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MULTIVARIATE EMPIRICAL BAYES AND ESTIMATION
OF COVARIANCE MATRICES

By BRADLEY EFRON AND CARL MORRIS
Stanford University and The Rand Corporation

The problem of estimating several normal mean vectors in an empiri-
cal Bayes situation is considered. In this case, it reduces to the problem of
estimating the inverse of a covariance matrix in the standard multivariate
normal situation using a particular loss function. Estimators which domi-
nate any constant multiple of the inverse sample covariance matrix are
presented. These estimators work by shrinking the sample eigenvalues
toward a central value, in much the same way as the James-Stein estimator
for a mean vector shrinks the maximum likelihood estimators toward a
common value. These covariance estimators then lead to a class of multi-
variate estimators of the mean, each of which dominates the maximum
likelihood estimator.

1. Introduction and summary. Let S be an observed p X p covariance matrix
having the Wishart distribution with k degrees of freedom and mean kX

(1.1) S ~ W,(Z, k).

In the context of this paper, the problem of finding multivariate empirical Bayes
estimators will be shown to reduce to estimation of the inverse of the covariance
matrix X from S, using the loss function

tr[(E — Z7yS]

(1.2) L(Z, 25 S) = CE D

Throughout, Z-' is assumed to exist, and k > p + 1.
The usual estimator of Z-! is the best multiple of S-!, which for this loss
function is

(1.3) 2=k —p — 1S,

The estimator (1.3) is the best unbiased estimator of £-! and is minimax with
constant risk (p + 1)/k. We used (1.3) in [1] to derive a multivariate empirical
Bayes estimator, a generalization of the James-Stein estimator [3], for cases
p=2.

In the first main theorem,

A 2
(1.4) Soi=(k—p— st 4 PP =2
tr (S)
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is shown to be uniformly better than (1.3) if p = 2. Note that £, increases
(1.3) by an amount proportional to the estimator

(1.5) PRl |

which is the best unbiased estimator of Z-* when Z is known to be proportional
to the identity matrix. The risk functions of these estimators and their mixtures,

(1.6) 5= (1 — )& 4 ad 0<ac<l,

which are also of interest, are considered in Sections 3 and 5.

The other main theorem, Section 4, shows that the empirical Bayes estimators
derived from (1.6) are minimax, all dominating the maximum likelihood esti-
mator X of a p X k matrix of means @ for fixed #. The case « = 1 corresponds
to the James-Stein estimator applied to all pk values ¢,; simultaneously while the
new estimator with a = 0 uniformly improves the multivariate empirical Bayes
estimator of [1].

2. The relationship between multivariate empirical Bayes estimation and
estimating the inverse of a covariance matrix. Let X, - - -, X, be independent
p-dimensional normal column vectors with X, having conditional mean vector
6, and the identity covariance matrix I,

(2'1) Xllal ~inde(0i’I) i:l,"‘,k.

Suppose also that the unknown parameter vectors 8, are an independent sample
from a multivariate normal distribution with mean zero and covariance matrix A

(2.2) 6, ~ .m0 N,(0, A) i=1,- k.

Then the multivariate Bayes estimator of &, with respect to squared error loss is

(2.3) 6. = (I — ZHX, i=1,. ...,k
with X defined by
(2.4) 2=1+A.

In the empirical Bayes situation A and Z are unknown, so the Bayes estimator °
(1.3) cannot be computed. The matrix ‘Z-' may be estimated, however, since
(2.1) and (2.2) give the marginal distribution

(2.5) X; ~ N,(0, X)
to X,. A complete sufficient statistic for estimating Z is S = XX’ having the
Wishart distribution (1.1), with X being the p X k matrix (X, - - -, X,).

Suppose now that the p X k matrix 8 = (6, - - -, 6,) is to be estimated with
normalized squared error loss function

A 1 N ,
(2.6) D(ﬂ, 0) = ]7/; f:l Z?zl (01‘7‘ - 01‘]’)2 ’
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by a rule similar to (2.3)
(2.7) 6=a-— %X,

with £-1 depending only on S. Then the risk R of (2.7), which is computed by
averaging (2.6) over both distributions (2.1) and (2.2), may be written

(2.8) R = R* 4 (R* — R*)EL(Z, £-1;S).

The value R® = 1 is the risk of the maximum likelihood estimator § = X, i.e.
$£-1 =0, and R* = 1 — tr (Z-Y)/p is the risk of the Bayes estimator (2.3) with
$-1 = Z-1known. Here L(Z-, 2 S) is the loss function (1.2). The proof of
(2.8) follows easily by averaging D first over its conditional distribution

(2.9) 6,|X, ~ N,((I — ZHX,, T — =),

as shown in [1, Lemma 1].

Because of (2.8), the problem of evaluating multivariate empirical Bayes esti-
mators of the form (2.7) reduces to evaluating estimators of the inverse of an
unknown covariance matrix X because R° and R* are unaffected by the par-
ticular estimator £-! under consideration and because the risk EL(Z™, ﬁ“; S),
called the “relative savings loss” in [1], only involves an expectation over S
having the Wishart distribution (1.1) with Z defined by (2.4). The special fea-
ture, that £ > I, will be ignored until Section 6.

3. An estimator of the covariance matrix X which dominates any multiple
of S. Assume the distribution (1.1) and the loss function (1.2). We consider
estimators 27! of the form (1.6). Denote w = tr (£7!)/p and let

(3.1) o= L EPk—2

We will show in Section 5 that 0 < ¢ < 1 for all Z and also that

(3.2) o= Lpu@E’S)

1) tr (S)

In the special case Z = oI, the maximum value ¢ = 1 is attained. Denote
c=(pP+p—2)(pk—2)s0 0<c<1 and 0 < c< 1 if both p>1 and
k>p+1. '

THEOREM 1. The risk of £, is

(3.3) R, = EL(Z™, £, S)
:PZ_ 1 —|-k_JZ——1a2—‘nkp;2(c—|-a—-ca)2go.
In particular, £, is minimax, having risk
(3.4) R, = 13%1 Pk =24,
pk
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which is uniformly smaller than the risk (p + 1)/k of the best multiple of S7,
(k —p— 1S

Proor. The risk of
(3.5) 51 =4St 4 bIjtr (S)

is computed from (1.2) as

L Etr@sr 4 b1t (S) — Zys
kw

P
- ;%;Etr(S“) + %Eﬁsj - %{f
(3-6) + ,,izw e ® " o et ;;iz:E r@7S)
R R T e T = L
- %«Z— ¢+ 1

where we have used (3.1), (3.2) and E(k — p — 1)S~! = -, The minimizing
value of b is obtained by differentiating (3.6) and is b* = pk — 2 — ap which is
independent of the unknown parameters. Inserting b* into (3.6) and simplify-
ing gives

(3.7 R=pPtl k—p—T1—a (pk—2—apy

k kk—p—1) — pk(pk —2)

Reparameterizing with @ = (k — p — 1)(1 — «) and substituting this value into
(3.7) yields (3.3). Assertion (3.4) follows by setting @ = 0 in (3.3). The proof
is complete.

DiscussioN. If ¢ is known, then R, is minimized at

(3-8) a* = cof[l — ¢ + c¢]
which increases monotonically from 0 to 1 as ¢ increases from 0 to 1. The risk

of (1.6) with @ = a* is

(3.9) R.=a*2 4 (1—anbtl
pk k

The case ¢ = 1 (Z proportional to the identity), a* = 1, yields the rule (1.5) as
an estimate.

More generally, if a prior distribution on X is given, then the rule of the form
(3.5) that minimizes the average risk takes the form (1.6) with

(3.10) a** = cEp[[1 — Ep 4 cEp].

This depends only on the a priori mean E¢ of ¢. Then R, is given by (3.9)
with a* replaced by a**. Formulas (3.8)—(3.10) are proven by averaging (3.3)
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over the prior distribution, and then by differentiating (3.3), perhaps most easily
in the form

aAl R, =Pl PE=210 _ e — (¢ + a — cayEq].
k pk

The minimal complete subclass of the class of all rules of the form (3.5) with
—o0 < a, b < oo is the class of rules i‘,a-l (1.6) with 0 < « < 1. This follows
from the fact that the Bayes rules are given by (3.10) and that * = pk — 2 — ap
is the optimal choice for b.

There are many minimax estimators (rules with risk not exceeding (p + 1)/k)
in the class (3.5). The best such estimator is $,-1 because the minimax estima-
tors must have @ = k — p — 1 to perform well at ¢ = 0, and then b = p* + p—2
is the best choice for b.

4. Using the covariance estimators in a simultaneous estimation problem:
minimax estimation. In the context of Section 2, estimators of the p X k matrix
@ of the form

(4.1) 6,=@a— %X
are suggested, 3, given by (1.6). For fixed §, Theorem 2 will show that each
6, is minimax (dominates the maximum likelihood estimator X) as an estimator
of the mean 8 of a multivariate normal distribution. Furthermore, §, dominates
the estimator implied by (1.3), which was presented in [1].

The risk of (4.1) averaged over the distribution (2.2) of @ will be needed.
It is
(4.2) ED@,0,) =1 — o + oR,
from (2.8) and Theorem 1, o = tr (Z71)/p.

THEOREM 2. As a function of 6 the rule 6, of (4.1) has risk

(4.3) E,D@0,6,)=1— Qtif?k:._l)f (1 — a)E, tr (S
p
_ (k=2 — ca)’E, 1
ok (¢ + a — ca) i (5) .
Proor. First, (4.2) may be written as’
(4.4) ED@,6,) =1 — (k — /’k_T__D_z (1 — a®Etr (S
P
_ (pk = 2)? —capE_ .
: ok (c + a — ca) (S

This follows because
4.5) o= (k—p—1)Etr (SY)/p,

while (3.1) provides an expression for wp. Both sides of (4.4) involve first an
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expectation E, over the distribution (2.1) of X given @, this expectation being a
function of A = 66’ only, followed by an expectation E, over the distribution
(2.2) of @ for fixed A. Since the family of distributions of A is complete for A,
(4.4) holds even when the E, expectation is removed. This ends the proof.

Note that the right-hand side of (4.3), with the expectation sign removed,
provides an unbiased estimate of both risks (4.2) and (4.3) of @,. The James—
Stein estimator is the rule « = 1 with risk

(4.6) - Pk=2p 1
pk tr (S)
The estimator with & = 0,
A 2 )
4.7 05([-—/(-— _ s PEp=2 I)X,
(4.7) 0 (k—p—1) r (S)

is the best in the class 8, as ¢ = tr (66') — oo and improves the risk 1 — (k —
p — DE,tr (S7Y)/pk of @ = (I — (k — p — 1)S7")X by the amount

(4.8) P+p—-27 E, I
Pk tr (S)
The improvement (4.8) is largest at @ = 0 where it is (p* 4 p — 2)*/pk(pk — 2).
Bounds on the last term of (4.3), (4.6), and (4.8) may be computed for any &
from the fact that

(4.9) 1~ E Pk —2 1

L ofipk—2)= (S — 1+ cjpk’

Formula (4.9) is sharp if either & = 0 or if pk — .
An upper bound for the risk (4.3) as a function of & may be derived from
(4.9) and (4.10), which follows from Jensen’s inequality.

(4.10) Etr (S71) = tr (kI + 66)".

This expression is not sharp since E tr (S7') = p/(k — p — 1) when @ = 0, while
(4.10) gives p/k.

When 6 = 0, then the risk (4.3) is identical to R/, the value (3.3) with ¢ = 1.
This follows from (4.2) with @ = 1. Then

(4.11)  E,D(0,8,) = R, = 2/pk + ¢(1 — ¢)(1 — a)*(pk — 2)/pk .

Assertion (4.9) needs proof. Since tr (S) has a noncentral chi-square distri-
bution with mean pk + r, tr (S) ~ x%.(z), it can be written as a Poisson mixture
of central chi-squares as in [5], say tr (S) ~ x2,,,,, / ~ Poisson with mean /2.
Letting E, indicate expectation with respect to the Poisson distribution, then
(4.12) E, Y gL

tr (S) pk +2J—2

The left-hand side of (4.9) follows from Jensen’s inequality applied to (4.12).
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To obtain the right-hand inequality, write E_ . 1/(pk + 2J — 2) as
1 [1 _ e, €2 2j ]
pk —2 N pk2j =2
and notice that this also can be expressed as [1 — ¢E. - 1/(pk + 2J)]/(pk — 2).
Jensen’s inequality £ - 1/(pk + 2J) = 1/(pk + ) gives the result.

5. Risk functions and the function ¢. We will now give a more explicit
evaluation of the function ¢ which appears in the risk formula (3.3). Let
W, ---, W, be independent y,’ random variables and U, = W/} W,. Let
g, -+, 0, be the eigenvalues of Z, w = tr (27)/p = 3, (1/o;)/p and define

(5.1) = LB U)

The value (5.1) agrees with (3.2) because orthogonal invariance permits the as-
sumption X diagonal with elements g, - - -, ¢, and then (3.2) with W, = S, /o,
reduces to (1/w)E(Y W,/ o, W,), being (5.1). Because ) W; is independent of
U, -, U,),

(5.2) o tp 1 _pprk=2
o Y oU, > W
Lppk=2 1 ppk2
o Y, oW, 0] tr (S)

establishing the equivalence of (5.1) and (3.1), and also (3.1) and (3.2). Note
0<¢=lsincel/3oU = 3 UJo,and E 3 Ujfo, = (L 1)o)/p = o.

Define
(5.3) o = plotr (Z)
as the squared cosine of the angle beween Xt and X%, 50 0 < p < 1. Jensen’s
inequality applied to (5.1) shows ¢ = p. We have bounds

(5.4) p§go§min< ,k_P:*%A,,),
kp — 2p
since letting 7, = ¢,/3; ¢, in (5.1) gives
R 1,»,#.4. —_ . ,1_,7 ,,,::,1/,,, é -.7—l;,; Z TCI/UI .
ZazU1 Zﬂ'l ZTCLUi ZU,
Taking expectations of (5.5) and using £ - 1/U, = (kp — 2)/(k — 2) for all i proves
(5.4). The bounds (5.4) become tight as k increases and for any p,

(5.5)

(5.6) lim, . ¢, = p .

The index henceforth will be used to indicate the dependence of ¢ on k. The
values ¢, and p are unity only when X = g1, i.e., only when all g, are equal,
and the lower bound of (5.4), p, is the better approximation when the ¢, are
nearly equal. Dispersed o, cause ¢, and p both to approach zero with the upper
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bound of (5.4) being attained asymptotically if at least one o, is finite and one
o, approaches infinity.

In the special case p = 2, ¢, depends on I only through the ratio 2 = d,/0,
of the largest to the smallest eigenvalue. Then values of ¢, are generated re-
cursively for 2 == 1 by

5.7) o =2+ 1)=pt, ¢ = 22log (D))(# — 1)
_khk=l M gy k=l e gy k23,

Tk T2y K—21—p

Obviously ¢, = 1 if 2= 1. We omit the proof of (5.7) to save space. The
limiting value of ¢, as k — co is p = 42/(1 + 2)*

The function ¢, is plotted in Figure 1 for the case p = 2, k = 6 together with
the four risks, from (3.3),

(5.8) R, = .5+ Sa* — Z(1 + 1.5a)%p

fora = 0, .25,.50, 1. Figure 1 illustrates that « = 0 is best if ¢ = 0 and a = 1
is best if ¢ = 1 as confirmed by (3.8), while intermediate values like a = .25
and @ = .5 are effective compromises if the extremes ¢ = 0 or ¢ = 1 are not
especially likely. It is tempting to estimate ¢, say by a function C/[tr (S§77) tr (S)],

a=1
1.0~ ¢ 1.000
\/ 6
0.9 L\
\
\ isks R
08 - \ RIS S a
0.7
0.6 .625
__________ /\/——- .531
0.5 - o3 .500
0.4
0.3 | ..
0.2
\\
0.1 b N
~
\\\
01 2I J sl llé 3|2 [4 I I = 2= %o
64 128 256 (log seale)

F1G. 1. A plot of ¢ and the risks (relative savings losses) Ro, R.25, R.5, Ri of (3.6)
against the ratio of the largest to the smallest eigenvalue for the case p = 2, k = 6.
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C close to Cy = p(pk — 2)/(k — p — 1), and to use this to determine an estimated
value & from (3.8). In the situation of Figure 1, for example, the hope would
be to produce a rule with risk function close to the lower envelope of the risk
functions graphed. Our calculations for the case p = 2 show that the rule with
C = C, works fairly well, provided & is forced to be less than unity, but that
smaller values of C are even better. However, no clear guidelines for the use
of such “adaptive” rules are available at this time.

The improvement of the rule @ = 0 over the best multiple of S~! is measured
by the distance between the R, curve and the horizontal line R = .5 in Figure
1. This is a 27 percent improvement in risk at 2 = 1; larger improvements can
occur in cases with k large and p near k.

For any p, k, %, has lower risk than R provided ¢ < 1/(1 + ¢). This holds
for p = 2, k = 6 provided 2t = 1.90. Note that A is the ratio of the standard
deviations of the major and the minor principal components defined by the two
rows of X.

6. The restriction Z-' < I. We know X' < I'since £ = I + A with A non-
negative definite, but the estimators ia—‘ of (1.6) do not obey this inequality.
This undesirable feature may be overcome as follows. Diagonalize S, = IVAT
with T" a p X p orthogonal matrix and A the diagonal matrix of eigenvalues 4,.
A preferred estimate is 2*:&_1 = IYA*T with6,* = min (1,9,),i =1, -+, p, since
this estimate satisfies the restriction i‘.n—‘ < L. The loss function (1.2) is either
unchanged or reduced for every S, Z by this modification,

(6.1 LE, 25 8) < L(E, 5,1 S)
for all S.

*
The improved estimator Z,~* has risk uniformly lower than R, of (3.3) because
of (6.1). In the simultaneous estimation context of Section 4, the estimator

(6.2) 6,= (I — 5, -HX

therefore has risk as a function of A, E, E, D(4, ;a), strictly lower than (4.4).
The risk as a function of 8, E, D@, ;a), is likely to be lower than (4.5) for all
6, and is known to be for p = 1. This conjecture is not proved for p = 2 how-
ever because the completeness argument used to establish (4.5) does not apply
with 0 (there is no convenient expression for its risk as a function of A).

The proof of (6.1) notes the convexity of the set of matrices 0 < X-! < I, the
fact that the loss functlon L is a metric derived from an Euclidean inner product,

and that in this metric Z ~1is the closest matrix in the convex set to Z -1, The
precise argument is given in [1, Section 6].

7. Discussion. The fact that 3,-' dominates the best fully invariant estimator
(k — p — 1)S=* of Z~* for our fully invariant loss function suggests that shrinking
the best multiple of S toward the identity matrix may be effective in more general
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situations of estimating a covariance matrix. All of the estimators of X in this
paper are orthogonally invariant, of the form

(7.1 2(S) = 6T

with T' the matrix of eigenvectors of S, say S = I"DI', D diagonal, and g a
diagonal matrix whose entries are functions of the eigenvalues D of S, ¢ = (D).
Explicitly, the best linear multiple of S, f.(S) = S/(k — p — 1), estimates the ith
eigenvalue of X by ¢, = d,/(k — p — 1), while £, = ((k — p — 1)S™' + (p* +
p — 2)I/tr ())S~* uses

(1.2) G, = ! é

so improves on ¢, by shrinking all the estimated eigenvalues toward zero, the
larger eigenvalues being shrunk proportionately more than the smaller. This is
reminiscent of the James-Stein estimator of k means [3], and the basic phenome-
non seems to be the same: the eigenvalues of S, considered as an ensemble of p
numbers, are distorted in a systematic nonlinear way from the eigenvalues of
Z. A universally improved estimator is obtained by undoing this distortion.

For the general problem of estimating a covariance matrix, it would be more
satisfying to show that estimators of the form

(7.3) Z = (aS~! + bljtr (S))™*

dominate the best fully invariant estimator of £ when the loss function is also
fully invariant, but the computations are difficult for such loss functions. The
loss function used here leads to nicely computable risk expressions for rules of
the form (7.3), permitting a comparison of their operating characteristics, and
more important, shows where the additional information lies for improving the
best fully invariant estimator. It also has the virtue of arising naturally from
the squared error estimation problem for 6.

In Section 5 of [3], Stein considered a covariance estimation example with a
fully invariant loss function and found a constant-risk estimator (invariant under
the lower triangular group of matrices, but not orthogonally invariant) which
is uniformly better than the best fully invariant estimator. The expected value
of his estimator, like i‘o here, is always closer to 0 than the mean of the best
fully invariant estimator. He has recently made further progress on the problem
of covariance estimation by using a method for finding unbiased estimators of
the risk function [7].

In the empirical Bayes and the simultaneous estimation of means situations the
loss function L is natural, as the derivation in Section 2 shows, and the simple
estimators of @ (2.7) based on the form (7.3) have computable risks. This sim-
plicity also leads to risk expressions as a function of @ (Theorem 2) and yields
unbiased estimates of the risk. These estimators may be criticized for being
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inadmissible since they ignore the restriction Z-* < I. The rules of Section 6
may be nearly admissible though; at least in the case p = 1 they reduce to the
James-Stein positive-part estimator for which no uniform improvement has ever
been offered.

Orthogonally invariant estimators of & take the form (2.7) with $asin (7.1),
and are not necessarily of the form (7.3). One approach to finding alternatives
to (7.3) was suggested at the end of Section 5. Stein [7] offers another method
by producing unbiased estimates of the risk of arbitrary orthogonally invariant
rules. Other rules having this orthogonality property are offered by Gollob [2]
and Mandel [4]. Their estimates of § correspond to using (7.1) in (2.7) where
1/, = 1 if d, fails to pass a significance test and otherwise is zero, forcing 0 <
£-1 < I. When p = 1 their rule is equivalent to estimation following a prelimi-
nary test that & = 0, a procedure that is known not to be minimax and to be
dominated uniformly by the positive-part version of a Stein-type estimator [6].

Acknowledgment. This paper is a refinement of a technical report [8] written
jointly with Charles Stein. Most of the ideas presented here are contained in
that earlier document.
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