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EXTENSION OF THE GAUSS-MARKOV THEOREM TO
INCLUDE THE ESTIMATION OF RANDOM EFFECTS

By DAvIiD HARVILLE
Aerospace Research Laboratories, Wright-Patterson AFB

The general mixed linear model can be written y = Xa + Zb, where a
is a vector of fixed effects and b is a vector of random variables. Assume
that E(b) = 0 and that Var (b) = ¢2D with D known. Consider the estima-
tion of A’a + 2¢/B, where 2/« is estimable and § is the realized, though
unobservable, value of 5. Among linear estimators ¢ + r’y having E(c +
r'y) = E(4/a + 22'b), mean squared error E(c + r'y — 21’a — 2¢’b)? is mini-
mized by A/a + Zz’,é, where ,é = DZ'V¥y — Xa), @ = (X'V#X)~X"V4y, and
Vtisany generalized inverse of V = ZDZ'’ belonging to the Zyskind-Martin
class. Tt is shown that & and f can be computed from the solution to any
of a certain class of linear systems, and that doing so facilitates the exploi-
tation, for computational purposes, of the kind of structure associated with
ANOVA models. These results extend the Gauss-Markov theorem. The
results can also be applied in a certain Bayesian setting.

1. Introduction. Most, if not all, linear statistical models that may be applied
to a set of data are included in the formulation

(1.1) y = Xa + Zb,

where y isa n X 1 vector of random variables whose observed values comprise
the data points, X and Z are matrices of known ‘regressors’ with dimensions
n X pand n X g respectively, a is a p x 1 vector of fixed unknown and unob-
servable parameters, and b is a ¢ X 1 vector of unobservable random effects or
errors. It is assumed that E(b) = 0 and that Var (b) = ¢>D where ¢* is a strictly
positive parameter that is generally unknown and where the elements of the
possibly singular matrix D are known functions of some vector # of parameters.
Define V'by V = ZDZ', so that Var (y) = ¢*V. The above formulation includes,
but is not limited to, the fixed, mixed, and random models associated with the
analysis of variance.

In conjunction with the model (1.1), considerable attention has been given in
the past to the problem of making inferences from the data about the parameter
vectors @ and/or #. Much less emphasis has been devoted to the problem of
making inferences about the realized or sample value § of the random vector b
or, more generally, to the problem of making inferences about linear combi-
nations of the elements of & and 8. Yet, as observed by Searle (1974), it is the
case in many applications that 8 enters nontrivially in the linear combinations
of principal interest. For example, in animal breeding applications, linear
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combinations of the elements of « and b correspond to the breeding values of
individual animals, and the primary objective in analyzing the data may be to
evaluate these same individuals as candidates for some future breeding program.
In what follows, some results are presented on the estimation of linear com-
binations of the elements of a and g for the case where 6 and thus D are known.
These results are of interest even though, in practice, ¢ is often unknown. A
good estimate of ¢ may be available or obtainable, in which case we can proceed
as though D were in fact known. Moreover, knowing what to do when @ is
known may provide some insight into what to do when it is not. The traditional
advice on estimating estimable linear functions of « when # is unknown has
been to first confront the generally difficult problem of estimating 6, perhaps by
using analysis-of-variance techniques if they are applicable, and to then proceed
as though that estimate were the true f-value. A similar approach can be
adopted for the more general problem of estimating linear combinations of the
elements of « and 5. Also, the results derived on the basis of the model (1.1) for
the case of known D are found to have an interesting interpretation in a Bayesian
setting in which some elements of b are regarded as unknown parameters.

2. Best linear unbiased estimation of linear combinations of fixed and ran-
dom effects. An estimator #(y) of 2/a + 2,8, where 4, is p X 1 and 4,is ¢ X 1,
will be called unbiased if E[t(y)] = E(4/a + 4,/b) = 4/a, and will be labelled
linear if t(y) = c¢ 4+ r'y for some constant c and some n X 1 vector r of constants.
The quantity E[7(y) — 2/a — 2,/b]* will be referred to as the mean squared error
(m.s.e.) of the estimator. For any matrix 4, 4~ will denote any particular
generalized inverse of A4, i.e., any particular matrix satisfying 44-4 = 4. Take
N to be any matrix whose column space _Z(N) is the same as the null space of
X’. For any n X n matrix 4, Q, will represent the class of those generalized
inverses 4* of A that satisfy the two conditions rank (X’ 4*X) = rank (X) and
X'A*AN = 0.

Take V* to be any particular member of Q,, and let & represent any solution
to the general normal equations

(2.1) X'ViX)a = X'Viy .

Suppose that 1/« is estimable, i.e., that 2, = X’y for some n X 1 vector y. A
generalized version of the Gauss-Markov theorem says that Q, is nonempty
and the linear system (2.1) is consistent, and that 4/a is an essentially-unique
best linear unbiased estimator (b.l.u.e.) of 4/« in the sense that if ¢ 4 'y is any
other linear unbiased estimator of A/a, then Var (4/d) < Var (¢ + r'y) with
equality holding if and only if ¢ 4+ r'y = 2’a with probability 1 (see, e.g.,
Zyskind and Martin (1969), Mitra (1973), and Rao (1973)). Moreover, denoting
by z{, and z§;, vectors formed from Zyskind and Martin’s z;, and z,,, (see their
page 1200) by deleting elements having zero variance; we have that, when y is
multivariate normal, z,,, together with z¥%z%, if ¢® is unknown, represents a
complete sufficient statistic (since otherwise we arrive at a contradiction of the
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well-known fact that z¥,, together with z}z§,, represents a complete sufficient
statistic for the case where the elements of z}, and z}, comprise (all) the obser-
vations); so that, when y is normal, 4/ is an essentially-unique best unbiased
estimator (b.u.e.) of 4/a.

If & were known, a reasonable estimator for /3 might be 2,5, where § =
DZ'V-(y — Xa). For a known and V nonsingular, it is well known that 2,3
has smaller m.s.e. than any other linear estimator of 4,’3. When y is normal,
§ is a conditional expectation of b given y, so that, for « known, 4,/ then mini-
mizes m.s.e. among all estimators of 2/8. These observations suggest that a
reasonable estimator for 4/a + 4,8, when « is unknown but 4/« is estimable,
might be 4/& 4 /B, where

p=DzV-(y — Xa).
That this estimator can be justified from something more than an intuitive
standpoint is demonstrated in the following theorem.

THEOREM 1. Suppose 2/« is estimable. The estimator A& + A/f is an essen-
tially-unique b.l.u.e. of A'a + A/B in the sense that, if ¢ + r'y is any other linear
unbiased estimator of A/a + 2,8, then the m.s.e. of A/& + ZZ’B is less than or equal
to the m.s.e. of ¢ + r'y with equality holding if and only if ¢ + r'y = A/& + A/
with probability 1. Moreover, when y is normal, A& + 22"3 is an essentially-unique
b.u.e. of A/a 4 2/B.

ProoF. Letu = A/a 4 4,/b. For any estimator #(y) possessing a finite second

moment,
E{[t(y) — E@|MIE®|y) — ul} = E[E{[((y) — E(u[y)[E@]y) —u]|¥}] =0,
so that
E[(y) — u]* = E[(y) — E(u|y)] + E[E(u]y) — u]*.

Further, #(y) is unbiased for « if and only if E[#(y) — E(u|y)] = 0. Thus, 2(y)
isab.l.u.e. or b.u.e. of u if and only if #(y) — 4/DZ’'V-y is a b.l.u.e. or b.u.e.,
respectively, of (1 — 2/DZ'V~-X)a, so that it follows from the Gauss-Markov
theorem described earlier that #(y) is a b.l.u.e. or, in the case of normality, a
b.u.e. of u if and only if #(y) — 4/DZ'V-y = (2 — /DZ'V-X)& with proba-
bility 1. []

When 4, = 0, Theorem 1 reduces of course to the generalized Gauss-Markov
theorem. The special case where 2, = 0 and V is nonsingular includes a result
due to Henderson (1963).

It is known that X(X'V*X)~X'V*V is invariant to the choices for V* and
(X"V*X)~ (a simple proof can be constructed by using Zyskind and Martin’s
Theorems 1 and 2 together with Lemma 2.2.6(c) from Rao and Mitra’s (1971)
book). Further, by applying the result _7Z(X, V) = _#(X, VN) (see, e.g., Rao’s
(1973) paper) and Rao and Mitra’s Lemma 2.2.6(c), it can be shown that, for
ye A(X, V), (y—Xa) e _2(VN). Combining these results with Rao and Mitra’s
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lemma and with the fact that
(2.2) DZ'V-V = DZ'

for any choice of V-, we find that, for y e _.Z(X, V), the estimator A,/a + 2B
is numerically invariant to the choices for F'* and /'~ and to which solution of
(2.1) is used. Note that Pr {y e .#Z(Xa, V)} = 1.

Subsequently, let A, represent any p X ¢ matrix such that A, = X'T" for some
matrix I', so that the elements of A« are estimable functions of «, and take A,
to be an arbitrary ¢ X r matrix. The m.s.e.’s of the elements of A/& + A/B
lie down the diagonal of the matrix

Var [A/(& — a) + A/(B — b)]
= Var (A/&) + A/[Var (8 — b)]A,
+ [Cov (A/&, B — b)]A, + A/[Cov (A&, § — b)) .

Using (2.2), Zyskind and Martin’s Theorems 1 and 2, and Rao and Mitra’s
Lemma 2.2.6(c), we find

o= Var (A/@) = A/(X'VEX)-X'VV(VEY X[(X'VEX)~] A,
(2.3) = A/(X'ViX)-A,, provided _Z(X) c .AZ(V);
02 Cov (A/&, f — b) = —a2Cov (A/&, b) = —A/(X'ViX)"X'V*ZD;
o tVar (y — X&) = V — X(X'VIX)-X'V*V,
implying that X(X’'V*X)-XV*V is symmetric; and
o-*Var (f — b) = D — DZ'V-ZD + DZ'V-X(X'V:X)~X'V*ZD .
When b is multivariate normal, E[b|(y — X&)] = E(b|f) = f with proba-
bility 1, and Var [6|(y — X&)] = Var (b|f) = Var (§ — b). Thus, the distri-
bution of b, conditional on the vector (y — X&) of residuals, is the same as

the distribution of b, conditional on ¢ linear functions of the residuals which
comprise a b.l.u.e. of 8.

3. Extended normal equations. Take b = (b/, b,’)’ to be any possible parti-
tioning of & into uncorrelated vectors b, and b, that satisfies the requirement

(3.1) AZD,Z!)C _#R),

where Z = (Z,, Z,) and D = diag (D,, D,) define partitionings of Z and D that
correspond in dimension to the partitioning of » and where R = Z, D, Z, so that
Var (Z,b,) = o’°R.

The representations given in Section 2 for A/a& + A,'B and for Var [A/(@ —
a) + A,/(B — b)]involve an inverse or generalized inverse for ¥, a matrix whose
dimensions equal the number of data points, which will often be large. Fortu-
nately, in many applications, ¥ has considerable structure which can be exploited
to reduce the computations. In particular, there often exists a partitioning of
the above type such that R and/or D, are diagonal or have other simple forms.
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For example, in the case of the ordinary fixed, mixed, or random analysis-of-
variance models, we can take b, to be a vector whose elements are the random
effects associated with the various random factors, and let b, represent the vector
of errors or residual effects, in which case D, is a diagonal matrix whose diagonal
elements are ratios of variance components and R = Z, = D, = [ (refer, e.g.,
to Searle’s (1971) book). In this section, we display representations that clearly
indicate how such structure can be exploited efficiently for purposes of com-
puting A/@ + A,/f and Var [A/(a@ — a) + A8 — b))

In what follows, take Q to be any particular matrix satisfying D, = QQ’ (such
a Q always exists), and let S, T and U represent any particular matrices such
that D, = STU. Put

V+ = R~ — R-Z,ST(T + TUZ/R-Z,ST)"TUZ/R",
take R* to be any particular member of Q,, and put
(3.2) V* = R* — R*Z,ST(T + TUZ/R*Z,ST)"TUZ/R* .
Theorems 2 and 3, to be stated below, reveal that the computations necessary

to evaluate A/a + A,/ and Var [A,/(@ — a) + A, (B — b)] are essentially iden-
tical to those required to form the linear system

(3.3) [ X'R*X X'R*Z,ST 1[&]_[ X'R*y ]
' TUZ/R*X T + TUZ/R*Z,STIL$1  LTUZ'R*y

and to solve it for @ and ¢. This relationship is significant because, when R*
can be formed readily by analytical means and/or when D, Z;, and X have
many zero elements, it is rather obvious how to exploit these features in form-
ing and solving (3.3). To establish Theorems 2 and 3, we need several lemmas.
These lemmas are of at least some interest in themselves.

LeMMma 1.
rank (T + TUZ/R-Z,ST)
= rank (7) = rank [T + TUZ/R*Z ST + TUZ/R*X(X'R*X)~"X'R*Z ST] .

Proor. It suffices to prove the second equality, since the first can be viewed
as the special case of the second in which X is null. Since X'R*RN =0,
R(R*)'X = XF for some matrix F; and, since rank (X'R*X) = rank (X),

(3.4) X(X'R*X)~"X'R*X = X

(see Rao and Mitra’s Lemma 2.2.6(c)). Thus,

(3.5) {R* — R*X(X'R*X)~X'R*}R{R* — R*X(X'R*X)~X'R*}'R
— [R* — R*X(X'R*X)~"X'R*}R .

Also, (3.1) and the symmetry of D imply that

(3.6) Z,D,Z/ = RM = M'R

for some matrix M. Using (3.5) and (3.6) together with the well-known result
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that det (I + AB) = det (I + BA) for “any” matrices 4 and B and the fact that
det (4) > O for any positive definite matrix 4,
det [I 4 UZ/{R* — R*X(X'R*X)~X'R*}Z ST
= det [ 4+ Q'Z/{R* — R*X(X'R*X)~X'R*}
X R{R* — R*X(X'R*X)~X'R*}'Z,0] > 0,

and the lemma follows. []

LeEMMA 2.

T=T1T(T 4 TUZ'R-Z ST)~(T + TUZ'R-Z,ST)
= (T + TUZ/R-Z,ST\T + TUZ/R-Z,ST)"T .

Observing that T + TUZ/R-Z,ST = T(T- + UZ/R-Z,S)T, Lemma 2 follows

immediately from Lemma 1 and Rao and Mitra’s Lemma 2.2.6(f).

LEMMA 3. The matrix V* is a generalized inverse of V;

3.7 D, Z/'Vt = ST(T + TUZ/R-Z,ST)"TUZ/R~ ;
(3.8) V+Z, D, = R-Z,ST(T + TUZ/R-Z,ST)"TU ;
and

(3.9) D, — D, Z'V*Z, D, = ST(T + TUZ'R-Z,ST)"TU .

Proor. Using Lemma 2 together with (3.6),
V¥V = R"R 4+ R-Z,ST(T + TUZ'R-Z,ST)"TUZ'(I — R™R)

(3.10) = R"R + R[I — Z,SI(T + TUZ/R-Z,ST)-TUZR"]
X Z,D,Z/(I — R"R)
= R R s

so that, again using (3.6), VV*V = V. The result (3.7) follows upon observing
that
TUZ!V* = (T + TUZ/R-Z,ST) — TUZ/R~Z,ST]
X (T + TUZ/R-Z,ST)"TUZ/R~
=T(T 4+ TUZ'R-Z ST)"TUZ/R- .
Similarly, V*Z,ST = R-Z,ST(T 4+ TUZR-Z,ST)"T, establishing (3.8). Upon
applying Lemma 2, (3.9) follows immediately from (3.7). [J
LEMMA 4. Any partitioned matrix
o[ 4]
Ay Ay
for which _#(Ay,) C #(A,)) and _#(A},) C _#(A},) has as a generalized inverse

A; O — A7 A _
45 O [~

where W = A;, — A, A A, Moreover, rank (A) = rank (4,;) + rank (W).
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Lemma 4 represents an extended version of results due to Rohde (1965), and
its proof completely parallels Rohde’s proofs. There is of course a result anal-
ogous to Lemma 4 for the case where _7Z(A,,) C .#(A,,) and _Z(A},) C A#(A,).
Using (3.4) and the similar result (X’R*X)(X"R*X)~X" = X', it is easy to verify
that the conditions of Lemma 4 are met by the partitioned coefficient matrix
(subsequently denoted by C) of the linear system (3.3). It follows from Lemma
2 that C also meets the conditions of the analogue to Lemma 4. Applying the
analogue, we find that a generalized inverse for C is

Gr [G G]
Gi G
where G, = (X'V*X)~, G, = —(X'V*X)"X'R*Z,ST(T + TUZ/R*Z,ST)~, G}y =
—(T + TUZ/R*Z,ST)"TUZ/R*X(X'V*X)~, and Gy, = (T + TUZ,R*Z,ST)~ —
GiX'R*Z,ST(T + TUZ/R*Z,ST)-.

LEMMA 5. The matrix V* is a member of Q,.

Proor. That V'* is a generalized inverse of V is a special case of Lemma 3.
Using (3.10), X’V*VN = X’R*RN = 0. Using Lemmas 1 and 4 and the analogue
to Lemma 4, rank (T) 4 rank (X"V*X) = rank (C) = rank(7T) + rank (X’R*X),
so that rank (X"V*X) = rank (X’R*X) = rank (X). [J

The following theorem relates the solutions of the system (3.3) to each other,

to f and solutions of (2.1), and thus to b.l.u.e.’s of the elements of the vector
Ao + A/B.

THEOREM 2. The linear system (3.3) is consistent. Suppose that y ¢ _.#Z(X, V)
(which is the case with probability one). Then, for any solution & to (2.1), the system
(3.3) has a solution whose first component equals &. Moreover, if a* and ¢* are the
components of any solution to (3.3), a* is necessarily a solution to (2.1) and ST¢* =
B., where § = (BY, B,). Also (even if the condition (3.1) is not satisfied),

o= D,Z/R(y — Xa — Z,8)) .

Proor. Using Lemma 5 and Rao and Mitra’s Lemma 2.2.6(c), we find that
the system (3.3) has exactly the same solution space as the linear system con-
sisting of the two equations

(3.11) (X'V*X)a = X'V*y
and
(3.12) (T + TUZ/R*Z,ST)} = TUZ/R*(y — X&).

For any p X 1 vector &, we can use Lemma 2 to verify that the equation (3.12)
is satisfied by

(3.13) ¢ = (T + TUZ/R*Z,ST)"TUZ/R*(y — X&),

so that the consistency of (3.3) follows from the known consistency of (3.11),
and, recalling the invariance properties noted in Section 2, any solution & to
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(2.1) constitutes the first component of some solution to (3.3) provided y e
(X, V). Now suppose that & and ¢ are the components of any solution to
(3.3) and that ye _#Z(X, V). That & is a solution to (2.1) follows from the
previously noted invariance properties and the equivalence of the system (3.3)
and the system consisting of (3.11) and (3.12). The equivalence of these two
linear systems also implies that ¢ has the representation (3.13) for some gener-
alized inverse of (T 4 TUZ/R*Z,ST), so that, using (3.7) and the invariance
properties, ST$ = D, Z/V-(y — X&) = §,. Finally, for y e _Z(X, V),

B, = D,Z/R-RV-(y — X&) = D,Z/R~(y — X& — Z,f,) . 0

The upshot of Theorem 2 is that the linear system (3.3) can play a role in
the extended version, given by Theorem 1, of the generalized Gauss-Markov
theorem that is analogous to the role played by the normal equations (2.1) in
the original version.

In conjunction with the fixed-effects Gauss-Markov theorem, we know that
the covariance matrix of the b.l.u.e.’s of any estimable functions of « can be
expressed, through the formula (2.3), in terms of any conditional inverse of the
coefficient matrix of the normal equations (2.1). The extension of this result is
given by the following theorem.

THEOREM 3. For any generalized inverse

G:[G“ Glz] of C,

G, G,
o2 Var (A/&) = N/G, X' V¥V(V*YXG), A,
(3.14) = A/G[I — X'(I — R*R)(R*)XG]A,
= A/G, A, provided _Z(X)C _Z(V)
(3.15) o2 Cov (A/&, §, — b)) = A/G,TU ,
0-2Cov (B, — b, N/@) = —D, Z/V*XG,, X'V*V(V*)XG!, A,
(3.16) = STG,{I — X'(I — R*R)(R*Y XG/,]A,
= STG,,A,, provided _zZ(X)c .2Z(V),
(3.17) o~ Var (B, — b)) = STG, TU .
Moreover,

(3.18) o2 Cov (A/&, B, — b)) = —A/(G X' 4+ G,TUZ\R*Z,D,,
(3.19)  67*Cov (B, — by, p, — b)) = —D,Z,/R¥XG,, + Z,STG,,)TU ,
0% Var (8, — b,)
(3.20) = D, — D,Z/R*Z,D, + D,Z,R¥(XG, X' + XG,,TUZ/
+ ZSTGu X' + Z,STG,,TUZ/)R*Z,D, .
Proor. The results will first be established for the case G = G*. Using (3.10),
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Lemma 2, and (3.6), we find

(3.21) X'VHV(V+HYX = X'V*X — X'R-(I — R"RYX .

The result (3.14) can be verified readily for G = G* by applying Lemma 5, the
invariance properties noted earlier, (3.21), and Rao and Mitra’s Lemma 2.2.6(c).

The proof of (3.16) for G = G* is similar, but makes use of Lemma 3 and the
relationship
(3.22) X'V¥ZD = X' VWV (VY X[(X'VEX)- VX' (V-YZD ,
which follows from (2.2) and the symmetry of X(X'V*X)-X'V*#V. The verifi-
cation of (3.15) and (3.17)—(3.20) for G = G* is made trivial by the availability
of Lemma 3.

From a result due to Urquhart (1969), we have that any conditional inverse

of C has the representation G* + H — G*CHCG* for some suitably chosen ma-
trix H. Thus, to complete the proof of the theorem, it suffices to show that

(3.23) [X O]G*C:[X 0]
0o T 0o T

and that
(3.24) CG*[X’ O}Z[X' 0].
o rJ7lo T

Using Lemmas 2 and 5 together with Rao and Mitra’s Lemma 2.2.6(c), we have

that

(3.25) G*C = [(XIV*X)—(XfV*X) 0 ] ’
0 (T+TUZ/R*Z ST)(T+TUZ/R*Z ST)

leading to (3.23). The equality (3.24) can be verified in similar fashion. []

In conjunction with the linear system (3.3), we find, using (3.25) along with
Lemmas 1 and 5, that

rank (C) = rank (G*C)
= rank [(X'V*X)~(X'V*X)]
+ rank [(T + TUZ/R*Z ST)~(T + TUZ/R*Z,ST)]
= rank (X'V*X) + rank (T + TUZ/R*Z,ST)
= rank (X) + rank (T) .

Thus, if rank (X) = p and if T is chosen to be a nonsingular matrix, then the
coefficient matrix C of the linear system (3.3) will be nonsingular even if R
and D, are not. Ifrank (X) < p, we could of course consider making a full-rank
reparameterization of the fixed effects part of the model in order to achieve a
nonsingular coefficient matrix.

Theorems 2 and 3 are generalizations of results due to Henderson (1963). The
latter results apply when R and D, are both nonsingular, and they are included
in the special cases of Theorems 2 and 3 obtained by putting 7 = D,~* and § =
U = D,. There will typically be values of ¢ for which D, is singular and others
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for which D, is ‘ill-conditioned’, so that these particular choices for S, T, and
U do not always apply and sometimes cause the linear system (3.3) to be un-
stable numerically. Difficulties of this kind were encountered, for example, by
Hemmerle and Hartley (1973).

Some obvious possible choices for T, §, and U that apply even when D, is
singularare: T=D-andS=U=D;T=D,andS=U=1,T =8 =TI and
U=D;T=U=I1andS=DjorT=1,§=Q,and U= Q'. In any given
application, S, T, and U should be chosen so that the linear system (3.3) is well-
conditioned and, at the same time, easy to form and solve. The results of Zyskind
and Martin (1969) and Mitra (1973) are applicable to the computation of R*.

It is now clear that, for purposes of computing A& + A, and Var [A/(a —
a) + A/(B — b)], we can readily exploit structure associated with the partition-
ing b = (b/, b) by working with the linear system (3.3) rather than with the
representations given in Section 2. An alternative approach would be to base
the computations on the original representations but to use expressions like (3.2)
and (3.7)—(3.9) to advantage whenever possible. It is not hard to see that the
latter approach, if properly implemented, is essentially equivalent to the ap-
proach based on (3.3).

4. An application of the results in a certain Bayesian setting. Suppose that
the statistical model is given by (1.1), but that, instead of all of the elements of
b being random effects or errors, some of them, like the elements of a, represent
fixed parameters. Put a* = A’a where, letting p* = rank (X), Aisany p X p*
matrix of rank p* such that A = X'I" for some I', and define X* to be a n x p*
matrix of constants such that X*a* = Xa. Conditional on ¢* and a*, take the
prior distribution of b to be multivariate normal with E(b) = x and Var (b) =
o’D, where p and D are known. Subsequently, it is supposed that ;2 = 0 (which
can be done without loss of generality); and E*, Var*, and Cov* are used to
indicate expectations, variances, and covariances that are defined with respect
to the joint prior distribution of a*, 4 and ¢

We have
E*(b|a*,y, 0% = DZ'V-(y — X*a*),
Var* (b|a*, y, 6*) = ¢¥(D — DZ'V-ZD),
so that
(4.1) E*(b|y, 0% = DZ'V-[y — X*E¥(a* |, o],

Var* (b|y, 6*) = E*[Var* (b|a*, y, a%)|y, ¢?]
(4.2) + Var* [E*(b|a*, y, 6% |y, ¢?]
= oD — DZ'V-ZD)
+ DZ'V-X*[Var* (a* |y, ¢*)]X*'V-ZD,
(4.3) Cov* (b, a* |y, a*) = Cov* [E*(b|a*, y, a?), a* |y, ¢?]
= —DZ'V-X*[Var* (a*|y, ¢%],
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provided that the prior distribution of a* and ¢* is such that the components of
a* and b posses finite second moments.

In circumstances where, conditional on ¢?, there is only vague prior infor-
mation on the components of a*, it is to be expected that the conditional pos-
terior mean vector and the conditional posterior covariance matrix of a*, given
o%, will be closely approximated by

4.4 N(X'ViX)~-X'Viy
and
(4.5) AN (X' VEX)- X' VIV (VY X[(X'VEX)TA,

respectively (see, e.g., Section 11.10 in DeGroot’s (1970) book). Moreover,
formal substitution of (4.4) and (4.5) in the right hand sides of (4.1)—(4.3) yields
corresponding approximations for E*(b|y, %), Var* (b|y, ¢%), and Cov* (b, a* |
¥, 0%). Recalling (3.22), it is clear that the manipulations required to compute
these approximations are exactly the same as those associated with the best linear
unbiased estimation of a* and $, so that the results of Section 3 can be used to
facilitate these manipulations.

There are at least three settings where we might want to use a prior distri-
bution that reflects only vague prior information on certain of the parameters
(corresponding to the components of a*) but which indicates significant prior
information on others (those that are components of b):

1. There truly may be little prior information on some of the parameters.
Lindley and Smith (1972) indicated in effect that the formulation of a suitable
prior is often facilitated by introducing hyperparameters, for which a vague
prior may be satisfactory, and by expressing some or all of the original parame-
ters as deviations from these hyperparameters. The model, after its reparame-
terization in this way, will contain parameters for which a vague prior is ap-
propriate even though the original model does not.

2. Only a relatively few of the parameters (corresponding to components of
b) may be of interest, with the rest (the components of a*) being regarded as
nuisance parameters. There may be important prior information on the pa-
rameters of interest which we wish to incorporate. There may also be significant
prior information on a*, but it may be hard to express in the form of a proba-
bility distribution, so that the added precision resulting from its use may not
be worth the trouble.

3. Suppose that an important decision is to be made on the basis of the pos-
terior distribution of certain of the parameters (which we take to be the com-
ponents of a*). Suppose also that the decision involves competing interests,
and consequently agreement cannot be reached on an appropriate prior distri-
bution for a*. Then, it might be agreed to make the decision on the basis of a
posterior distribution appropriate for someone who is ignorant of any prior
information on a*, yet at the same time we might want to take advantage of
prior information on other of the parameters (those that are components of b).
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