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ON THE RELATION BETWEEN FITTING ‘AUTOREGRESSION AND
PERIODOGRAM WITH APPLICATIONS

By HiDeAKI SAKAI! TAKASHI SOEDA AND HIDEKATSU TOKUMARU
University of Tokushima and Kyoto University

The relation between fitting autoregression and periodogram is herein
.presented. More specifically, the asymptotic error covariance matrices of the
estimates of the autoregressive parameters using Yule-Walker equations are
expressed in terms of the periodogram. These expressions permit the immediate
calculation of the error covariance matrices for various time series problems

. including the autoregressive spectral estimation and fitting autoregression to the
data with randomly missed observations.

1. Introduction. In time series analysis, roughly speaking, mainly two methods
have been used. One of them gives the analysis in the frequency domain. It is well
known that the quantity called the periodogram plays the fundamental role in that
method. (For example, see Jenkins and Watts [5].) The other gives the analysis in
the time domain by which we mean that one postulates some parametric model
and the data are fitted to this model by estimating the parameters. Among many
models, an autoregressive (AR) process model is preferred because of its simplicity
in estimating the parameters. When only the estimation of the autoregressive
parameters of a mixed autoregressive-moving average (ARMA) process is of
interest, similar simplicity occurs. That is, in the above two cases, one only requires
the solution of Yule-Walker equations. (See, for example, Box and Jenkins [3].)

The statistical properties of the periodogram and error covariance matrices of
the estimates of AR parameters using Yule-Walker equations were discussed and
obtained separately in the literature. (As for the former, see [5]. As for the latter,
the classical paper is Mann and Wald [7]. See also the paper of Baggeroer [2] for a
different view point.) As far as the authors are aware, there are few papers
discussing the relation between them.

In this paper, we present the clear-cut formulae connecting them. To show the
usefulness of the formulae, we apply them to some time series problems including
autoregressive spectral estimation and fitting autoregression to the data with
randomly missed observations. To the best of our knowledge, problems of time
series with missed observations have been treated mainly in the frequency domain,
or in other words, several papers, for example [6], [8] and [9], were concerned with
spectral analysis and calculations of asymptotic variances of the proposed spectral
estimators. Thus our result is the first which gives the expression for the error
covariance matrix of the estimate of AR process parameters. However, its deriva-
tion depends heavily on the work of Scheinok [9].
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As another application, we consider the problem of estimation of AR process
parameters based on the data contaminated by white noise, already discussed in
Walker [10] where the explicit expression for the error covariance matrix was
derived only in the case of the first-order AR process. With our approach, the
general formula can easily be obtained. Lastly, our approach is applied to rederive
the error covariance matrix of the estimate of the AR parameters of an ARMA
process which was originally obtained by Gersch [4].

2. Fitting autoregressions and periodogram. Let us assume for the moment that
the time series {x,} under consideration is a zero-mean Gaussian mth order AR
process given by the equation

(D X, — WX T T A Xy = Y
where {u,} is a sequence of white noise with
E[u] =0, E[uu]=0%,,
To assure the stationarity of (1), it is also assumed that the roots of the following
equation
2 l—agz'—-+- —a@,z"=0
lie within the unit circle.

We denote the autocovariance function of {x,} as r, = E[x,x,,,]. Define an
m X m matrix R, m X 1 vectors r and a, respectively as follows:

(i, k)thelement of R = R, , = r,_;
T T
r=(r1>r2"";rm)’ a=(a]’a2’..'3am)
where “T” denotes the transpose operation. As is well known, the Yule-Walker
equation holds.
3) Ra=r.
When a set of data {x;, x,, - - -, xy} is available, one of the most popular
estimators for r, is usually taken as

. | R
(4) e = ']VEIL 1|klxixi+|k|

k=0, +1,+2,---,+x(N—-1).

Upon substituting these 7,’s into the r,’s in (3), the estimator of a is given by the
solution of

(5) Ra=+#

where ﬁ, 4 and f are defined as above. It is well known that as N — oo, the 7, ’s and
4 are asymptotically consistent estimators of the r,’s and a, respectively. Define the
estimation errors as Aa = 4 — a, Ar = — r and AR = R — R. If N is sufficiently
large, these errors can be assumed to be small. By substituting these into (5),
neglecting the second order term concerning the errors and noting the relation (3),
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we have
(6) RAa =~ Ar — (AR)a
=f —Ra.
Let us turn our attention to the periodogram defined by

@) Iy(s) = -2# |=2 1 x; exp( —jis)]2 |s| <.
Since (7) can be represented in terms of the 7,’s as

®) Iy(s) = 5= Z¥= Ly e exp(—jks),

conversely the r,’s are represented in terms of the periodogram as

©) Fe = I 1 In(s) exp(jks) ds.

Hence, the kth element of (6) can be expressed by using (9) as follows:

(10) (RAa), ~ F, — 27 \Fi_ia;

= [, B(s)Iy(s) exp(jks) ds

where we put '

(11) B(s) = Z7_o(— ;) exp(—Jjis)

with —a, = 1. On the other hand, it easily follows from (8) that for k > 0,
T2 B(s)E[Iy(s)] exp(jks) ds = Z7_o(1 = N~k — il)(—a)r_,

= ﬂkN—l

where we utilize the relation (3) and define n, = 37|k — i|a;r,_; for k > 0.
Therefore, by multiplying the kth and ith elements of (10) and taking the expecta-
tion, the expression of the error covariance matrix is given by

(12) (RE[Aana"|RT), = " (" B(s)B(t) Cov[ I(s), Iy(1)]
Xexp[ j(ks + it)] ds dt + ;N 2.

As will be seen later, the first term in the right hand side of (12), which is denoted
by A, ; henceforth, is of order N ~! so that the second term is of no importance.

Next we examine the estimation error of the residual ¢ which satisfies the
well-known identity

(13) o2 =ry— 37 ra,.
Hence, the estimator for o? usually takes the form of
(14) 6% = fo — 27= 174,

where the a’s are given by (5). By using the same technique to derive (10), the
estimation error can be expressed as

(15) Ao® ~ Ary — 7 (aAr; + riAa)
= —Aa"-r+ [T _B(s)Iy(s) ds — o>
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In deriving (15), we utilize the relation (13) and the fact that I (s) = Iy(—s).
By virtue of multiplying (10) with (15) and taking the expectation, we have
(16) RE[AaAo’] ~ —RE[Aada"|r + /7 B(s)E[RAa - I(s)] ds
—o’RE[Aa].
Upon noting from (12) that RE[AaAa”] = AR”™! = AR™! with (A), ; = 4, ; and

R7'r = a, the kth element of the first term of (16) becomes —37_,4, .4, The kth
element of the second term is equal to

I oJ™ »B(5)B(t) Cov[ Iy(s), I(1) ] exp(jkt) ds dt
+ (02 + 'noN_])'nkN_]
and the kth element of the third one is — 0%y N . Hence we obtain
(17) (RE[AaAa2])k = b, + gy, N 72
with
(18) b = [T /7 .B(s)B(—$)B(t) Cov[I(s), I(t)] exp(jkt) ds dt.

Like (12), the second term of (17) is of no concern.
Denote R™! = (g, ;). Then,

(19) Aa, ~ 271G, i J T B(6)I(1) exp(jit) dt.

On the other hand, we find that

(20) E[(Ac®’]| ~ — 2 rE[Ac®Aq;] + [T, B(s) E[Ad®Iy(s)] ds
—E| 02Ao2].

Using (17) and the identity

(21) 2T, i = o

the first term of (20) is equal to —37_,b,a,. The second term can be rewritten by
substituting (15) into Ac? as

(22) =2 )" B(s)E[Aay - Iy(s)] ds
+ ™ " B(s)B(t)E[ Iy(s)Iy(2)] ds dt
—o?f" " .B(s)E[ Iy(s)] ds.

Upon substituting (19) into Ag, in the first term of (22) and using (21), this first
term is given by

JT oI B(5)B(t) Cov[ Iy(s), Iy(2) |27 ( — a;) exp(jit) ds dt
—E'i"=1ai(°2 + noN_l)’?iN_]'
Hence, (22) finally becomes
J7 oS+ B(s) B(t)B(—1) Cov[ Iy(s), Iy(£)] ds dt — 27 1a(0® + moN ~ '), N =

+ (02 + 'nON_‘)z — 02(02 + nON_]).
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Similarly, the third term of (20) becomes 6>="_ ,am;N ~! — a*(0® + n,N ') + o*.
Thereby we finally obtain
(23) E[(A0»’] ~ 7,7, B(s)B(—5)B({) B(— 1) Cov[ Iy(s), Iy(r)] ds dt.

The formulae (12), (17) and (23) give the clear-cut relations between the error
covariances in fitting autoregressions and the covariance of the periodogram.

On the other hand, if in general {x,} is a stationary Gaussian time series with
spectral density f(w), the covariance of the periodogram is asymptotically expressed
as

(24) Cov[ Iy(s), In(1)] =~ f(s)f({)N “*(Fy(s + 1) + Fy(s — 1)}
where Fy () is the Fejér kernel and is defined by
_ (sin Nx/2\?

Fy(x) = ( sin x/2 ) :
(See, for example, [5, page 250].) Also, from the theory of Fejér kernel, it is well
known that

I~ 8(y)Fn(x = y) dy ~ 27Ng(x).

Hence, F,,(+) can be approximated by Dirac’s delta function as 2#N 8(-). Thus (24)

becomes Cov[Iy(s), Iy()] ~ 27N ~f(s)A(H){8(s + £) + 8(s — £)}. Substitution of
this into (12) gives

(25) A, = 27N ™ _{B(s)B(—s)A(s)* exp[ j(k — i)s]
+ B(s)*f(s)* exp[ j(k + i)s]} ds
The expression (12) together with (25) can also be viewed as the error covariance
matrix of the estimate of the optimal linear one-step prediction coefficients of the

tapped-delay-line of length m for the general time series. In particular, if {x,} is an
mth order AR process, the power spectra is given by

(26) fs) = "

o
27B(s)B(—s) "
Thus the first term of (25) is

"27B(s)B(—s)

and the second term is

N "1™ exp[j(k — i)s] ds = o’N"'r,_;

14 1 0,2N—l Zk+i—1dz
27N)” 0%, exp| j(k + i)s] ds = — b=
( ) f B(— )2 p[ ( ) ] 277-] lz[=1 BO(Z)Z
where By(z) =1 —a;z — -+ - —a,z"™. Since by the assumption concerning (2),

roots of By(z) = 0 lie outside the unit circle and k + i — 1 > 0, the integrand of
the above complex integral is regular within the unit circle; therefore the integral is
zero from Cauchy’s theorem. Thus, A = ¢?N ~!(r,_;) = ¢°N ~'R. Therefore, the
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well known result [3, page 281] [7]

27 NE[AaAaT] ~ oR™!
follows. In a similar way, one can show that
anr—1 k—1

b, = 01;; $ajm ;0(2) dz = 0.
Hence,
(28) NE[AaAoz] ~0.
Also from (23), we have
(29) NE[(A0*)*] ~ 20

These results are consistent with those obtained in [3, pages 280-281] by evaluating
the Fisher information matrix for the maximum likelihood estimate, if one notes
that Ao? ~ 20A0.

3. Autoregressive spectral estimation. In this section, we derive the expression
for the covariance of the autoregressive power spectrum estimator originally
considered by Akaike [1]. Usually, the estimator takes the form of

~2

(30) fls) = 27BG)B(=s)’
with

B(s) = 1 = 21,4, exp(—jis).

Hence, the estimation error can be approximately represented as

(31 Af(s) ~ f(s)[ Ao—"; + H(s)TAa]
where we define
(32) H(s) = ﬁg + ﬁi:g
with
E(s) = [exp(—Js), exp(—2js), - - - , exp(—jms)]".
Define the new vector M(s) by
(33) R™'H(s) = M(s) =[ M (s), My(s), - - -, M,,(5)]".

Then the covariance between the errors at angular frequencies s and ¢ is given by
(34)  E[AM(s)Af(1)] ~ f(s)f(t){a—4E[(Ao2)2] + o072 M(s)" + M(1)7]
XR E[AaAo?] + M(s) R E[ Aada” |RTM(7) }.
By substituting (12), (17) and (23) into (34) and defining
(35) K(s, p) = 2= 1M (s) exp(jkp), ‘
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we obtain the desired formula
(36)  E[Af)Af(D)] ~ As)A ST o™ B(1)B(v) Cov[ Iy(p), In(¥)]
X [K(s, p) + 0 2B(—p) ][ K(s, v) + 0 ’B(—»)] dy av.

When {x,} is Gaussian, by the same calculations leading to the results (27), (28)
and (29) one can show that

37) NE[ éf%' -Aff(Lt;)} ~ 2+ OIS ST M ()M()r,
The second term of (37) is further simplified by using (33) to o?H(s)"R~"H(?).

Using the matrix factorization for R™! described in [1, (3.7)], we obtain the same
formula originally given by Akaike [1, (4.12)]. At this point, Akaike’s result is more
general than ours since the former is free from the Gaussian assumption. However,
this drawback will be remedied in the last section.

4. Application to some missing data problems. The analysis of time series with
missed observations was first treated by Jones [6] where missing instants are
assumed to be periodic and the variance of some spectral estimator was obtained.
The result of [6] was generalized in Parzen [8]. Also, Scheinok [9] considered the
case where missing instants are stochastic and form a Bernoulli sequence.

In this section, we set the same situation as in [9], namely,

d =1 if x; is read
d =0 if x; is not read
where p = Pr(d, = 1) is independent of i and known a priori. We also assume that

the d’s are independent not only with each other but also with the time series {x, }.
With the above assumptions, it is obvious that the estimators for the r,’s

. 1
(38) o = N-p 2?]=1(dixi)2
A 1 N — |k
e = E;Eiﬂl X, X4 k#0

are consistent as N — co. Hence, substitution of (38) into (5) and (14) gives the
consistent estimators &', 6% for a and o2, respectively.
Corresponding to (7), the modified periodogram is now defined as in [9] by
(39)
2.2

_ a2 dd, -~
Iy(s) = (27N) ! 2][\;1-;- + 2113=12{'V=l;i9&k_;_2_xkxi exp[ —j(i — k)s] }

Then, corresponding to (9), the following relation between 7, and I(s) holds:

(40) P = [T, I(s) exp(jks) ds.

Also, by the assumption concerning {d,} and (39), it is obvious that
E[I}(s)] = E[Iy(s)].
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Hence, all the arguments in the preceding sections are entirely valid by interchang-
ing I(s) with I(s). Thus it suffices to know Cov[I}(s), I}(£)] but its derivation is
just the central theme of [9]. The result is
Cov[ Ii(s), Ii(1)] ~ 3dn™N) "' (p~' = Da + (M) '8
+(7N)7'@p 7! = DA + f(s) — 7] + 2N T f(s)* + f1)?
(41) — 77 T )[Sx) + fs) + f(1)] dx + 7%’}
+[ AN IN [ Fy(s + 1) + Fy(s — )] = 2N "'[f(s) + ()]
— (2aNY) T [ Fy(s + £) + Fy(s — D[ As) + f()]a + 4(aN) !
[ f(s) + f(D) ] + (aN)"'B + (472N [ Fyls + 1) + Fy(s — £) — 12N]a?
+ (47°ND?) " [Fy(s + 1) + Fy(s — ©) — 2N(3 — p?) Jo? + (aNp?) ™"
X[ f)[fx+s+ 1)+ flx+s—1)]dx
+ (pr)”{ [JON T Fuls + 1) + Fyls = ) = 26 = p)(f(s)
+f(0)])a = QuN) "\ o[ Fyls + 1) + Ey(s = 1) = 4NG = p)] = 252
XL ) fx+s+)+fx—s+)+fx+s—)+fx—s—1)]dx

+4m(2 = PO |
where for abbreviation we put
a= [T f(x)dx, B =[Tf(x) dx,
There are two incorrect terms in (4.3) and (4.10) of the original paper [9] to which
the underlined parts of (41) correspond. These errors are corrected in (41).

By substituting (41) into (12), (17) and (23) and using delta function approxima-
tion to Fejér kernel, one can obtain the asymptotic error covariance of &' and 6.
But the resulting formulae may be rather lengthy and complicated, so we only
derive the expression for (12). After some simple calculations, we get
(42) A4, = N"'"aqa(-9+ 15p~ "' —6p7?)

+N o, _, + 2N_‘o.28k,ia(p_' -1)
+N7a% (1+p72—-2p7")

+N %% (1+p2—2p7") + 2N ag, ;
X(p~' = 1)+ («N) "'k (p7> = p~' +05)

- ("TN)_ka,i(P_l - 0-5)
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with
(43) e, = (2m) ™™ . B(s)B(—s) exp[ j(k — i)s] ds
=3, k- —a)(—ay) (n,n'=0,1,---,m),
(44) foi = 2m) 7" B(s)? exp[ j(k + i)s] ds
= 2wk~ a)(—ay),
(45) 8. = (2m) "' [T, B(s)f(s) exp[ j(k + i)s] ds

= 2rr':-Oz’rrt"=0(_an)(—an’)rn+n'—k—i’

(46) My = [T T BB ) fx +s+8) + fix+s—1)]dx

Xexp[ j(ks + it)] ds dt
(47) Wi =TT BB A flx — s+ 1) + flx —s — )] dx

xexp[ j(ks + it)] ds dt.
In (46), by changing x to —x and using f(x) = f(—x), we have h ;, = w ..
Substitution of f(x + s + ) = Q)" 'S _ 1, exp[—ji(x + s = )] into (46) yields
(48) hk,i =W i = 27szno=—oor3[(_ak—n)(_ai—n) + (_ak—n)(_ai+n)]

where we define —a, =0if n > m orn <O0.

To check the validity of (42), we put p = 1, yielding the same result (27) in the
previous section. Also to know the explicit value of (42), for example, let {x,} be a
first-order AR process with 7, = a*l. In this case, it easily follows that a = r, = 1,

o’=1-a%e =1+df  =d* g ,=0andh  =w,  =2r- 3a’ There-
fore, we get
(49) NE[(Aa)z]miss ~p 2+a(2p2-3p7").

Since the missing rate is 1 — p, the number of net observations can be assumed to
be Np with probability one as N tends to infinity. Thus it is reasonable to compare
(49) with the error variance from the data of length Np without missed observa-
tions. The latter is

(50) NE[(Aa)*],  ~p ' —ap ™"
Hence, as long as p < 1 holds,
(51) E[ (Aa)2]miss > E[ (Aa)z]cont'

This inequality shows the serious effect of missed observations on estimation of
parameters. This seriousness is increased as p tends to zero, since E[(Aa)]s/
E[(Aa))on =~ (1 + 2a®)p~" /(1 — a?) for small p. Also, it is interesting to note that
atp =%, NE[(Aa)*] e =~ p 2 independent of the system parameter a.

To conclude this section, the simulation result and the theoretical value (49) are
compared. For a = 0.5, N = 500 and p = 0.5, the former, calculated by averaging
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the squares of the estimation errors over 100 different data sets, is 4.478 while the

latter is 4.5. The agreement is fairly good. ‘
The effect of missed observations on the spectral estimator (30) can be calculated
by substituting (41) into (36), but the result is rather lengthy and we omit it here.

5. Other applications. Let us now consider the situation where {x,} is not
directly observed but the noisy version of it is available. Denote the n01sy
observation sequence by {y,} with

(52) y=x+tuy )
where {v,} is a Gaussian white noise sequence uncorrelated with {u,}, i.e.,
(53) E[v] =0, E[ov]=02,,, E[vu]=0.

This problem was considered by Walker [10] in which the variances of two
different estimators (Method A and-Method B) were calculated. In this section, our
method is used to derive the error covariance matrix of the Yule-Walker estimate

(Method B).
From (1), (52) and (53), it follows that ,
E[yl—m—i(yt AP /7 T amyt—r'n)] =0 for i=1,2,---,m

or more compactly, the modified Yule-Walker equation Ra = i where (ﬁ)k i =
Trosk—p ®;=r,,; and r, = E[yy,,,]. By the same argument developed in
Section 2, it follows that the estimation error A satisfies

(ﬁAﬁ)k ~ ™ B(s)Iy(s) exp[ j(k + m)s] ds

where I,(s) is the periodogram for the process {»,}. Hence, correspondmg to (12)
we get

(54) (RE[AaAT|RT), | ~ J7,/" . B(s)B(1) Cov[ Iy(s), Iy(1)]
xexp{j[(k + m)s + (i + m)t]} ds dt = 4,

By the same approximate calculations as in Section 2 and noting that the spectra of

{».} is given by

£ () =@2m) | o2 + F(s)T(—_sS}’

(54) becomes

(55) (27N)~'y™ B(s)*| o2 + Jlk + i+ 2m)s] ds

B(S)Z(—s) } exp[

+ (27N)"'[7 . B(s)B(~s)| o] +

o’ 2 ) .
m} exp[j(k - l)S] ds
If we rewrite the first term of (55) as a complex integral, it can easily be seen that

this integral is equal to zero. Hence, using (43), we finally obtain -

(56) Ay ;= N7 (e ;00 + 20207, ; + o’r,._).




106 FITTING AUTOREGRESSION AND PERIODOGRAM

As an example, let {x,} be a first-order AR process with 7, = ¢%/®l /(1 — 4?).
Then, (54) together with (56) reduces to
1 - qa?

2
with A = o/ 0 This result, of course, agrees with the one obtained by Walker [10].
In a similar way, in principle, one can obtain the error variances and covariances
of 62 and 62. However, their derivations will require a large amount of manipula-
tions and are thus omitted here.

As a last application, we rederive the error covariance matrix for the Yule-
Walker estimate of AR parameters of a Gaussian ARMA process generated by

(57) NE[(A&)Z] 2 [1 + 2}\(1 — a2) + )\2(1 _ (14)]

(58) Xp =Xy T T QX S U= Clhypy = Gl

with E[u] = 0, E[u,u] = 0%, ,. It is also assumed that the roots of By(z) = 0 lie
outside the unit circle. Obviously, the Yule-Walker equation R,a = F holds where
R,)x,i = Inix—i» (F); = 1, Hence, as above the covariance matrix is given by

(59) (l_l,,E[AﬁAiT]l_!,f)k,i ~ 2aN "7 B(s)’f(s)* exp[j(k + i + 2n)s] ds
+2mN =7, B(s) B(—s)f(s)* exp[ j(k — i)s] ds
where f(s) is the spectra of (58) and is given by

__C)C(=s) ,
) = 2B () B=s) °

with C(s) & 27-0(—¢;) exp(—Jjis) (— ¢y = 1). By rewriting the first term of (59) as a
complex integral, one can easily show from the assumption concerning the a;’s that
this integral is equal to zero. The second term is

D YN YA G B | G | A

By defining

Yk=2’;;g(_ci)(_ci+k)’ k=0, l,' cc,n = 1’
the right hand side of (59) is written in a matrix form as
(60) A= OZN—I[YOI_{O + 27=17i(ﬁi + l—‘IT)]

which coincides with the result of Gersch [4]. In the same way as in Section 4, one
can straightforwardly calculate the effect of randomly missed observations on the
above Yule-Walker estimate, so that we need not reproduce it here.

6. Discussion and conclusion. The key idea of this paper lies in the derivation
of the simple formula (10) which connects the error vector of the Yule-Walker
estimate and the periodogram. Thus the examinations of various statistical prob-
lems concerning the Yule-Walker estimates are converted into those of the periodo-
gram which have been investigated since the beginning of time series analysis. This
relation is particularly powerful when applied to the problem with randomly
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missed observations for which usual methods such as the maximum likelihood
method with the evaluation of Fisher information matrix, may not be applicable.

It should also be noted that the formulae (12), (17), (23), (36) and (54) are all
valid without the Gaussian assumption. But if one drops this Gaussian assumption,
one must add a term of N ~! order to the right hand side of (24). This term can be
obtained by the following rather rough argument. Let the time series {x,} be
generated by passing the innovation sequence {u,} whose variance and fourth
cumulant are o® and k,, respectively, through the linear filter with the transfer
function G(s). Then, by the formula (6.3.15) in [5, page 238] and the argument
developed in [5, page 250], the extra term can be expressed as N 'k,
|G(5)[6?| G(¢)|%6?/ a* = N ~'k, f(5)f(t)/ o* where f(s) is the spectra of {x,}.

It can be easily shown that in the presence of this extra term the results (27), (28)
and (59) are unchanged while in the right hand sides of (29) and (37) one must add
k4 and k,/0*, respectively. Thus we can obtain the results of [7], [4] and [1] without
the Gaussian assumption.
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