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ERROR BOUNDS FOR LINEAR COMBINATIONS OF
ORDER STATISTICS!

By STEINAR BJERVE
University of Oslo

A Berry-Esseen bound is obtained for trimmed linear combinations of
order statistics. These linear combinations are written as the sum of a
linear and a quadratic combination of independent exponentially distri-
buted random variables plus a remainder term. The remainder term is
shown to be of negligible order and Fourier methods are then employed
to handle the linear and quadratic terms.

The main theorem is also given in a version that more easily lends
itself to applications.

1. Introduction. Suppose that we observe a sample, {X,};_,, of independent
and identically distributed random variables with common distribution F (de-
noted i.i.d. (F)). The order-statistics from this sample are given as {X,,}i,,
where Xn S X =00 £ Koo

Linear combinations of functions of order statistics (L-statistics) are statistics
of the form

(1‘1) Tn = n-l Z?:l ci'nh(Xi'n) ’

where 4 is some measurable function. We will prove that L-statistics appropri-
ately normalized under certain conditions admit a uniform error bound of the
order n~%, i.e., that

(12) sup, |9(x) — P(s,”n(T, — p1,) < )| < K-},

for some constant K. Here, s, and p, are normalizing terms and @ denotes the
standard normal distribution. To this end we will apply elementary techniques
as in Chernoff et al. (1967) and Fourier techniques as in Bickel (1974).

The results obtained in this work are obtained for trimmed L-statistics, i.e., a
certain proportion of the observations among the smallest and the largest are
discarded. The remainder of the observations then stay within finite bounds
with probability one minus an exponentially small quantity. This will be seen
using the following lemma derived from Bernstein’s inequality which one can
find in Hoeffding (1963), formula (2.13). -

Lemma 1.1. Suppose X,, - -, X, arei.i.d. (F). Let m = a-n + O(1). Then,

Received February 1974; revised October 1975.

! This research is based on a part of the author’s Ph. D. dissertation submitted at the Uni-
versity of California, Berkeley, June 1974. The research was supported by National Science
foundation Grant GP-33697x1 and by the Norwegian Research Council for Science and the
Humanities.

AMS 1970 subject classifications. Primary 62E20, 62G30.

Key words and phrases. Error bounds, linear combinations of order statistics, elementary
methods, Fourier methods.

357

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ%%
The Annals of Statistics. MIKOJIS

. ®
www.stor.org



358 STEINAR BJERVE

if F(A) < a < 1, there is a constant ¢ > 0 such that
P(X,, < A) < e,

Proor. We have X,,, < A if and only if N, the number of observations that
fall to the left of A, is m or larger. N is obviously binomial with parameters n
and p = F(A) and

P(X,, < A) = P(N > m).

Choose ¢ > 0 such that p 4 ¢t < a. Then, for n large enough,
P(N>m)§P(N>n~(p+t)):P<u>t>.
n

Bernstein’s inequality states that the right-hand side is less than or equal e~°"
for some ¢ > 0.

In the case where zero weight is given to the tail order statistics, Rosenkrantz
and O’Reilly (1972) obtained error bounds of the order n~*.

In [1] Bickel obtained Berry-Esseen bounds of the type (1.2) for 2nd order
U-statistics with bounded kernel. His results cover nonparametric statistics
such as the Wilcoxon 2-sample statistic and Kendall’s ¢ but do not cover the
L-statistics considered in the present paper.

2. Error bounds. T, has a distribution identical to that of

@.1) Lo e H(Z), H=hoF'oG,
n

where Z,, < --- < Z,, is the ordered version of a random sample Z,, - .., Z,,

from the exponential distribution, G(x) =1 — e™*. Furthermore, it is well

known (David (1970), page 17), that

Z Z, 2
2.2 | L
(22) o~
and
1 1
EZm:Vm:———k—i—————— .
n n—i+41

Letc,, =0fori<a.-nori>f-n0<a<p<l.
Assuming H is twice differentiable and Taylor-expanding H(Z;,) about v,,,
we get
T

(2.3) n__”__#":an-Qn-{—Rn,
K

n

where

1
Mo = —’; 2t Cin H(”m) ’

L,= '1— 201 Con ' (vin)(Zin — vin)
Sn

2 ~ denotes ‘‘distributed as.”’
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0, = L Nt ben H ) (Ze — vl »
s'll

R, = -s'l— 2211 €n G Zi ) Z iy — vin)® s

and
G,.(2) = {l:H(z) — H(v;,) _ H’(vm)_J 1 _ %—H"(vin)lr 1
Z — Vi Z — Vi — VYin

Denote
(2.4) g, = Supagng;i:ci,,ﬁo |Gm(z)|
where a and b are constants such that

0<a< —log(l — a) and —log(l — B <b< oo.

The normalizing factor, s,, is determined so that the variance of L, is 1.
Using (2.2) we get

(2'5) L'n ~ —1‘ Z?=1 azn(Zz - 1) ’
s’n
where
1 )
(2.6) ®Xin = it Fei Cin H (V) -

It is seen that we must put 5,> = >7_, aj,.
Let F, denote the distribution of n(7, — p,)/s,. The theorem we will prove
is the following.

THEOREM 1. Ler H" satisfy a first order Lipschitz condition on [a, b] and let the
following hold for all n.

2.7 s >0-n for some 6 >0,
and

(2:8) Lialen| <e-m,

for some ¢ < co. Then there is a constant K such that
(2.9) sup, |F,(x) — ®(x)] < K-t .

Proor. We will show that a Berry-Esseen bound holds for the distribution
of M, = L, + Q,, and that R, is of negligible order, i.e., that

(2.10) PR, > nt) = O(n~t).
The result, (2.9), then follows as is seen by the following calculations:
Fux) = P(M, + R, < x N |R,| < n™}) + P(M, + R, < x N |R,| > n7})
< P(M, < x + n7%) + O(n?)
< O(x + n7t) + O(n?) < O(x) + O(nt),

where we have used the fact that |®’(x)| is bounded.
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A similar argument may be used to establish the inequality F,(x) = ®(x) —
O(n~t) from which we conclude that
(2.11) |F,(x) — @(x)] = O(n7}) uniformly in  x.

We now proceed to show that P(|R,| > n~t) = O(n~%).
The probability that Z,, falls outside the interval [a, b] forany a - n <i <
B - n is exponentially small. This is seen by transforming the Z;, to uniform
order statistics and using Lemma 1.1. Let U,, = 1 — e %i». Then,
P(Z,, ¢[a,b] forsome a-n<i< B-n)

= P(Z[a'n+1],'n < a) + P(Z[ﬁ~n],n > b)
= P(Upgninn < 1 =€) + P(Upppy > 1 —e7)
=o(e*") for some ¢ >0,

sincel —e*< aand1l —e® > 8.
This, with (2.4) and the fact that¢,, = Ofori < @ -nori > § - n, implies that

PR > n74) < P (% Dty feul|Zi — vl > 1) + o).

n

It is easily seen that
EZ,

(cf. Lemma 2.1 below). Thus,
E|Z,, — vi,|* < [E(Z;, — vin)']} = O(n7?) uniformly for an<i<f-n.

—v,)t = 0(n™?) uniformly for a-n<i<f-n

From the assumptions on H it follows that

Gin(2) = $(H'(via) — H'(via))/(z — vin)
where v/, is some number between z and v,,. It also follows (cf. (2.4)) that the

g, are uniformly bounded. Note that v,, €[a, b] foralli: c;, # 0 and all n large
enough. By Markov’s inequality, (2.7) and (2.8) we now have

P(R,| > nt) < nt. Oty - T2 5 e, | = O(nH).

It remains to show that a Berry-Esseen bound holds for the distribution of

L, 4+ Q,.
Let
(1) = Eetinton

7]([) — Eeit(Z—l) S

where Z is exponentially distributed with parameter 1 and let

d)n(t) — Eeitln — "y (ajnt> )

n

From Esseen (1944), page 45, it is seen that one can find constants ¢, and c,
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such that

e d, () — e dr < S
7y 190 — e <

if
(l/n)(lalnia + -+ ‘annls) — nt (Ialnla + -+ Iannla)
(s.2/n)? X
is uniformly bounded. This expression is p,, in Esseen’s notation. From (2.5)
and (2.6) we in fact get

(2.12) i (ol + -+ 4 |@al®) < lal® + o g
5. = Ots,?

n

< -t sup, |a,,| -

Since ¢;,, = 0 when i < a« - nori > f - n and since H'(v;,) remain bounded for
these values of i and all n, we see from the expression (2.6) that the «,, them-
selves are uniformly bounded. If we now are able to show that

(2.13) S i 1040 = B0 de < e,

for some constants ¢, and ¢, > 0, we may conclude that for ¢ = min (¢, ¢,) and
C = ¢, + ¢, we have

(2.14) g, L i |®,() — e~ dt < C - nt,

The validity of a Berry-Esseen bound for L, + Q, then follows from Lemma
2 of Feller (1966), page 512. From the fact that

N B ()l P
(k — DT k!
we have
(2.15) |@,(1) — B,(1)] = lEe“Ln(e“% — 1)
=z | 2 pen0,) + M Eig .
Introducing
1 n
ﬁjn = n —j—l—_f ZL J can (vzn) >

it is seen that for Q, we have
1 (z, — 1)z, — 1)
Q'n, ~ Z ) 18 vg,n £ g .
sn »,q Fpvae n*—-(P/\q)—‘—l
To determine the order of magnitude of |®(r) — ®(1)|, we need the following
two lemmas.

LemMma 2.1. There is a constant c, such that

B(Z,y — v)™ S " nmm™ for i< fon and m<n.
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ProorF. First,let Z, Z’ be independent with equal distributions. UsingJensen’s
inequality we then find
E(Z — Z')™ = E[E(Z — Z'}™| Z]
= E[E(Z — 2’| Z)]™
= E(Z — EZ)™.
If Z, 2" ~ e* then W =2 — Z' ~ e~ and we find that
E(Z — 1™ < (=, 2""se7 ¥ dz = (2m)!
Now, let Z, Z' be distributed as Z,,. Then Z — Z' ~ Wyjn 4 -+ + W,/(n —
i + 1) where W, ..., W, are independent with common double exponential
distribution. We get:
2m
E(Z,, — v} < E(ﬁ Lo ___’l/_>
n n—i+1
EWrm ... W
n”l...(n_i+ 1)7%' ’

= Z nyteestn;=2m (nl,%,{":y'ﬂ'i)

Now,
Ewm ... Wr=n!...n! if all n’s are even
=0 otherwise.
Thus,
n! ... n!

n”‘l(n_l_|_l)'”'z

E(Zm - "'in)zm é Z’n1+~-+ni=2m;njeven \ 41 (nl,?'fn:,ni)
(2m)!
(n—1i+ 1y
_ (2m)! (miz1y

(n—i+ Ly "

Using Stirling’s formula, (27 )tn"*texp[ —n+1/(12n+1)]<n! < (27)in +iexp[ —n+
1/(12n)] (Feller (1957), page 52), we can bound the right-hand side by

IA

Dmgtvimien

c . (2m)2m+g(m + i — 1)m+k—§e—2m
b — i 1P — 1)hmm

< cp™ [iﬂ]m m™ . 2%
-5

i>1

The last inequality holds since i < 8-n, m < nand (1 + m/(i — 1))~} < ™.

LEMMA 2.2. Under the assumptions of the theorem, we can find constants c,, ¢,, ¢,
such that the following holds.
(i) E|Q." = n~"m™c,", m < n.
(i) |Ee'xQ,| < ¢,n~H D, (1)|(* + 1).
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o

"”'t>l,m<n.3
S,

n

Iliesn <

(iii) |EeitL”Qnml § C3mm2mnm/2 SupSC(l,-“,n);#Szn—?m

Proor. We may write
snm ‘ Elinm = EIZ?:I C;;(Zm - "'in)zlm
= Xhig ETIT1 € (Zi 0 — vi0)?
1 m J J J
é Z H;'n=l ICZ;I[E(Zz,n - Vijn)zm]l/m ’
where ¢}, = ¢, H' (V).
Using the result of Lemma 2.1, we get for m < n,
E|Q, ™ < ¢mn~™m™s,™™ >, 11 ICQ;]
- M gy =—Mm, 1 "
< 6-~ernmmn (— 8 e )

< n~™?mmc,™, which proves (i).

NOW, write
| o zZ,— 1)z, - 1)
E”Lnin — Ee”’“nsn 1 Z ’ ﬁ v ,n( » q .
| p.a Ppva n—(pnNg) 1
We have
Eet'w(Z, — 1) (Z, — 1) = [%o1y <0ij . t) . hy <a’°: . ’)
><h1<“1n"> for k+#1
Sn
_ j=1”<ajn'f).h2<“lm‘t> for k=1,
S, Sn
where
. -7
hin) = and  hy(f) = ‘

Note that 7(r) = [e*(1 — ir)]~". Differentiating () we find that E(Z — 1)*ei*Z-b =
h(On(1), k =1, 2.

It is easily seen that |A,(¢)] < |7 and that |A,| and |A,| are both bounded by 1
for all real t. Thus we get,

it Ly, 0 . -1 tza;m * aq’nﬂpvq,n no_ ‘87’1‘,__.__

[Be20,] £ 90+ 5.7 | e 32 mlmts + Mo o]
The a’s and the §’s remain bounded by, séy, A4 and B respectively. This is seen
for the B’s the same way as for the a’s in (2.12). Note also that 8,, = 0 for
i > f-n. The quantity inside the last set of absolute value signs is therefore
bounded by rA’B/0(1 — B) + B 3 %_(u-s..p " This proves (ii) since the last
sum is bounded. We proceed to show (iii). Now,

|Ee" Q" < [n(1 — B)s,]7™ Z%i.... ipmtiiyrsim= El[T3=1 €Xplita;(Z; — 1)s,7]
X Tk BiyviynlZey, — 1)(ij — 1)

3 #S = number of elements in S.
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é [n(l - ‘B)Sn]_""' ?1"“'7;1»‘:1;-7-1"“']‘71»:1 H:’;*il.jl;l=l,«u,m
X E|Ipy (Zy, — I(Z;, — D] 115 1Biyvipunl
m ol

é [n(l - ‘B)S,,,,] Supgcu’...,n);#sgn_2m HjeS 77 (L)k

S'IL
X E|ZI - 1|“[Z$.q=1 Iﬂpvq.nl]m
= [(1 — B)70~2B]™(2m)*™n™ " SUPsc ..., npspszn—2m ILjes

W(“jﬂ)l
s

n

()

n

We have here exploited the independence of the Z’s. Note also that
[X,¢Bovanl]® < B™*™ and that E|Z, — 1" < 2m!. Since

L U7, R I Gl DA

1 = —
og 7(z) 3 3 P

we see that for |7 smaller than some ¢ > 0, Re (log 7(¢)) < —7**/2, ¢ > 0. This
immediately gives

2t2

~ 2.2 ¢2
Re (log ®(1)) < Ty — S0 = — -

n

Also, since the a’s are bounded by 4, we have

(%)

n

log supsc,...,npssszn—2m [l jes

202 42
(2.16) < sups Tjes — 52—

212

= Sups _T<l - Zaes P

al )S(l _ 2mA2> thz.
- d-n/ 2

n

From (2.15) with m = 2 and Lemma 2.2, we now have
|®@,(t) — D (1) < |tle,nte =022 1) + 2. 22 n7t e ¢
We conclude that

(2.17) o %&ﬂm — o(nY.
On (—¢ - nt, ¢ . nt), we have from Lemma 2.2,
emn™/?

m' n—m/zmmclm

1" g, m < 0
m!
<(e-e-c)", since m! = m™.e™™,

Choose ¢ = p/(e - ¢;), p < 1 and let m = [log n/|log p| + 1] A n. Then

(2.18) M;E|Qn|"‘ =0(n™) on {—e-nte.nty.
m!
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We also have on {—¢ . n}, ¢ - nt), using Lemma 2.2 combined with (2.16), that

—1| t] itL j
m i Ee'tlnQ 7

=i
i A*2 i
B cr (- 42 21
2 2
(2.19) < N (e e g e mpexp| —(1 = Z2M) T ]
0.-n/ 2
2
g(cs-e-m-e-n)’"exp[—<l — ,;22;n>}-2_ . n]
= O(H_l) .
Combining (2.17), (2.18) and (2.19), we see that (2.13) holds, and the theorem

is proved.
As a corollary to Theorem 1, we will prove another version of this theorem

that better lends itself to applications.
We now assume that T', can be written in the following form, which is a

special case of (2.1):
(2.20) T, =n-t 5, J<;ﬁ> h(Xe) + iy ah(Xipa,) -

A finite number, r, of quantiles are here given special weights a, == 0. (2.20)
includes statistics such as the trimmed mean, the Winsorized mean and system-
atic statistics.

Chernoff et al. (1967), among others, showed under certain conditions, that
T, is asymptotically normal with mean

r= o JW)G@u)du + Fi_, a,G(p,)
and variance
o' = ($a*(u) du,

where G = h o F~' and

a@@) = (I = )L JW)G'(w)(1 — wydw 4 3..,.2. a(l — p)G'(p))} -
We will prove the following corollary, notation being the same as in Theorem 1.

CoroLLARY. [If J and G" satisfy a first order Lipschitz condition on an open
interval containing I = [a, B] 0 < a < B < 1, J vanishes outside I and if p;el;
i=1, ..., r, then

(2.21) sup, |P (;ﬁ I%fi < x) _ @(X)‘ < %

Jfor some constant K. If r = 0 it is assumed that J(x) > 0 on some open interval.

Proor. T, may certainly be written in the form (1.1), and ¢, @,, and s,? are
defined as previously.
First, we assure that the conditions of this theorem imply those of Theorem
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1. With H(x) = G(1 — e~*), H"” will satisfy a first order Lipschitz condition,
on an interval [a, b] where 0 < a < —log(l — a) < —log(l — B) < b. As
will be shown below, |s,2/n — | < ¢/n, so that (2.7) is satisfied at least if n is
large enough. J is bounded on [ since it satisfies a first order Lipschitz con-
dition. We therefore have constants ¢, and ¢, such that

cin:‘]<n;1>§c17 l¢[P,h], j:1,"'7r; n:1321"‘

=J< i )—l—n-aign-cz,
n+1

i=[p;h], j=1,.--,r; n=12,....

We can conclude that (2.8) holds for the c,, above. Thus, (2.9) holds for the
distribution F,, of n(T, — £,)/s,-

LEMMA 2.3. Under the conditions of the theorem,

(2.22) p,=p+0 (L)
n
and
(2.23) LS <i> .
n n

Proor. Define 9;, = —log (1 — j/(n 4+ 1)). As in Chernoff et al. (1967), it
is easy to see that

Oévjn_ﬁjn< ] . ‘
(2n 4+ 1)(n —j+ %)

Thus, there is a constant ¢, for which

—5,/<S  forall j suchthat —J eJ.

(2.24) v ; e

in

Therefore, since H has a bounded derivative on 7, H(v,,) — H(9;,) = H(v,,) —
G(j/(n + 1)) = O(n™"). Define

ﬂn=—,1{2?=1"< J >G<nil>+zgzlaiG<M>.

n+1 n+1
Rewriting
#n = n_l Z Cin H(vm) as
1 o, i ,
Hn = 7 Zi=l J <n + 1> H(vln) + Zi:l ai H(y[pi-n],n) ’
we see that

(2.25) o — fin = O(n™Y).
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We have further, . |
= — Tima S (1 L2)6 (1) - swsw ) au
+ na (6 (L) —a).
Since J and G both satisfy a first order Lipschitz condition, we have
(1) ¢ () — oo
=3 ((7) -~ 1) (6 () + o)

1o () - o) (o) + )

= 0(n™) for u e[j —1 , LJ uniformly in j
n

n
and
[p: - n] — -1
G (;ﬁ) — G(p) = O(n™.
Thus,
(2.26) fin — pp=0(n7),

and we can conclude (2.22).
We now prove the second part of the lemma.

h Sn2 = ?:1 a%’n ’
where
1 '
A = ;1*:7:1* =1 Cn H'(v},)
1 ] (4 r
=T 1T () e 0 Bl B )

Replacing v;, by 7;, and noting that H'(x) = G'(u)(1 — u), we get

= 18 ) o ) 0 - )

+ 1 Nz 4G <n_]|_ 1><1 T n _{_ 1>}

Since G’ also satisfies a first order Lipschitz condition, (2.24) gives

(2.27) a;, — a;, = 0O(n7?) uniformly in .
Also,

r ()= " ot ggrvm [ M J (S
%in a<n> n—iI:ZFISM {n—i+1J<n+1)G<n—|-l>

X <1 - #) — JW)G'(u)(1 — u)} du

367
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+"zﬁvi_r—{-iA1-“}1«J<n —T— 1>G’<n—’{1—1><1 T . 1)

_|_.
n—i o, (L .
o D0 (=)

— Dipzim 4G (p)(1 — Pi):l .

The functions J, G’ and (1 — x) each satisfy a first order Lipschitz condition,
and therefore J(x)G'(x)(1 — x) also does. We can conclude that

(2.28) a;, —a <L> = O(n™) uniformly in .
n

We can now write
2

S 2 1 2 1 2 i\
=0 = *;1— to (ad, — az) 4+ *n" i | A —a | —

n n
+ Do St (€@ — @ (’7)) du.

Since the a
constant K,

1

K

a), and the function a(u) are all bounded, we have, for some

in? in

2
N
Sn. g2

n

é ‘1_ Z?:l |ai'n, - a;n‘ + —1”' ?:1 }a:n —«a <"l_‘>1
1 n n n/|i

du .

+ D Ve al0) — ()

It follows from (2.27) and (2.28), that the first two summands are of the order
1/n. a(u) is continuous with uniformly bounded derivative, except at the points
pis i =1, ..., r, where it has jumps of size a,(1 — p;)G’(p;). These jumps are
all less than some D < oo. The last sum, taken over all indices i, for which
p;el(i — 1)/n,i/n]; j=1, ..., r, is of the order 1/n and the remainder is less
than r/n « D. We can thus conclude (2.23) and the lemma is proved.

The equalities that follow are valid uniformly in x. Using (2.22), the result
of Theorem 1 and defining ¢, = n~is,, we can write

P<ni_T"_/J <x>:®<x+n*ﬁ”—:—‘u—)—|—0<%>

g n

— ®(x) + O <711;) :
Secondly, we have
P Bzt <)o (2 0 (1)

g

where ¢ = @'.
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Since x¢(x + y) is bounded for all x and y, (2.23) gives

P<n*1l‘;__—‘u;<x):®(x)+0<%).

Acknowledgments. I am greatly indebted to Professor Peter J. Bickel for

having suggested the problems and for his patient and continual guidance
throughout this investigation. Thanks are also due to the referees for many
valuable comments.

(1]
[2]
[3]
[4]
[3]
[6]
[7]
[8]

REFERENCES

BickEL, P.J. (1974). Asymptotic expansions in nonparametric statistics. Ann. Statist. 2
1-20.

CHERNOFF, H., GASTWIRTH, J. L. and Jouns, M. V., Jr. (1967). Asymptotic distribution
of linear combinations of functions of order statistics with applications to estimation.
Ann. Math. Statist. 38 52-72.

Davip, H. A. (1970). Order Statistics. Wiley, New York.

Esseen, C. G. (1944). Fourier analysis of distribution functions. Acta Math. 77 30-80.

FELLER, W. (1957). An Introduction to Probability Theory and Its Applications 1, 2nd ed.
Wiley, New York.

FELLER, W. (1966). An Introduction to Probability Theory and Its Applications, 2. Wiley,
New York.

HoEFFDING, W. (1963). Probability inequalities for sums of independent random variables.
J. Amer. Statist. Assoc. 58 13-30.

ROSENKRANTZ, W. and O’REILLY, N. (1972). Application of the Skorohod representation
theorem to rates of convergence for linear combinations of order statistics. Ann.
Math. Statist. 43 1204-1212.

INSTITUTE OF MATHEMATICS
UNIVERSITY OF OsLO
BLINDERN, OsLo 3
NorwAy



