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Let X;,- -, X, be a random sample from an unknown cdf F, let
Y15 * * * >V, be known real constants, and let Z; = min(X, y,), i =1, - - ,n. It
is required to estimate F on the basis of the observations Z,, - - - , Z,, when the

loss is squared error. We find a Bayes estimate of F when the prior distribution
of F is a process neutral to the right. This generalizes results of Susarla and Van
Ryzin who use a Dirichlet process prior. Two types of censoring are introduced
—the inclusive and exclusive types—and the class of maximum likelihood
estimates which thus generalize the product limit estimate of Kaplan and Meier
is exhibited. The modal estimate of F for a Dirichlet process prior is found and
related to work of Ramsey. In closing, an example illustrating the techniques is
given.

1. Introduction and summary. The problem of nonparametric estimation of a
distribution function based on a sample partially censored on the right may be
described as follows. We are given observations Z; = min(y;, X;) i=1,---,n
where the { y;} are known numbers, and the {X;} are a sample from a population
with unknown distribution function F. We are required to estimate F from the data
Z, 2,

This problem is encountered in many applied situations such as cancer research
[10], and the study of survival data [7] and of baboons descending trees [11]. The
basic paper of Kaplan and Meier [7] considers several nonparametric estimates of
F and shows that one of them, the product limit estimate, is in fact a maximum
likelihood estimate. These estimates have received considerable attention in recent
years as is evidenced by the references in the paper of Breslow and Crowley [2]
who treat large sample properties.

A recent paper of Susarla and Van Ryzin [10] contains a treatment of the
problem from a Bayesian point of view. Using the Dirichlet process as a prior
distribution for the unknown distribution function F, these authors obtain the
mean of the posterior distribution of F given the data as an estimate of F. The
main objective of the present paper is to extend their results to a more general class
of prior distributions for F, namely, the processes neutral to the right introduced by
Doksum [3]. The general theory of these processes and their use in the estimation
of F given some right censored data is presented in Section 2. The formulas
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expressing the posterior expectation of F given the data simplify for the subclass of
homogeneous processes neutral to the right, and two such processes are considered
in detail in Section 3, the gamma process, and a simple homogeneous process. In a
recent announcement by Dykstra and Laud [4], a useful generalization of the
gamma process is introduced for the problem of estimating the hazard function,
—log(l — F).

Since the Dirichlet process is a nonhomogeneous process neutral to the right, the
estimates of Susarla and Van Ryzin may be derived from the general theory of
Section 2. The details of this derivation are presented in Section 4.

In problems of this sort where the prior distribution of F may give positive
probability to the event that F have a jump at a fixed point, it is useful to
generalize earlier treatments of this problem to allow for two types of censoring
information to be given to the statistician. In addition to information of the type
X; > y;, as described in the introductory paragraph and called “inclusive censor-
ing” in this paper, we also consider “exclusive censoring” where the information
relayed to the statistician is of the type X; > y,. This latter type is the customary
way of defining censoring and is the only one considered in Kaplan and Meier [7]
and in Susarla and Van Ryzin [10].

There is a natural generalization of the product limit estimate to the two types of
censoring. It arises in Sections 3 and 4 as a limit of our estimates as the prior
sample size tends to zero. In Section 3, it is indicated that this estimate is still a
maximum likelihood estimate when there are two types of censoring.

In an apparently unrelated paper by Ramsey [9] on Bayesian bioassay, problems
are treated that are quite close to those considered here. Ramsey uses essentially
the Dirichlet process as a prior distribution of the response curve, F, and obtains
the modal estimate of F by maximizing the finite dimensional joint density (with
respect to a suitable measure) of the posterior distribution. The bioassay problem
may be considered as a censored sampling problem in which bioassay “successes”
are observations censored on the left, and “failures” are observations censored on
the right. Methods of this paper do not extend to problems in which observations
may be either right or left censored. Yet the techniques Ramsey develops may be
used when specialized to the case where all observations are failures to derive
estimates for the problems considered here. We show in Section 6 that for the case
when all observations are failures Ramsey’s modal estimate has a simple closed
form essentially given by the mean estimate of Susarla and Van Ryzin.

In the final section, the simple numerical example of Kaplan and Meier is
reworked using different prior distributions in order to make a comparison of the
estimates.

2. Bayesian estimation with priors neutral to the right. We review the use of
processes neutral to the right as priors for nonparametric estimation problems. The
posterior distribution of F given a censored sample is presented in Theorems 3 and
4, and the Bayes estimate is given in the corollary to Theorem 4.
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2.1. Basic properties of processes neutral to the right. A random distribution
function F(¢) on the real line, R, is defined to be a stochastic process on R such
that (a) F(¢) is nondecreasing a.s., (b) F(¢) is right-continuous a.s., (c) lim,_,  F(¢)
= 0 a.s., and (d) lim, , F(¢) = 1 a.s. K. Doksum [3] has introduced a special class
of random distribution functions, called processes neutral to the right, and has
indicated the feasibility of their use in Bayesian nonparametric problems. Loosely
speaking, a random distribution function F() on the real line is neutral to the right
if for every ¢, and ¢, with ¢, < ¢,

@1 :_—f;%
1
that is, if the proportion of mass F(¢) assigns to the subinterval (z,, o) of the
interval (¢,, o) is independent of what F(f) does to the left of #,.
If F is neutral to the right, then the process

(22) Y, = —log(l — F(1))
is a nondecreasing process with independent increments. For the purposes of this

paper, it is simpler to define a process neutral to the right through this property of
the related process Y,.

is independent of {F(r) : ¢ < t};

DEFINITION 1. A process F(¢) is said to be a random distribution function
neutral to the right if it can be written in the form

(2.3) F(y=1—-e"

where Y, is a process with independent increments such that (2) Y, is nondecreasing
a.s., (b) Y, is right continuous a.s., (¢) lim,_, .Y, = O as,, and (d) lim,_,, .Y, = o
a.s.

We allow Y, = + oo with positive probability for finite z. The usual rules (e.g.
o0 + ¢ = oo for finite ¢) apply.

Thus, in studying processes neutral to the right we may use the theory of Lévy [8]
on a.s. nondecreasing processes with independent increments. Such a process Y,,
described in Definition 1, has at most countably many fixed points of discontinu-
ity, call them ¢,, t,, - - - in some order. Let S, S,, - - - represent the random
heights of the jumps in Y, at ¢, t,,- - - respectively. Then, S,, S,,- - - are
independent random variables. The {;} are also independent of the rest of the
process with the jumps removed.

(24) Z,=Y, - szjI[tj, oo)(t)’

where I, represents the indicator function of the set B. The process Z, has
independent increments and is nondecreasing a.s. with lim, ,_,Z =0 as. In
addition, Z, has no fixed points of discontinuity and so must have an infinitely
divisible distribution with Lévy formula for the log of the moment generating
function

(2:5) log &e % = —0b(¢) + [F(e” % — 1)dN(z)
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where b is nondecreasing and continuous with b(¢f) — 0 as ¢ — — o0, and where N,
is a continuous Lévy measure; that is,

() for every Borel set B, N(B) is continuous and nondecreasing,
(ii) for every real ¢, N,(-) is a measure on the Borel subsets of (0, 0),
(i) [Cz(1 + 2)""dN(z2) >0 as t— — oo.

The main result of Doksum [3] for processes neutral to the right is that if
X, -+ -,X,1s a sample from F and if F is neutral to the right, then the posterior
distribution of F given the sample is neutral to the right also. In the following
theorem we describe the posterior distribution for a sample of size one. The general
case of arbitrary sample size may then be treated by a repeated application of the
theorem. :

In the following theorems, Y, is always related to F, by (2.2) and (2.3). The
process Y,” defined by

(2.6) Y,” =lim,, Y,

also has independent increments, but is left-continuous a.s. The increment Y, —
Y,” represents the jump at ¢. It is positive with positive probability if and only if ¢
is a fixed point of discontinuity of the process.

THEOREM 1 (Doksum). Let F be a random distribution function neutral to the
right, and let X be a sample of size one from F. Then, the posterior distribution of F
given X = x is neutral to. the right. The posterior distribution of an increment in Y, to
the right of x is the same as the prior distribution. The posterior distribution of an
increment in Y, to the left of x may be found by multiplying the prior density of the
increment by e™” and renormalizing. Thus, if an increment Y, — Y, with s <t < x
has prior density dG(y), the posterior density given X = x is
(2.7) edG(y)/ [§e7dG().

To complete the description of the posterior distribution, we need to know what
happens to the increment S = Y, — Y,7, the jump at x. Generally, Y, will have a
fixed point of discontinuity at x in the posterior whether or not there was one in
the prior. However, there is no simple form for the posterior distribution, call it
H (s), of the jump there. A complete description of H,(s) may be found in
Ferguson [6], page 624. In some special cases H, may easily be evaluated. In the
case where the process Y, is homogeneous (to be treated in Section 3), H, is easily
written down in terms of the Lévy measure, N,. The other simple case occurs when
x is a prior fixed point of discontinuity.

THEOREM 2. Under the hypotheses of Theorem 1, if x is a prior fixed point of
discontinuity of F, then the posterior density of the jump in Y, at x given X = x may
be found by multiplying the prior density of the jump by (1 — e™°) and renormalizing.
Thus,

(2:8) dH(s) = (1 — e7")dG(s)/[5°(1 = e™*)dG (s)
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where G, is the prior distribution of the jump at x, and H, is the posterior distribution
of the jump at x given X = x.

2.2. Posterior distribution given a censored sample. To complete the description
of the posterior distribution of F for application to the censored sampling problem,
we present a theorem for a censored sample of size one, and consider two cases,
when the censoring information is exclusive, X > x, and when it is inclusive,
X > x. The posterior distribution of F given a censored sample turns out to be
simpler than that given an uncensored sample. In fact, the posterior distribution of
F is the same as that of Theorem 1 except that the jump at the point x does not
have to be treated differently, so there is no need for an analogue of Theorem 2.
The increment at x is treated as if it were to the left of x for exclusive censoring,
and to the right of x for inclusive censoring. The only difference between the two
types of censoring occurs when x is a prior fixed point of discontinuity.

THEOREM 3. Let F be a random distribution function neutral to the right, let X be
a sample of size one from F, and let x be a real number.

(a) The posterior distribution of F given X > x is neutral to the right; the posterior
distribution of an increment to the right of x is the same as the prior distribution; the
posterior distribution of an increment to the left of or including x is found by
multiplying the prior density by e ™ and renormalizing as in (2.7).

(b) The posterior distribution of F given X > x is neutral to the right; the posterior
distribution of an increment to the right of or including x is the same as the prior
distribution; the posterior distribution of an increment to the left of x is found by
multiplying the prior density by e ™ and renormalizing as in (2.7).

PrOOF. Lett <t, < - <t, be arbitrary real numbers one of which is x, say
L=x.let W,=Y, -7, fori=0,-:-,j— 2 (where f, = — oo so that Y, =
0, W, =Y —-Y ,W=Y-Y ,andfori=j+1L---,n W=Y, -
Y, . Under the prior distribution, Wy, W), - -, W, are independent random

variables with joint density, say
(29) fWo,-~-, W,,(WO’ c,w,) = H7=ofm(wi)

with respect to some convenient product measure. Given F, the probability that
X, >xis

(2.10) 1 — F(x) = e Y= e 2%,

Since the posterior density of W, - - -, W, given X > x is proportional to the
product of (2.9) and (2.10),

(2.11) fWo,---,W,,(Ww cee WX >x)a(Hj::=0e_wa,(wi))(H7=j+lfW,(wi))’

we see that the W, are independent for this posterior distribution as well. This
shows that the posterior distribution of F is neutral to the right. Furthermore, the
distribution of increments to the right of x are unchanged, while the distribution of
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increments to the left of and including x are changed by multiplying the prior
densities by e ™" and renormalizing. Similarly, given F, the probability that X > x
is

(2.12) 1-F (x)=e % = %'V,

and the posterior distribution of W, - - -, W,, given X > x, is

(2~13) fW0,~-~, m(Wo’ L wlX > x)a(HJz:——-(l)e_w'fW,(Wi))(H?=ij,(Wi))'
Part (b) of the theorem clearly follows from this.

2.3. The general case. We now combine Theorems 1, 2, and 3 for a sample of
size n. We consider later the problem of Bayesian estimation of the distribution
function under weighted squared error loss. The Bayes estimate is then the
expected value of the distribution function, which, when the prior is neutral to the
right, reduces to the problem of evaluating the moment generating function of Y, at
the point 1.

(2.14) EF(t)=1—-&e '=1- M[(1)
where the moment generating function (MGF) is defined as
(2.15) M) = &e Y.

(Note the minus sign!) Therefore, we state the results in Theorem 4 below in terms
of the posterior MGF.

We assume the observational data has three forms, m; “real” observations
Xy=xp, X, = X, My “exclusive” censorings X, o1 > X, 1150 s Xy i,
> Xpn, +myp and my “inclusive” censorings X, 4w 1 = X bmyats* * * s Xon, 4yt m,
> Xy 4 my,+m, Where m; + my + my = n, the sample size. To compress the data
even further, we introduce the following notation.

Let u, - -, u, be the distinct values among x,,- - -, x,, ordered so that
U <uy < --- <u.Letd,, -, denote the number of “real” observations at
uy, * + -, u, respectively, let A, - - - , A, denote the number of exclusive censorings
at u;, - -+, u respectively, and let p,, - - -, . denote the number of inclusive
censorings at u,, - - - , u, respectively, so that 3%, = m,, T\, = m,, and Xk, =
m;. We shall refer to the vectors u, 8, A, p as the data.

In the following theorem,

(2.16) hj = 2]1‘(=j+l(8i + A+ W)

denotes the number of the x; greater than u;, and ji(#) denotes the number of ; less
than or equal to . Also, we use M, (8) to denote the MGF of Y,,

(2.17) M, (8) = lim, ,,M,(6).

G,(s) denotes the prior distribution of the jump in Y, at », and H,(s) denotes the
posterior distribution of the jump in Y, at u, given X = u for one observation.
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THEOREM 4. Let F be a random distribution function neutral to the right, and let
X\, -, X, be a sample of size n from F, yielding data w, 8, A, p. Then the posterior
distribution of F given the data is neutral to the right, and Y, has posterior MGF

M0+ h,
(2.18)  M,(0|data) = MO+ hyo)

M,(hyr)
o M; (0 +h_) C(0+h+N,08) M (k)
N Ty G+ N8) M0+ R [

where, if u is a prior fixed point of discontinuity of Y,,
(2.19) c(a, B) = [Fe (1 = e~*)PdG,(s),

while, if u is not a prior fixed point of discontinuity of Y, ,

(2.20) Cla, B) = [Pe (1 — e )P 'dH (s) if B >1
=1 if B=0.

Proor. That the posterior distribution of F is neutral to the right given the data
follows immediately from Theorems 1 and 3. Consider therefore a given value of ¢.
The posterior MGF of Y, is the product of the posterior MGF’s of Y,, Y, —
Yporn Y, —Y,, ,Y =Y, Theposterior MGF of Y, — Y,  is the prod-
uct of the posterior MGF of Y,” — Y,  and the posterior MGF of the jump at u,
Y, — Y, . The increment Y,” — Y, has h;_, observations to the right of it, so
that the posterior distribution is obtained from the prior by multiping the prior
density by e ™”%-' and renormalizing. In terms of the prior MGF of Y, - Y, ,

which is M,”(9)/ M, _(9), this gives

M, (ho) M0+ k)

(2.21) M, (0+h_) M (h_)

as the posterior MGF. The point , has A; observations to the right of it, A; exclusive
censored observations, and §; real observations there. If there is a prior fixed point
of discontinuity at u;, the posterior distribution of the jump in Y, at u; is obtained
by multiplying the prior density by e ~**»*(1 — ¢~*)% and renormalizing. In this
case, the posterior MGF of the jump in Y, at u; is therefore

(222)  [Fe A1 — e7)"dG, (s) / J&e™ BIM(1 — e74)*dG, (s)
=C,(0+h+XN,8)/C,(h + N, 8).

On the other hand, if  is not a prior fixed point of discontinuity of Y,, then it

takes one “real” observation at u, to generate a fixed point of discontinuity there,

having distribution function H,(s). The remaining §, — 1 “real” observations at
may be treated as in the previous case to give a posterior MGF of the jump in Y, at
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u; as

(223)  [FemC*htN(1 — =) dH, (s) / [Re=th+Ms(1 — =) 4H, (s)
= Cu,(ﬂ + h+ A, 81’)/Cu,(hi + }‘i’ 81)~
If §; = 0, the posterior jump in Y, at u, is zero, so the MGF is identically one,

which is also represented by C,(8 + h; + A;, 8)/C,(h; + A;, §,). Finally the MGF
of Y, - Y,  is, analogous to (2.21)

Ui
Muj(:)(hj(')) ) M6 + k)
M, (0 + 1) M(h)

Combining the terms (2.21), (2.22), (2.23), and (2.24) into a single product, and
using M _ , = 1, yields the product stated in the theorem.

We are ready now to exhibit the posterior expected value of F(¢) given the data.
For this it is convenient to reduce the form of the expected value further with the
introduction of the following notation. Let

(2.24)

(2.25) R,(h) = M,(h + 1)/ M,(h)
and let

(2.26) rfa, B) = Cla + 1, B)/Ca, B).
Finally, we let S(¢) denote the survival function

(2.27) S(t)=1- F(r)

and give the formula for the posterior expectation of S(#) from which the posterior
expectation of F(¢) may be computed if needed.

COROLLARY. Under the assumptions of Theorem 4,
(2.28) &(S(t)|data) = M,(1|data)

(A
= Rz(hj(t))HJz:(i)l%%J‘lr uf(hi + A, 6).

The proof is by direct substitution.

3. The homogeneous process neutral to the right. In the applications of the
results of the previous section to specific processes neutral to the right, difficulties
are encountered in evaluating H,(s), the posterior distribution of a jump in Y, at a
point u at which a single observation fell. This function is needed in order to
compute C,(a, B) of (2.20). In one rather general case, H,(s) is easy to evaluate—
the case where Y, is a homogeneous process with independent increments.

DEFINITION 2. A random distribution function F neutral to the right is said to
be homogeneous if the independent increment process ¥, = — log(l — F(#)) has
Lévy function independent of ¢; that is, if the MGF of ¥, has the form

3.1 M) = e IFE"=DaN()
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where y(¢) is continuous nondecreasing, lim,  _y(¢) =0, lim,_,, ,v(?) = + oo,
and where N is any measure on (0, c0) such that

(3.2) [ez(1 + z)7'dN(z) < 0.

Thus, for the homogeneous process, there are no (prior) fixed points of discon-
tinuity, there is no nonrandom part (b = 0), and the Lévy measure has the simple
form N,(*) = Y())N(").

The general form of H,(s) for homogeneous processes neutral to the right is
given in the following theorem without proof. It is stated explicitly in Ferguson [6]
and may be derived from the computations of Example 4.1 of Doksum [3]. It is a
striking fact that H,(s) is independent of u and y and depends only on N.

THEOREM 5. Let F be a random distribution function neutral to the right with
MGEF of Y, of the form (3.1) with y(¢) continuous. Let X be a sample of size one from
F. The posterior distribution, given X = x, of the jump in Y, at x is independent of x
and v, and is given by
(33) H(s) = [3(1 = e=)aN(z) / [2(1 — e=*)dN(z).

That the denominator of (3.3) exists follows from (3.2). From this theorem we see
that the posterior expected value of the survival function, S(¢) = 1 — F(¢), can be
written very simply. We shall evaluate this expectation in the next two sections for
two particular homogeneous processes. For this we introduce the function
(34) o(a, B, N) = [Fe (1 = e™*)PaN(z)  for B >1

=1 for B=0.

All the functions used in (2.28) to form the posterior expected value, & (S(#)|data),
can be written in terms of ¢ as follows. From Theorem 5 and (2.20)

(3.5) Ca, B) = ¢(a, B, N)/9(0, 1, N)  for B > 1
=1 for B =0;

from (2.25) and (3.1),

(3.6) R(h) = e~ Y0k LN,

and from (2.26) and (3.5)

(3.7 | re, B) = ¢(a + 1, 8, N)/p(a, B, N).

3.1. The gamma process. When the independent increments of the process Y,
have gamma distributions, we say Y, is a gamma process. In this case, the MGF of
Y, may be written in any of the forms

T [+

(¢t
(3.8) M/(8) = mfoe—ﬂye—wyw)—n@

=( T )‘/(t)
T+ 6

= oY S¥(e ¥ ~Ne "z dz
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Thus, Y, has a gamma distribution with shape parameter y(¢) and reciprocal scale
or intensity parameter 7, independent of t. We assume y(¢) is continuous, though
the formulas could be worked out with a little extra complexity in the discontinu-
ous case. The Lévy measure has the form

(3.9) dN(z) = e" "z dz
so that the function ¢(a, B, N) may be written
(3.10) o(a, B, N) = [Pe~%(1 — e *)Pe~22" 4z,

Here the function N is determined by the parameter 7, which may be combined
with the parameter a. Thus for the gamma case we may write

(3.11) oo, B) = [Pe~ (1 — e *)Pz7d;  for B> 1

=1 for B =0.
so that p(a, B, N) = gs(a + 7, 8). From (3.8) with § = 1, we see
(3.12) Pla, 1) = log( e a+ 1).

Furthermore, ¢(a, 8) may be found in terms of ¢g(a, 1) for integral 8 > 1 by
expanding (1 — e~ %)~ ! in the integrand of (3.11) in a binomial series,

(3.13) wola §) = 2423( P 7 )= 1) log L),
i a+i
Finally, R,(h) of (3.6) can be simplified with the use of (3.12) as
h+7 Y
(3.14) &) = (55 )

THEOREM 6. In the sampling scheme of subsection 2.3, if the prior distribution of
Y, is the homogeneous gamma process with shape function y(t), and intensity 7, the
posterior expectation of S(t) is

By + 7 )W)

(3.15)  6(S(f)|data) = ( P

U (h"‘l + T)(hi +7+ 1) ve) ‘PG(hi + }‘i +7+1, 81')
TN+ T+ D+ 1) 9ol + A, + 17,0,

The proof is by direct substitution.

REMARK 1. One of the useful features of the Dirichlet process D (a) as a prior
distribution is that there is a fairly reasonable interpretation of a(R) as the “prior
sample size” and of Fy(¢) = a(t)/a(R) as the prior guess at the shape of F(z). We
would like to be able to find a similar interpretation for the processes neutral to the
right. For the gamma process, the prior guess at the shape of S() is

&8(1) = M(1) = (T: 1)7(0
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If our prior guess at the shape of S(7) is given by S,(¢), then we would choose y and
T to satisfy

T v(?)
(3.16) (55)" =5
for all ¢, which would determine () for fixed 7 to be
(3.17) (1) = log(S,(1))/log(7/ (7 + 1)).

Hopefully, the remaining parameter 7 reflects our prior “strength of belief” in some
sense. This it seems to do, but not with the simple interpretation as “prior sample
size” as we have with the Dirichlet process.

To see what effect the choice of T has, consider a single uncensored observation
and a gamma process prior with y(¢) satisfying (3.17). From (3.15) we find

& (S(H|X = x)= Sy for 1<x
=Sy(1)So(x) ™~ U(r) for t>x

where

I(7) =log((r + 2)/ (v + 1)) /log((r + 1)/7).
The size of the jump at x is therefore
(3.18) So(x)' (1 = I(7)).
The function / is monotone in 7 with /(1) >0 as 71— 0, and /(1) > 1 as 7 — o0}
therefore, the size of the jump at x is monotone in 7 and tends to one as 7 — 0, and
to zero as T — co. For small values of 7, one is less sure of the prior shape and more
willing to change the estimate of shape on the basis of a sample, than for large
values of 7. So 7 does measure prior “strength of belief” in some sense.

Unlike the Dirichlet process prior, for which the posterior expected size of the
jump at an observation does not depend on where the observation occurs, the size
of the jump at x depends on x through Sy(x) as is seen in (3.18). This makes it
difficult to determine how to relate 7 to “prior sample size.” One feature of the
posterior jump that is independent of the position of the observation x is the
proportion of the mass in the interval [x, co) that goes into the jump at x, namely
1 — I(7). For survival type data, it seems preferable to have behavior of this sort.

REMARK 2. Another attractive property of the Dirichlet process prior is that as
the prior sample size, a(R), tends to zero, the posterior estimate of F(¢) tends to the
maximum likelihood estimate (MLE) no matter what the prior guess at the shape
may be. This is well known when there are no censored observations and the MLE
is the sample distribution function. We may hope that the corresponding property
would hold for the gamma process—that as the “strength of belief” parameter 7
tends to zero, the posterior expectation of F(f) would converge to the MLE no
matter what value is chosen for Fy(7), provided it is fixed. After all, no strength of
belief in one prior distribution should be the same as no strength of belief in
another.
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Unfortunately, this is not the case even when there is no censoring. As an
example, let us suppose that we have n uncensored observations X,,: - -, X,
taking on the distinct values u; < u, < - - - <u, in some order. Then in (3.15) we
have A, =0, §, =1 and ;= n — i. Now if Sy(f) =1 — Fy(?) is held fixed and
positive for all ¢, if ¥ is chosen according to (3.17), and if 7 tends to zero, we find
that all terms not involving ¢, tend to one, so that

(19) 601~ Fpldata) > KT s

__ %(m 1)  _ log((n + 1)/n) .
ps(n = j(1), 1) log((n —j(2) + 1)/ (n — j(1)))~

This is not the sample distribution function, but at least it is independent of Fi,
Furthermore, the size of the jump at an observation depends only on the rank
order of the observation and not otherwise on its value. For example, if there are
two observations, x; < x,, the larger observation is given weight log(2)/log 2 =
5850, and the smaller observation is given weight .4150, so (3.19) reduces to the
estimate

(3.20) E(t) = 41501}, o)(?) + 58501, o)(?).
The weights for a few other values of »n are given in the accompanying table. It is
seen that the weights given to the lowest n — 1 observations are approximately

equal and that the largest observation gets weight between 40.9% to 44.3% greater
than the others.

3.2. A simple homogeneous process. One is led to search for homogeneous
processes that behave like the Dirichlet in regard to Remark 2, for which the
posterior expectation of F converges to the sample distribution function as some
“strength of belief” parameter tends to zero. Of the various possibilities, the
following seems to be the simplest.

Let Y, be the homogeneous process with MGF of the form

(321) M) = XD FFE =De (=) s

TABLE 1
Table of jumps in (3.19) at the observations for various sample sizes n

04150 0.5850

0.2905 0.2945 0.4150

0.2243 0.2253 0.2284 0.3219

0.1829 0.1833 0.1841 0.1866 0.2630

0.1545 0.1547 0.1550 0.1557 0.1578 0.2224

0.1338 0.1338 0.1340 0.1342 0.1348 0.1367 0.1926

0.1179 0.1180 0.1181 0.1182 0.1184 0.1189 0.1206 0.1699

0.1055 0.1055 0.1055 0.1056 0.1057 0.1059 0.1064 0.1078 0.1520

0.0954 0.0954 0.0954 0.0955 0.0955 0.0956 0.0958 0.0962 0.0976 0.1375

O VW NN WNS

—
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where y is continuous nondecreasing, and 7 > 0 is a parameter whose value,
hopefully, will reflect “strength of belief.” Since 7 is no longer the reciprocal of the
scale parameter for Y,, the interpretation of 7 is more nebulous. The Lévy measure
has the form
(3.22) dN(z) = e"(1 — e~%)"'dz
which is simply the Lévy measure for the gamma process with z ™! replaced by
(1—-e 5L

From (3.4) we have for 8 > 1
(3.23) ¢(a, B, N) = [Fe~+D7(1 — e~%)P"1dz

=T(a+ 1)I(B)/T(a+ B+ 1)

a formula for the beta function. In particular, for 8 = 1

(3.24) ola, LN)=T(a+7)/T(a+7+1)=1/(a+ 7)
so that from (3.6)
(3.25) R/(h) = e~ YO/ th+),

THEOREM 7. Under the sampling scheme of sébsection 2.3, if the prior distribution
of Y, is the homogeneous process with MGF (3.21) with vy continuous, the posterior
expectation of S(t) = 1 — F(¥) is

(326)  &(S(1)|data) = e~/ (her ")

PO, | @Y1 =B/ (14 ) +7)) _hFAtT
i=1 h+AN+6+rT

The proof is by direct substitution of (3.23) and (3.25) into (2.28).

REMARK 3. If we fix the prior guess at S to be S, so that
(3.27) E(S(0) = M(1) = e77/" =1 = Fy(1) = S,(1)
then y(r) = — 7 log Sy(¢). Therefore, we may put (3.26) in an alternate form

(3.28) &(S(¢)|data) = So(t)’/(’&m’”)

, h+N+rT
T ) —r(b=h)/ (A +r)(h+r)f T " N
THZ1 | Solas) (h,. +AN+0+ 'T)

If So(¢) > O for all ¢, we have as 1 — 0

W R EA
PAC) R S S

(3.29) &(S(t)|data) — [, P for ¢ <u,
Solt)_ e bt A for t>u,

TSg(w) T h N+ 8,

where (h, + A)/(h + A + 8,) is replaced by 1 if it is 0/0. This is a maximum
likelihood estimate of S(f) as is seen in the next remark. In particular, when there



176 THOMAS S. FERGUSON AND ESWAR G. PHADIA

are no censored observations (\, = 0, &, + §; = h;_,), this reduces to the sample
distribution function.

To investigate the effect of the choice of 7, we specialize (3.28) to a single
uncensored observation at x:

(330)  &(S(D|X = x) = S(r)/*7 for t<x

= S,(£)Sp(x) ™+ 1 —  for t>x.
For large values of , this is close to Sy(), while for small values of 7, it is close to
the function with a single jump of size 1 at x. Thus, as in the gamma process case, 7
measures prior “strength of belief”; but again it is hard to calibrate 7 in terms of
“prior sample size” because of the size of the jump
1

1+

is still strongly affected by the value of Sy(x). It is easily seen that for all
homogeneous processes neutral to the right, the posterior jump size depends on
So(x) and tends to zero as Sy(x) tends to zero.

(3.31) Sy(x)/ A+

REMARK 4. For the situation in which all censorings are exclusive censorings,
Kaplan and Meier [7] have shown that the product limit estimate is a maximum
likelihood estimate. By an application of the lemma in Section 5 one can extend
their results to two types of censoring and obtain the maximum likelihood estimate
of S(#) which may be written as

A+ h
U8, + N+ A
where, as before, &, = %_,, (8, + \; + ;) denotes the number of observations to
the right of ;.

Two conventions are necessary for this to represent the class of all maximum
likelihood estimates. First, if A, = 0 and §, = 0, so that

NtR 0
& +A+h O
then this term is to be taken to represent an arbitrary number in [0, 1], the MLE
being not unique in this case. Second, if the mass above %

A+ A
— k 1 1
(3.34) m, = H"=‘_—8A TN+ A

(3.32) S(¢) = VO

(3.33)

>0,

then again the MLE is not unique, and the mass m, can be distributed arbitrarily in
(14, 00) without changing the likelihood. Thus for # > u,, if S(?) in (3.32) is positive
(= my), we assume that it represents an arbitrary number in [0, m;], subject of
course to the requirement that S be nonincreasing.
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4. Application to a result of Susarla and Van Ryzin. As an example of the type
of computations involved in the application of (2.24) to nonhomogeneous
processes, we consider the Dirichlet process and derive the estimate of Susarla and
Van Ryzin [10]. Let « be a nondecreasing right-continuous function on R such that
lim,,_ a(f) =0 and lim,_,, ca(f) = a(R) < 0. As pointed out in Ferguson [6],
the Dirichlet process, % (), can be defined as the random distribution function
neutral to the right for which the MGF of Y, = — log(1 — F(?)) has the forms

_ r(a(R)) o0, —(a(R)—a(t)+8)y(1 _ ,—y\x()—1
@D MO = FaTa® —am) 1 e
_ T(a(R)L(a(®) — a(1) + )
F(a(R) - a())T(a(R) + 9)

= o SEE - 1aN,(2)

where the Lévy measure N,(z) is given by
e—a(IR)z(ea(t)z _
z(1 —e7™%)
provided 0 < a(?) < a(R). Let us denote the distribution with MGF (4.1) as
I (a(t), a(R) — a(2)). Note that for s < ¢, ¥, — ¥, € IH(a(t) — a(s), a(R) — a(?)).
To be able to apply the corollary of Theorem 4, we need to evaluate the
functions R and r. It is easy to compute R (%) from (2.25) and (4.1)
a(R) — a(t) + A
aR)+hr
To evaluate r,(a, b), we consider two cases. First, suppose that u is a prior fixed
point of discontinuity of Y,, so that » is a point of discontinuity of a. If A(u)

denotes the mass at u, i.e., A(u) = a(u) — a~(u), then the prior distribution of the
jump Y, — Y, is 3(A(u), a(R) — a(u)). From (2.19) and (4.1)

I'(a(R) — a(u) + A(u))T(A(u) + b)T(a(R) — a(u) + a)
IF(A(u))T'(a(R) — a(u))T(«(R) — a(u) + A(u) + a + b)’

(4.2) dN/(z) = D dz,

(4.3) R,(h) =

4.4 C(a, b) =

so that

a(R) — a(u) + a

a(R) — a(u) + A(u) + a+ b

Next, consider the case when u is not a prior fixed point of discontinuity of Y,. It
is known from the general theory of Dirichlet processes that the posterior distribu-
tion of F given X = u is a Dirichlet process with new parameter a,(f) = a(f) +
I, «)(?). Therefore, the posterior distribution of the jump in Y, at u given X = u is
X1, a(R) — a(u)). In evaluating (2.20), we arrive at formula (4.4) with A(u) = 0,
even in the case b = 0. Consequently, (4.5) is valid in all cases if A(u) is defined, as
it should be, to be zero if u is a point of continuity of a.

The corollary to Theorem 4 then leads immediately to the following theorem.

(4.5) r(a, b) =
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THEOREM 8. Under the sampling scheme of subsection 2.3, if the prior distribution
of F is the Dirichlet process, °D (), then the posterior expectation of S(t) is

(R) — a(?) + Ay,
a(R) + n

(a(R) — a™(u) + h_)(a(R) — a(u) + B + \)
(a(R) — a(u) + h)(a(R) — a™(u) + b+ A, +8)

(46) &(S(1)|data) = =

5170}

A data point #; is a censoring point if A, > 0 or g, > 0. If #; is not a censoring
point, the corresponding factor in the term on the right of (4.6) is identically one,
since A, = 0 and 4,_, = h;, + §,. Therefore the product in (4.6) may be restricted to
censoring points. .

This is a version of a formula derived by Susarla and Van Ryzin [10]. The
following differences should be noted.

1. In this paper it is assumed that the censoring points are given constants,
whereas in [10] the censoring points are allowed to be random variables, chosen
independent and identically distributed according to some known distribution,
independently of the observations from F. Thus, their model fits some applications,
such as the cancer study, mentioned in the introduction, very well. Here we take
the point of view of the Bayesian who looks at the observations as information.
This allows greater freedom. For example, this allows treatment of sequential
problems in which future censoring points are chosen depending on past data.

2. In [10] all censoring was restricted to be exclusive censoring. Although this is
a minor mathematical detail, generality is gained in our formulation without
increased complexity of the formulas. Thus, the formula of Susarla and Van Ryzin
is really (4.6) with p =0, which is really the same as h,_, = h; + §; + A; for
Jj=1---,n

5. Modal estimation with Dirichlet process priors. In the problem of estimating
a potency curve in a bioassay model, Ramsey [9] considers the modal estimates
with Dirichlet process priors. The modal estimate of F for the problem of this
paper can be reduced to Ramsey’s estimate when the prior is a Dirichlet process
because of the following considerations. All “real” observations, X; = x;, may be
taken care of by “updating” the Dirichlet process prior to the posterior Dirichlet
process. The remaining censored observations may be considered as bioassa?
“failures” with levels at the censoring points. Thus, the application of Ramsey’
formulas when all observations are failures and the Dirichlet process prior i
already updated by the real observations, gives the modal estimate of F for our
problem.

However, in the bioassay problem Ramsey considers, there is no closed form
solution for the modal estimates. Successive approximation is required in the
general case. We see below that when all observations are failures, Ramsey’s
estimates can be written in a simple closed form. In particular, when applied to our

\
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problem, the modal estimate turns out to be the same as the mean estimate, (4.6).

Here, unlike the previous sections, the generality gained in allowing two types of
censoring is paid for in greatly increased complexity of bothersome details in both
statement and proof of the theorem. Therefore, for this theorem, we restrict
consideration to exclusive censoring as is done in [7] and [10].

There are analytical difficulties in defining the mode of an infinite-dimensional
distribution. We avoid these difficulties by restricting attention to finite-dimen-
sional subsets of the variables. Let #,, - - - , ¢, be arbitrary points; we hope to
compute the mode of the joint distribution of (F(z,), - - -, F(¢,)). This introduces a
new difficulty, namely, that the modal value ﬁ(t,.) of F(t) may depend on
t, -+ -, t. After all, the vector mode of a multidimensional distribution need not
be the same as the vector of modes of the marginal distributions. We shall see
below that the modal value ﬁ(ti) does not depend on ¢#,, - - -, ¢, provided that all
censoring points are included in ¢, - - -, ¢, (more precisely, provided ¢, - - , ¢,
contains all  for which A, > 0). This strong stability of the modal values permits
us to define the modal estimate of F(f) as the modal value of F(¢) in
(F(1), F(t),- - -, F(t)) when ¢, - - - , ¢, contains all censoring points.

Therefore, let ¢ be arbitrary, and let ¢}, - -, ¢ be arbitrary distinct points
containing ¢ and all censoring points, and suppose that ¢#,, - - - , ¢, are ordered in
increasing order. We assume that F has a Dirichlet process prior with parameter a.
In particular, the vector

(5-1) (Pva’ T ’Pr+]) = (F(tl)’ F(t2) - F(tl)’ R S F(t,))

has a finite dimensional Dirichlet distribution with parameters (B, 8 - * * , B,4+1)s

where B, = a(t) — a(t;,_,) for i=1,---,r+1 with a(t)) =0 and a(s,,,) =

a(R). We assume for simplicity that 8, > 0 for i = 1,- - -, r + 1. This is equiv-

alent to the assumption that a gives positive mass to every open interval.
Following Ramsey [9], we take, for convenience of analysis and interpretation,

the density of the vector (p,, - - -, p,) with respect to the measure
I \dp;
(5.2) dy = 1%
;1P
where p, ., = 1 — 3] p,, over the simplex
S, ={(p,--+,p):p>0fori=1---,rand3}p, < 1}.
The prior density of (p,, - - -, p,) over S, with respect to dv is proportional to
(53) i pf.

We assume the data has the form of m, “real” observations, X; = x,, - - -, X,
= X, and m, exclusive censorings, X, | > X,, 11, * * , X, > X,, where m; + m,
= n. As before, let u,, - - -, u, represent the distinct x/’s, let §;, - - -, §; represent
the respective numbers of real observations at these points, and A, - - -, A,

represent the respective numbers of exclusive censored observations at these points,
so that 3%8; = m, and 3%\, = m,. We refer to u, 8, A as the data.
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As before, we let b, = SK, (8, + \), so that b, + & + A, = h,_,, and we let ()
denote the number of u; less than or equal to ¢.

THEOREM 9. Suppose F € D (a), where a gives positive mass to every interval.
Then the posterior modal (with respect to v) estimate of 1 — F given the data is
a(R) — a(f) + A a(R) — a(u) + b, + A,

a(R) + n a(R) — a(w) + A

The proof is based on the following lemma.

Q70

(54) 1-F1)=

LEMMA 1. Let

(5.5) fB) =TI, [ B3P, = P,,0)"]
where o; > 0 and 3; > O for all i. The maximum of f(P) subject to the constraints
(5.6) =P, >P,>: - >Py>Py,, =0

occurs at points P such that

i1 + B)
1 R
Be + 21 +'B)
with the convention that terms of the form 0/0 in (5.7) represent arbitrary numbers in
[0, 1].

(5.7) B =Ty for j=2-++,N

PrOOF. Every point (P,, - - -, Py) in the constraint set (5.6) has a representa-
tion as
(5.8) P =1\  for j=2,---,N
where 0 < x;<lforj=1---,N—-1, and conversely every point of the form

(5.8) is in the constraint set. In terms of the x;, the function f becomes

(5.9) f = H.l’,\;_ll[(l —_ xj)ﬂlszjva»l(a:"'ﬂl)].
This may be maximized by maximizing the terms in square brackets separately for
eachj=1,- - -, N — 1. The point of maximum value is easily found to be
Y o + b
(5.10) x; = s+l A) for j=1,---,N—1,

! Bj + j‘v+1(ai + B)

where 0/0 denotes an arbitrary number in [0, 1]. Substitution of (5.10) into (5.8)
yields (5.7) immediately.

PROOF OF THE THEOREM. Let ¢, t,, - - - , . be arbitrary distinct points contain-
ing ¢ and all censoring points, and suppose that ¢, - - - , 7, are ordered in increas-
ing order. Let n, n,, - - -, n,,, denote the number of real observations that fall in
the intervals (—oo, 1], (#, 1], - - -, (¢, 0) respectively and let / denote the
number of censored observations at £, j = 1, - - -, r (/; = 0 unless  is a censoring
point).
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The joint likelihood of observing a sample as described above is

r n 9= = T n(Sr -
(5.11) j:}[F(tj) - F(tj—l)] (1 - F(tj—l))[ = Hjllpjl(zi:}pi)
where F(#,) =0 and F(t,,,) = 1, and /, = 0. Since the prior density of p with

respect to the measure dv is proportional to (5.3), the posterior density of p with
respect to dv is proportional to

(5.12) Itp A p)

The mode of the posterior distribution is obtained by finding the point p that
maximizes this expression subject to p; > 0 for all i and 3/%}p, = 1. Applying the
results of Lemma 1 with N=r + 1, and P, = 3}*p, forj=1,- - -, r + 1, we
obtain as the modal estimate at :

(5.13) 1 - F(1) = 5315

Zh(m + B+ )
me+ B+ SN+ B+ )
Since 7% B = a(R) — a(z,), and since Z3H\(n, + [_)) = h(t,) + I, where h(Z)

= h;, represents the number of observations, real or censored, greater than ¢,

(5.13) reduces easily to

= [V

k=1

AN T a(R) — a(t) + h(4) + &
(14) 1= F) = e R ot + )

_ a(R) — a(’j) + h(t,) y a(R) — a(y) + h(f) + |
B a(R) + n =1 (R) — a(t) + h(1)

We are to show, for the # which is equal to ¢, that (5.14) reduces to (5.4). Note that
the product in (5.14) may be taken over just those k for which /, # 0, that is, over
the #, corresponding to the censoring points. This shows that 1 — ﬁ(t) depends
only on the censoring points among ¢, - - - , ¢, and is thus independent of the
choice of ¢, - -, ¢, provided all censoring points are included. Furthermore, if
4, = u; a censoring point, then /. = A; and h(z,) = h,. The estimate (5.4) follows
easily from this. ‘

ReMARk 1. - The following example shows that if not all censoring points are
included in #;, - - -, #,, then the mode of F(#) may be different from that given in
5.4).

Suppose there is a sample of size one consisting of a censored observation at the
point y, and let ¢ be a point greater than y. The joint mode of (F(y), F(?)) is seen to
be (from (5.4) with A, = 0 and A, = 1)

( By Bs ,Bz"'ﬁs"'l)

a(R) + 1’ aR)+1 B+ B

where B, = a(y), B, = a(f) — a(y), and B = a(R) — a(r). To compute the margi-
nal mode of F(f), we proceed as follows. Denote F(y) and 1 — F(¢) by p, and p,
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respectively. The posterior density of p, and p, with respect to the measure
dv = dp\dp;/(p\(1 — py — py)ps) is (1 — pIpf(1 — p, — p))Pps", where ¢ is a
constant. The posterior marginal density of p, with respect to the measure dv; =
dp;/(py(1 — p3)) is

f(ps) = @fs(1 = p)P P Bips + By).

Finding the value of p, that maximizes this expression, we obtain the modal
estimate of p, = 1 — F(f), as the unique root between zero and one of the
quadratic equation

(a + 1)Bp3 + (aBy — By — B1By)ps — BaB3 =0,

where @ = B, + 8, + B;. That this does not yield the same value as in (5.4) may
be verified by taking some numerical values for 8, 8, and B;, e.g. B, = 1, B, = 2,

By =3.

REMARK 2. In the bioassay problem, Ramsey [9] wondered (footnote on page
846) whether the modal estimate of the potency curve at an observational dose-
level x; is also the mean of the marginal posterior distribution of F(x,). If it were so,
then Theorem 9 would follow directly from Theorem 8. We see that this is not the
case by considering the following example.

Let z, and z, (z, < z,) be observational dose levels. One animal at each of these
dose levels is subjected to an experiment in which it is observed that the animal at
z, has survived the dose while the animal at z, did not. The likelihood of this
sample is (1 — F(z,))F(z,). With the prior 9 («), the modal estimate of F at z; and
z, can be obtained by solving the equations

By, 1__A
D> l-p b

and

£.2_+ 1 = BS
P, Ptp, l1—p—p

where p; = F(z)), p; = F(z)) — F(z)), B = a((— 0, z1]), B, = a((z}, 2,]) and B; =
a((z,, )). The mean estimate of F at z; and z, is obtained from Antoniak [1] as

Bi{ By + (B + B)(Bi + B, + 1)}/ (a(R) + 2)[ By(a(R) + 1) + B B3]

and
(:31 + B, + 1)[(0‘(R) + 2)132 + B, B3]/(a(R) + 2)[ :Bz(a(R) + 1) + :31:33]-

Again, the fact that these two sets of estimates are not equal may be verified by
taking a particular set of numerical values of 8,, B, and B;.

6. Numerical examples. We illustrate the application of the results obtained in
earlier sections by reworking the example of Kaplan and Meier [7]. Their data is as
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follows:

6.1) real observations at 0.8, 3.1, 5.4, and 9.2 months;
censored observations at 1.0, 2.7, 7.0, and 12.1 months.

All censored observations are of the exclusive type.

This example has been used by Susarla and Van Ryzin to compare the product
limit estimate with their Bayes estimate using a Dirichlet process prior with
parameter a on (0, co) of the form a(z, 0c0) = e~ %, where 8 was chosen to be 0.1. A
posteriori, this seems like a reasonable choice for # since the maximum likelihood
estimate of # when the survival curve is known to be of the form e =% is close to 0.1
(actually 0.097 - - - ).

In the tables below, we compare the estimate obtained.by Susarla and Van Ryzin
with the Bayes estimates based on the homogeneous process priors neutral to the
right discussed in Section 3. We take the prior guess at S to be the same as that
chosen by Susarla and Van Ryzin.

(6.2) So(t) =1— Fy(t) = e for ¢t >0.

Corresponding to the choice by Susarla and Van Ryzin of a prior sample size
a(R) = 1, we choose the intensity parameter 7 = 1 in formulas (3.15) and (3.28)
because we feel that 7 should correspond reasonably well to prior sample size, at
least in the simple homogeneous process case. In these formulas, we have from
(6.1) distinct observations at u; = 0.8, u, = 1.0, u; = 2.7, uy = 3.1, us = 5.4, ug =
7.0, u; = 9.2, and ug = 12.1. Furthermore, we have §, = 8, = 8s = §; = |, A, = A,
= A¢ = Ag = 1, and the rest of the §; and A, and all of the y; equal to zero so that
h=8—ifori=0,1,---,8.

(a) The gamma process prior. Substituting (6.2) and 7 = 1 into (3.16), we obtain
y(#) = 0.1443¢. Therefore, from Theorem 6, we find our Bayes estimate to be

. 9 —j(t) 0.1443¢
0= (525)

(10 — i)? 0.14434, ln( }(1) : i) 5,

-1

5 1%0) (

where j(¢) is the number of observations less than or equal to .
(b) The simple homogeneous process prior. From (3.29) with (6.2) for S, and
T = 1, we obtain as the Bayes estimate

Sy (1) = e~ 01/O=iD)

.111};)][e+0-m-/«1o—f><9—f»(_____101_ - 8")].

0—1i

(¢) The Dirichlet process prior. As is found in [6] or as may be deduced from
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TABLE 2
Comparison of the functional form of three estimates of S(¢)
interval for ¢ Se(1) Su(d) Sp(1)
[0.0, 0.8) (3)%1443. 1,0000 e~/%. 1,0000 (e~*/10 + 8) - 0.1111
[0, 1.0) (2)>14431. 0.8958 e~1/80. 0.8899 (e~ 4+ 7). 0.1111
(1.0, 2.7) (Z)°1443. 0.8979 e~'/70.0.8915 (e™/1° 4 6) - 0.1272
[2.7,3.1) (§)*1443 . 0.9051 e~ /0. 08972 (e~"/19 + 5) - 0.1493
[3.1,5.4) ()13 07749 e~1/%0.0.7554 (e~'/19 + 4) . 0.1493
[5.4,7.0) (£)°14431. 0,6536 e~'/40. 06209 (e~/10 4 3) . 0.1493
[7.0,9.2) (3)%1443. 0.6977 e~1/30. 06582 (e™'/10 + 2y . 02091
[92, 12.1) (2)*1443. 05788 e~ 1/20. 05115 (e=*/1° 4+ 1) - 0.2091
[12.1, o) e~'/10. 09563 e~1/19. 09367 e~1/10.0.9102

(4.6) with a(?, o) = e ™!, the Bayes estimate with a 9 («) prior is given by

+8 — (1) Hf<‘> *0]“’+8—-1+?\.
9 e Ol 48—

. o0l
Sp(1) =

These estimates are compared in Tables 2 and 3. Table 2 is arranged to bring out
the behavior of the estimates between the observations. In Table 3, the actual
values of the estimates are computed for all the observational points. When there is
only one number for an estimate at an observational point, the estimated survival
curve is continuous at that point. When there are two numbers, the upper number
represents the left limit of the function at the point, and the lower number
represents the right limit. The difference represents therefore the mass assigned to
the point by the estimate.

The product limit estimate, or MLE,

9—i—8
Sp(t) = WY, (T)

is included in Table 3 for comparison. It is seen that all the estimates are quite
close. However, the estimate based on the Dirichlet process prior comes closer to
- the product limit estimate than the other two; in particular, it assigns more mass to
the real observations and less mass between the observations and at the tails than
the other two. This may be because an intensity parameter value of 7 =1
represents a prior sample size of somewhat more than one (and a somewhat larger
prior sample size for the gamma prior than for the simple homogeneous prior). But
the situation is not clear because some of the information obtained from a real
observation is used to change the relative weight of points to the left of it, unlike
for the Dirichlet process where the only change is at the observation itself.

It should be recalled from the discussion of Remark 2 in Section 3, that as 7 — 0
the estimate S’G(t) does not converge to the product limit estimate. For the example
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TABLE 3
Numerical comparison of five estimates of S(f)
t 0.8 1.0 2.7 3.1 5.4 7.0 9.2 12.1

.9879 .8448 6723 4762

S¢(?) .8807 .8523 5217 .2851
.8837 7142 .5493 3379
9912 .8521 .6781 4844

Su() .8789 .8577 5212 2793
.8810 7100 5425 3229
9915 .8559 6841 .5015

Sp(®) .8783 .8605 5220 2714
.8803 .7066 .5348 2924
1.0000 .8750 .7000 ) .5250

Spr(D) .8750 .8750 .5250 2625
.8750 .7000 5250 2625
1.0000 .8821 7207 .55%90

Sz, o(®) .8821 .8821 .5590 .3270

.8821 7207 .5590 .3270

discussed here, it converges instead to

(10—1’)
10g9———.'

— 1

8,

g

SG,O(’) = [/, for ¢ < 12.1.

This estimate gives more weight to the right tails than the product limit estimate.
However, since all estimates of Table 2 give greater weight to the right tail, perhaps
this estimate will turn out better than the product limit estimate. Upon computing
the values of this estimate at the observational points, we see in Table 3 that it
gives quite a bit more weight to the right tail than any of the other estimates.
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