of @ and F are treated in the same
way. For this development, we follow the ‘contamination’ or ‘gross error’ model
approach of Huber (1964).

Let ¥ = {F|F = (1 — y)® + yH, H an arbitrary df symmetric at 0}, for speci-
fied y €0, 1). This is a (symmetric) ‘contamination neighborhood’ of the ideal
model ®, allowing for a proportion y or less of ‘gross errors’ in the model. Huber’s
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M-estimate TP is designed for this setting: T° is implicitly defined so that it is the
mean of the Winsorized sample, having ‘pulled in’ to T° + ¢ all observations more
than ¢ units away from 7°. The censoring point ¢ = c(y) is implicitly defined by
(1 —=9)"'=1~2®(—c) + 2¢(c)/c. This estimator is asymptotically normal
whenever F is symmetric at 0: n%(T,,O — 8)/0(F)— N(0, 1) in law, where

3) 0X(F) = Ex(X*Ac)/[2F(c) - 1]

Indeed, 7 is the mle under the least favorable F° which has density
(1 = y)¢(x)exp{3[(|x| — ¢)**} and is in F, and o} =o(F%*=1/[1 - 21 —
v)¢(c)/ c]. Huber (1964, Section 6) proved an asymptotic minimax theorem: (a) F° is
least favorable in that o(F) < o, for all F € %, and (b) if T, is any sequence of
(location equivariant) estimators for which n12(T,, — 8)/0 — N(O, 1) for some o when
the error distribution is F°, then o, < o.

We shall show that a selection procedure based on Huber’s M-estimate 7°, with
sample size chosen to meet the PCS goal (asymptotically) at F°, meets the goal for
every F € %9 an equicontinuous (at c) subset of %, and the appropriate asymp-
totic sample size N is d%02/A%; moreover, this N is minimal. We conclude therefore
that the procedure is (asymptotically) a most-economical robust selection procedure.

The ratio of sample sizes for this procedure relative to Bechhofer’s X-procedure
is thus oZ. This ratio differs conceptually from the ARE (see Ghosh); it measures
how much the sample size needs to be increased to expand the P*-protection from
® to 5 ° whereas the ARE compares two procedures both evaluated at ®. A table
of o2 appears below:

Y ¢ o 4 Y a
0.5 0.436 5.930 0.50 4417 4.678
0.2 0.862 2.045 0.75 2591 2.469
0.1 1.140 1.490 1.00 .1428 1.709
0.05 1.398 1.256 1.25 .0749 1.371
0.02 1.717 1.116 1.50 .0376 1.199
0.01 1.945 1.065 1.75 .0181 1.107
0.005 2.163 1.037 . 2.00 .0084 1.057
0.002 2.436 1.017 225 .0038 1.029
0.001 2.633 1.010 2.50 0016 1.014
0.0005 2.822 1.005 2.75 .0007 1.007
0.0002 3.062 1.002 3.00 .0003 1.003

Thus, it requires a 6%% increase in sample size to allow for 1% contamination; and
if we censor at ¢ = = 1.5 units from T°, we allow for almost 4% contamination
with a 20% increase in sample size. The PCS of our procedure when F is actually ®
is at least P(do,), which is greater than P*, while the PCS for the X-procedure when
F # ® but €% ° may be smaller than P*; indeed, if y > 1 — (277/e)_% =034, %
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contains the standard Cauchy distribution F, and at F (and a Ifc) the PCS of the
X procedure tends to 1/k.

To prove our optimality claims, we first need to strengthen Huber’s asymptotic
normality result quoted above to uniform (in & %) asymptotic normality. This is the
subject of Section 2. We first comment on an implicit restriction.

A selection problem is a multiple-decision problem, but for asymptotic investiga-
tions we (and others) confine attention to selection procedures based on a (location
equivariant) estimator sequence T = {T,}: T, is a numerical-valued function of n
iid. observations and is applied to each of the k samples separately, yielding
(él, cee, 0;), say, and population i is selected as best iff 0: is the largest (with ties
broken at random). Whether or not this class of selection procedures is (asymptoti-
cally) essentially complete is not known, though it seems likely. (For example, one
might consider a compound estimator 7, depending on data from all populations,
such as Stein’s, but Stein’s is asymptotically equivalent to T, = X, and hence does
not provide a counterexample.)

Finally, it should be recognized that the known scale assumption regarding the
core distribution ® of ¥ is a limitation which is frequently unrealistic. However, it
is only an assumption about ®, and therefore is not so specific about F. And for
the purposes of selecting a suitable sample size it only need be a bound, or
conservative guess, at scale. To totally avoid an assumption on scale, it is necessary
to go to a two-stage or sequential procedure (see Gibbons, et al., 1977). It should be
possible to adapt the parametric selection procedures of this sort to accommodate a
robust estimate of scale (and location), but the most-economical property will not
likely be achievable, since robust optimality is not yet available in estimation
except when scale is assumed known.

2. Uniform asymptotic normality of Huber’s M-estimate. Let (X, - -, X,)
represent a sample of size n from a population with df F(x — 6), F € ¥,
and the location parameter # is to be estimated. We confine attention to Huber’s
M-estimator with {(x) = max(— ¢, min(x, c¢)) where ¢ = c(y) (see Section 1). The
corresponding M-estimator T° is the (midpoint of the interval of) solution(s) of
37_(x; — T° = 0. Huber has shown that n3(T° — ) is asymptotically normal
for F € ¥ (and even more generally); we show here that this asymptotic normality
is uniform in F for F in a subclass ¥ % of ¥. Similar methods could be used for
other M-estimators with bounded, continuous and monotone y-functions.

Let % ° be an equicontinuous (at c) subclass of ¥ —i.e.,

4 lim,lwsuppe%—o[F(c + h) — F(c — h)] = 0.

(Later, ¥ ° must be big enough to include Huber’s least favorable F°—normal in
the center, exponential in the tails, and continuous at c.) Denote (as in Huber)
Ae(?) = [Y(x — 1) dF(x). For symmetric F € ¥, Ag(-) is strictly decreasing, and 0
is readily seen to be the unique solution of A.(¢#) = 0. Additional properties of A.
are:
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LEMMA 1. Let F, be a class of df’s symmetric at 0 and F % an equicontinuous at ¢
subclass (e.g., ¥ and F°).
(i) For F € 9, and 0 < |h| < ¢, Ag(h)/h + [, dF(x) =
STH(F(x) — F(c))/ hydx.
(i) limuosul)reé?g Ae(h)/h — Ap(0)] = 0.
(iii) For F € F%, Ap(0) = — [°_ dF(x) = 2F(—c¢) — 1.

Proor. For (i), consider 0 < h < ¢; then
Ap(h) + hf . dF(x) = [[$(x — h) — ¢(x) + hI(|x| < c)] dF(x)
since Epy = 0
= [Z*M(—x+h—c)dF + [*"(x — h — ¢) dF
= [$*h(x — ¢) dF + h[2F(c) — F(c — h) — F(c + h)]
by symmetry
= - ifﬁ[F(x) — F(c)] dx upon integrating by parts,

and similarly for —¢ < h < 0.

Now note from (i) that [Az(h)/h + [_, ,dF| < h’lf(c’H,,)[F(x) — F(c)] dx +
h! Je—n ol F(c) — F(x)] dx < F(c + h) — F(c — h); then (ii) and (iii) follow from
@).

In what follows, (ii) is needed and equicontinuity is sufficient for it. That it is not
necessary can be seen by considering a symmetric F with a density for positive x
which is symmetric at c; then the term in “| - - - |” in (ii) is identically zero, but the
left-hand side of (4) need not be zero. (For F € %, we apply the above reasoning
to H.) Nevertheless, equicontinuity at ¢ is a simpler assumption to impose. We can
and will assume (as noted above) that Huber’s least favorable F is in % °.

Another way of assuring (ii) is to replace Huber’s ¥ by a ¢ with a uniformly
continuous derivative ¢’; then Ap(0) is — [y'(x) dF(x) (assumed finite). For
bounded and monotone y’s, this additional condition would enable proof of
Theorem 1 (below) for the corresponding M-estimators, with ¥ © enlarged to .
(Huber considered such assumptions in his Section 3.) But we need the minimax
property of Huber’s T° and ¢ in what follows, and therefore limit our attention
hereafter to this case, with the equicontinuity assumption.

We also need a ‘double subscript version’ of the Berry-Esseen theorem (e.g.,
Feller (1971), page 542):

LemMMA 2. (Berry-Esseen). For each n=1,2,---, let X, (k=1,---,n)

be iid. rv’s with EX,, =0, EX2 = o2, E|X,, =\, and let F, be the df
1

of the normalized sum n~:(X,,+ - - - +X,)/0, Then sup,|F,(x)— ®(x)| <

3\,0, n 1.
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We are now ready for the uniform convergence theorem (o(F) was defined in

3):
THEOREM 1. supy . gosup,|Pr{n3(T2 — 8)/0(F) < t} — ®(#)| - 0 as n — oo.

Proor. Take 8 = 0. By use of Polya’s device, it is sufficient to confine attention
to ¢ in a compact set J.

Write s,(¢, F) = n_%to(F) and ¢2(¢, F) = Varpy(X — s,). By the uniform con-
tinuity of ¢, 62— E¢? (uniformly, for FEF®and t € T) > (1 — y) Egy? > 0,50 that
is uniformly bounded away from zero for all large n. Writing u,(¢, F) =
- n%o,,' "\£(s,), and using Lemma 1, we can show that u, — ¢, likewise uniformly.

Now Pp(niT?/o(F) < 1} = PE{T? <s,} < Pp{Si_¥(X, — s,) < 0} =
Pe{n~107'S"_ [W(X, — s,) — Ap(s,)] < u,} < ®(u,) + 246, %12 (by Lemma 2
since the summands are bounded and have third absolute moments at most 8¢%) <
®(f) + for n sufficiently large (uniformly, for F € %° and ¢ € ), by the uniformity
properties noted above.

Similarly, P{n?T%/0(F) < t} > Pe{S¥(X; — s,) < 0} > ®(#) — ¢ uniformly.

We now extend this to the selection procedure setting. Suppose we have k
populations, sampled independently, each with possibly differing #-values but
otherwise identical df’s Fe%; 7;2 is Huber’s estimator of 6§, based on n observations
from population j; P(-) was defined in (1). We then have

0,

COROLLARY. suppegosup,]PF{n%(T}?, — 0, — T3, + 6,)/o(F) <t for all j <k}
— P(t))] > 0as n— .

PROOF. Take 8, = --- =6, =0 and write Z, = niT%/o(F), with df
F, (under F). We need to consider supgsup,|D(¢, F)| where D(¢, F) =
JEf=Yx + t) dF,(x) — [® ' (x + t) d®(x). But since F, = ® + o,(1) (uniformly
o(l), in F and ¢), likewise F¥~!=®*"! 4+ o (1), and therefore D(t, F) =
JO N (x+ 1) d(F, = B)(x) + 0,(1) = [[B(x) — F ()] dD“"}(x + 1) + 0,(1) = 0,(1).

REMARK. The F’s could vary from population to population so long as o(F)
remained the same in all populations; in particular, F can vary arbitrarily (in a
symmetric way) outside of an open interval containing [ —c, c].

3. Asymptotically optimal selection i)rocedures. Let T = {T,} be any (transla-
tion equivariant) sequence of location estimators, and let 7 also denote the
selection procedure based on 7. We suppose the subscripts are arranged so that
0, < :-- <84, Let 0, represent any 0 for which §, = 6,_, + A and 0, = 0, _,.
Then 0, is a lfc—i.e., infg PCS,(F, ) = PCS,(F, 6,). This is so since T forms a
stochastically ordered family w.r.t. , and a theorem of Alam and Rizvi (1967) then
implies 8, is a lfc (also noted by Ghosh, 1973). Hence, we can and do confine
attention to the parameter vector 0, hereafter.

Let Np.(T, 5, A) denote the smallest sample size n for which
infp ¢ ginfye s, PCS,(F, ) > P* when using the selection procedure 7. An asymp-
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totic formula for N(T, F, A) = N,«(T, {F}, A) is now established (it is actually
only needed at F° Huber’s least favorable F, in what follows):

LemMA 3. If T = {T,} is translation equivariant and if nfl(T,, —8)/e— N(O, 1)
under F as n— oo, then N(T, F, A) ~ d%0*/A? as A0 (where P(d) = P*, fixed).

Proor. Since ties can be ignored asymptotically, we have

7}2 Tkn
PCS,(F,0,) = Pp{n2—* <0  forall j

o(F)

T —0 -T2 +60+A A
_ 1 Ljn kn 1 .
—PF{n2 o (F) <n 2a(F) for all j}

= P{niA/a(F)} + o(1)
by a simpler (nonuniform) version of the corollary, and this has limit P(d) = P* iff
niA Jo(F)—d.
We now recall Huber’s minimax results, quoted in Section 1. We use (a) in
Theorem 2 (and Lemma 4) below and use (b) in Theorem 3. We first need:

LEMMA 4. Given € > 0, there exists A, such that for A < A,
Npe_o(T% F% A) < Npo_ (T° F° A) < Npu(TO, FO, A).

PROOF. Writing N(A) = N,.(T°, F° A), we can find A, so that N(4A,) is large
and PCSy . (F) > P[N(A)zA/o(F)] — e forall A< A, and all F € §° (by the
corollary). But o(F) < o, for all F eEF ° by (a) of Huber’s minimax theorem (see
Section 1), and P(- )T, also N(A)ZA/ 0y — d (Lemma 3). Therefore PCS,,\(F, 0,)
> P(N(A)ZA/ ay) — > P(d) — ¢ = P* — ¢ for A sufficiently small. Hence, this
N(A) > Np._(T°, F A), proving the second inequality (the first being trivial).

We are now ready for the final two theorems; the first establishes the (asymp-
totic) sample size formula for guaranteeing the PCS goal throughout ¥ ° when

using the selection procedure T, and the second confirms the (asymptotic) optimal-
ity of selection procedures based on Huber’s T° relative to others.

THEOREM 2. 1 < N(T°, F° A)/N(T° F° A) -1 as A|0, and N(T®, 9, A) ~
d?e{/A* as AO; moreover, a selection procedure based on Huber's estimator T° with
sample size N ~ d?s}/A? is asymptotically robust at ® € F°,

Here, as elsewhere, d is defined by P(d) = P* (see (1)); Bechhofer’s (1954) Table
I provides values of d (his table entries) for selected values of P* for k = 1(1)10

(t=1).
ProOF. Writingd = P ~'(P*) and d, = P ~'(P* — ¢), we have from Lemma 3:
Npe_ (T F°, A) ~ d%6}/A%,  Npu(T° FO, A) ~ d%3 /A2

Since P(-) is continuous, we can choose ¢ small enough for d2 — d? < {2/62, and
then A*(Np. — Np._,) < ¢ for small A. By Lemma 4, AX(Np._ (5 %) — Np._ (F®))
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< ¢ for A small. Replace P* by P* + ¢, and conclude that 0 < Np.(F %) — Np.(F°)
= 0(A~?) as A}0. But A’N,.(F°) — d’02, and the theorem follows.

THEOREM 3. If T = {T,} is translation equivariant, and if n%(T,, - 0)/o—>
N(0, 1) for some o when F = F°, then

N(T, 5°%4) _ o

— > 1
N(T% 5% A) o2

lim inf,

i.e., the selection procedure based on T° with N ~ d%?/A? is asymptotically most
economical for F°.

PrOOF. By Lemma 3, N(T, F° A) ~ d%?*/A%. Therefore N(T, F° A)
/N(T® F° A) > N(T, F° A)/N(T®, F° A) - /02, using Theorem 2, and this
is » 1 by (b) of Huber’s minimax theorem (Section 1).
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