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ROBUST REGRESSION: ASYMPTOTICS,
CONJECTURES AND MONTE CARLO!

By PETER J. HUBER
Swiss Federal Institute of Technology, Ziirich

Maximum likelihood type robust estimates of regression are defined
and their asymptotic properties are investigated both theoretically and
empirically. Perhaps the most important new featurg is that the number
p of parameters is allowed to increase with the number # of observations.
The initial terms of a formal power series expansion (essentially in powers
of p/n) show an excellent agreement with Monte Carlo results, in most
cases down to 4 observations per parameter.

1. Introduction. Consider the classical least squares problem: p unknown pa-

rameters ¢,, - - -, 4, are to be estimated from n observations Xj, - - -, X, to which
they are related by
(1.1) X, = 2lac;0;, + U,

The c;; are known coefficients and the U, are independent random errors with
(approximately) identical distributions.
Classically, the problem is solved by minimizing the sum of squares:

(1.2) 2 (X — Xil¢;0,)" = min!,

or, equivalently, by solving the system of p equations, obtained by differentiating
(1.2),

(1.3) P (X; — 2k cabi)e; =0, j=1 -, p.

The original justification for this method (due to Gauss) is somewhat circular:
least squares estimates are optimal if the errors are independent identically dis-
tributed normal; on the other hand, Gauss assumed a normal error law because
then the sample mean, which ““is generally accepted as a good estimate,” turns
out to be optimal in the simplest special case, see Gauss (1821).

In the regression case, uncontrollable inhomogeneity of variance among the
U; and genuinely long-tailed error distributions have almost indistinguishable
effects, both impairing the efficiency of the estimates. Just a single grossly out-
lying observation may spoil the least squares estimate and moreover, outliers are
much harder to spot in the regression than in the simple location case. Thus
robust alternatives to the method of least squares are sorely needed. In view of
the Gauss-Markov theorem these alternatives cannot be linear in the observations.

Received November 1972; revised February 1973.
1 This paper was presented as part of the Wald Lecture at the IMS Annual Meeting at Hanover,
New Hampshire, August 28—September 1, 1972.

799

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Statistics. RIKGLY

d ®
www.jstor.org



800 PETER J. HUBER

As regression calculations nowadays are done on computers, some quite me-
chanical procedures for deflating the influence of gross errors of any kind, wrong
weights (inhomogeneous variances) or otherwise longtailed error distributions
are called for, even more so than in the simple location case. I should hasten
to emphasize that this does not obviate the need for a careful inspection of the
pattern of the residuals.

We shall have (i) to define an estimate, (ii) to investigate its (asymptotic) pro-
perties, (iii) to estimate the covariance matrix of the estimate, (iv) to devise some
numerical procedure for computing the estimate and its estimated covariance
matrix, and finally, (v) to investigate (empirically) the small sample properties.

Any such estimate will in some sense generalize a robust alternative to the

sample mean. There are essentially two simple ways to obtain such estimates.
The first is to replace the function (1.2) to be minimized by some expression
which is less sensitive to extreme values of the residuals
(1.4) A= X, — Zj¢;0;.
The second is based on the remark that according to (1.3) the parameters 6 are
estimated in such a way that the residual vector A, and the column vectors c,;
have empirical correlations 0 (more precisely: cross-moments, since the averages
are not subtracted out). So one simply replaces (1.3) by a robust alternative to
the correlation coefficient (Huber (1972b)).

Of the three most obvious contenders—M-, L- and R-estimates (see Huber
(1972a), Section 4)—the first type generalizes most straightforwardly. One sim-
ply replaces (1.2) by

(1.5) Xy — X5 ¢50,) = min!
where p is some (usually convex) function, e.g.

(1.6) o(x) = ix* for lxl <c
= c|x| — i for |x|=c.

The value of ¢ may depend on the observations X;, in order to obtain scale

invariance.
The p given by (1.6) leads to estimates with well-defined asymptotic and finite

sample minimax properties in the simplest special case (p = 1, ¢;; = 1), see Huber
(1964), (1968), and at least the asymptotic optimality carries over to the regres-
sion case. For another proposal for p, see Anscombe (1967).

If we differentiate (1.5), we obtain (with ¢ = p’) the following analogue of

(1.3):
(1.7) PN — Xecubd)e; =0, j=1--p

which is equivalent with (1.5) if p is convex. Note that this is a robustized ver-
sion of the cross-moment: we are correlating modified (metrically Winsorized)
residuals with the coefficient vector c,;.
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Here, only the residuals A, have been subjected to a modification; one wonders
whether one can gain robustness with regard to errors in the coefficients c;; by
modifying also the other factor, the coefficient vector c, ;.

We obtain R-estimates of regression if we minimize, instead of (1.2),

(1.8) ;a,(R)A; = min!

Here, R, is the rank of A, in (A, ---, A,) and a,(+) is some monotone scores
function satisfying 37, a,(i) = 0 (see Jaeckel (1972)). Note, however, that these
estimates are unable to estimate an additive main effect and thus do not contain
estimates of location as particular cases. On the contrary, the additive main
effect has to be estimated by applying an estimate of location to the residuals.
If we differentiate (1.8), which is a piecewise linear convex function of § =
(0 ---,0,), we obtain the following approximate equalities at the minimum:

(1.9) ;a,(R)e; =0, j=1,2,-,p.

These approximate equations in turn can be reconverted into a minimum prob-
lem, e.g.

(1.10) 3,15 a,(R)e,| = min!

This last variant was investigated by Jureckova (1971), and the asymptotic
equivalence between (1.8) and (1.10) was shown by Jaeckel (1972). Instead of
correlating a,(R;) with ¢;;, as in (1.9), we might use ranks for the c,; too, etc.
It remains to be seen which of these approaches are sensible and fruitful.

Note that the simple straight line regression problem is basic; if we know how
to treat this, we can in principle attack the general regression problem by con-
sidering one parameter at a time, keeping the others fixed at trial values. How-
ever, the existence of a fixed point is not always easy to establish, and even if there
is one, the iterative search for it does not necessarily converge.

Furthermore, all of these regression estimates allow one-step versions: start
with some reasonably good preliminary estimate 6*, and then apply one step of
Newton’s method to (1.7) etc., just as in the location case (Andrews et al. (1972),
Bickel (1971a)). A kind of one-step L-estimate of regression has been investi-
gated by Bickel (1971Db).

Our past experience with estimates of location suggests that M-estimates are
easiest to cope with, as far as asymptotic theory is concerned (even though R-
estimates have received a much greater coverage in the literature of the past few
years). We shall therefore concentrate on the estimates defined by (1.5) or (1.7).

There is little hope to build an exact finite sample theory of robust regression,
but for large n asymptotic approximations should be possible. Specifically, we
have problems in mind which occur, e.g., in X-ray crystallography. With the
present computing facilities, typical values for p and n there are in the range

p: 10 to 500,
n: 100 to 10,000.
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The unknown parameters are, essentially, coordinates of atoms; typically, one is
interested in questions involving many parameters simultaneously in a non-linear
fashion, e.g., whether two molecules have the same spatial configuration.

We intend to build an asymptotic theory for n — oo; but there are several
possibilities for the concomitant behavior of p. In particular, with decreasing
restrictiveness:

(a) limsupp < oo

(b) limp*/n =0

(¢) limp*n =0

(d) limp/n =0

(e) limsupp/n < 1

(f) limn — p = oo.

Case (a) has been treated by Relles (1968). The generalization to case (b) is
relatively straightforward. Cases (d) and (e), possibly also () seem to be the
interesting ones for the practical applications. I may quote a crystallographer’s
recommendation that there should be at least 5 observations per parameter, i.e.,
p/n < 0.2 (Hamilton (1970)). It will become clear in the next section why (e)
and (f) are unlikely to yield to a reasonably simple asymptotic theory; then we
shall attack what are, essentially, cases (b) to (d). Theoretical results and con-
jectures are summarized near the end of Sections 3 and 6; Monte Carlo results
are summarized in Section 9.

On purpose, I have described the regression problem in terms of the classical
least squares theory, where the matrix C = (c,;) is thought to derive from a
rigorous and fixed mathematical model. In statistics, it is more customary to
treat the coefficients ¢;; as “independent variables,” possibly also subject to errors.
Only little is known how to robustize regression procedures with respect to errors
in the c,;, but some of the possibilities mentioned after (1.7) and (1.10) may be
attractive.

2. The classical least squares approach. In this section we sketch a simple and
basic, but seemingly little known result about the limiting behavior of least
squares estimates if the errors are non-normal. See also Eicker (1963), (1967).

We assume that our regression problem is imbedded in a sequence of similar
problems with matrices C'") = (¢i}’), | £ i < ny, 1 £ j = py, N — o0, but we
shall suppress the index N whenever feasible.

Assume that the errors U, are independent and identically distributed, according
to some fixed non-normal law with mean 0 and variance ¢* < co. Then the least
squares estimate of ¢ = (4,, - - -, ) is

(2.1) § = (Cre)'CrX .
The problem is to find necessary and sufficient conditions such that all estimates

of the form & = Y a, 0, are asymptotically normal.
Evidently, the coordinate system in the parameter space is arbitrary; we can
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choose it to be orthogonal:

(2.2) C'C=1.

Also, we can standardize the a; such that 3 a> = 1. Then
(2.3) a=>,8X,

with

(2.4) S = 2156595,

and

(2.5) Yst=1,

hence

(2.6) Var (@) = ¢*.

LemMA 2.1. The estimate & is asymptotically normal iff max, |s;,| — 0 as N — oo.

Proor. If max;|s;| -» O, then the limiting law of & (if it exists at all) can be
decomposed into two components, one of which is not normal, hence it cannot
be normal itself. On the other hand, if max |s;] — 0, then it is easy to check that
Lindeberg’s condition holds, namely in our case

1
(2.7) pey 2 E{sizUizl(lsiUiléea)} —0.

Schwarz’s inequality gives

st = (25650, = L¢80 = 256
with equality holding if a; ~ ;.

Note that
(2.8) ra= %,
is the /th diagonal element of the projection matrix
(2.9) I' = ¢cre)—cr

(which is independent of the particular coordinate system in the parameter space).
Thus we have proved:

PROPOSITION 2.2. A necessary and sufficient condition for all least squares esti-
mates & to be asymptotically normal is

(2.10) max; y; — 0 as N-—oo.

ReMark 1. Since 33, 7;; = p, we have maxy,; = aver;; = p/n, hence (2.10)
implies p/n — 0.

ReMARK 2. The fitted value of X; (the least squares estimate of the expectation
of X)) is

P

T, = 3;¢;0;, = XiraX,.
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In particular, if (2.10) fails, then some of the fitted values will not be asymptot-
ically normal.

ReMARK 3. Continuing in this vein, we note that the residuals are
Xi =Ty =1 —r)Xi — ZisiraXe

Hence, if y;; is close to 1, a gross error in X; does not necessarily show up in
the residual X; — T, but it might show up also elsewhere, say in the residual
X, — T, if r,; is large! Thus we may say that (2.10) also ensures a kind of
“robustness of design.” This robustness of design is optimized by having y,; = p/n
for all i; then we call the design matrix C balanced. Note that condition (e)
lim sup p/n < 1 is a necessary condition for the 7,; to be bounded away from 1.

In view of these remarks, condition (2.10) (and hence p/n — 0) appears to be
indispensable for any reasonably simple general asymptotic theory of robust
regression. Of course, if one is not interested in potentially all, but only in some

special linear estimands a, weaker conditions might suffice.

3. M-estimates of regression. We shall now estimate the unknown parameters
by minimizing an expression of the form (1.5). We begin with a short discus-
sion of the regularity conditions, which separate into three parts:

(i) Conditions on the design matrix C. The diagonal elements of the projection
matrix
I' = ¢ccreyer
are assumed to be uniformly small:
max, g, 7u =¢<K 1;
the precise order of smallness will be specified from case to case. Without loss

of generality we may choose the coordinate system in the parameter space such
that the true parameter point is #° = 0, and that C”C is the identity matrix.

(ii) Conditions on the estimate. The function p is assumed to be convex and
not monotone, and to possess bounded derivatives of sufficiently high order. In
particular, ¢(x) = (d/dx)p(x) should be continuous and bounded.

Convexity of p serves to guarantee equivalence between (1.5) and (1.7), and
asymptotic uniqueness of the solution; otherwise it is unimportant. Higher order
derivatives are technically convenient (Taylor expansions!), but their existence
is hardly essential for the results to hold.

(iii) Conditions on the error laws. We assume that the errors U, are independent,
identically distributed, such that
E(¢(Uy)) = 0.
We require this in order that the expectation of (1.5) reaches its minimum at the

true value 6°.
The assumption of independence is a serious restriction; the assumption that
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the errors are identically distributed simplifies notations and calculations, but
could easily be relaxed.

The cases ep* — 0 and ¢p — 0. 1 have a reasonably simple rigorous treatment
only if ep* — 0 or, with somewhat less satisfactory results, if ep — 0. This implies
p*/n— 0 and p*/n — O respectively; thus, quite moderate values of p already lead
to very large and impractical values for n.

The idea is to compare the zeros of the two vector-values random functions ®
and ¥ of 6:

J— 1 — . ..
(3.1) D,0) = E(gl} ) 29X — 2 01:)“1: ’
(3.2 W) = 0; — g Tedess
The zero § of W,
3.3 6, = ,
(3.3) = gy Ze e

of course is not a genuine estimate. According to the results of Section 2, all
linear combinations @ = " a,6, are asymptotically normal iff ¢ — 0. The zero
d of @ is our estimate, and we shall have to show that the difference between 6
and @ is small. Let a; be indeterminate coefficients satisfying Y a;> = 1 and let
s; be defined by (2.4). Write for short

(3.4) = 2;¢;0;.
Since CTC = I, we have
(3.5) [P = Z ¢t =20 = 0]

Expand 3] a; ®,(f) into a Taylor series with remainder term:
(3.6) 24,049

E(g[) ) — X P(X)s; — P (Xts + 5 X V(X — nr)tds)

with 0 < 7 < 1. This can be rearranged to give

1 ” 2
(3.7) 2 a(P;(0) — ¥y(0) = Znbjna;0, — 2E(J) 29" (X — pro)tls;
where
3.8 A, X)) — EJ'(X;
( ) jk — E(¢)Z[¢( ) 9[)( )]cw ik *
We now intend to show that (3.7) is uniformly small on sets of the form
(3-9) {©@, a)[116] = Kp, [|a]| = 1} .

By Schwarz’s inequality,
(3-10) (0 85:a;0,) < X B% 250 2047 = 2 AullOlf -
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We have
(3.11) B(Z 839 = T B3 = Tyl ),
and
(3.12) Dk CCh = 27k S MaXyy Xiva = €p -
Let 6 > 0; then Markov’s inequality shows that there is a constant
(3.13) K, = yar@) 1
(B¢’ o
such that
(3.14) P(Lpldh =z Kep) <o,
We conclude that with probability > 1 — 4,
(3.15) (ZieBjea; 0, < KK, ep?

holds simultaneously for all (a, 6) in (3.9).
Assume that ¢’ is bounded, say |¢"(x)|-< 2E(¢’)M for some M, then

(3.16) EE_:gb_)

(see (3.5) and the remarks preceding (2.8)).
If we put things together, we obtain that with probability > 1 — 4, (3.7) is

bounded in absolute value by
(3.17) r = ((KK,)} + MK)(ep?)t

and this uniformly on the set (3.9). Since the result holds simultaneously for
all @ with ||a]| = 1, we have in fact shown that with probability > 1 — 4

29X — pr)tds ) = Mmax 5| 3 12 < Me| |6,

(3.18) |0@) — ¥O)| = for |6} < Kp.
As
Gy — E(¢7)
3.19 E(||16]]) = ,
(3.19) 1611 = 55 P

it follows from Markov’s inequality that ||§||* < Kp/4 with arbitrarily high prob-
ability, provided K is chosen large enough. Moreover, then

(3:20) 19(6) — 0]| < [|D©) — T@)|| + [16]] < r + 1(Kp)*

on the set ||0]]* < Kp.
If ep — 0, r can be made smaller than 4(Kp)t, so that (3.20) implies

(3.:21) 1) — 01| < [14]]
on the sphere ||0||* = Kp, and we conclude from Brouwer’s fixed point theorem,

that ®(6) has a zero 6 inside the ball ||0]]> < Kp.
Moreover, if we insert § = 4 into (3.18), we obtain that

(3.22) 6 —6|l<r.
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In particular, if ep* — 0, this implies
(3.23) 16 — 6] —0

in probability.
If only ¢p — 0, we obtain the weaker result that

(3.24) =110
P
in probability. Note that ||d]] ~ p in view of (3.19).
Let@ = Y a;0;,and @ = 3 a;6,, with ||a]] = 1. Recall that & is the estimate
to be investigated, while & is a sum of independent random variables and is
asymptotically normal if ¢ — 0.

ProposITION 3.1. If ep* — 0, then
(3.25) SUp| g1 |& — & — 0
in probability.

If a is chosen at random with respect to the invariant measure on the sphere ||a|| =1,
and if ep — 0, then

(3.26) a—a—0
in probability. In particular, (3.26) implies that & is asymptotically normal.

Proor. (3.25) is an immediate consequence of (3.23); (3.26) follows from
(3.24) and the fact that the average of |@ — &|* over the unit sphere ||a|]| = 1 is
16— 61F*/p-

Incidentally, the assumption that the true parameter point is #° = 0 was used
only in (3.19). For instance, if 6* is any estimate satisfying ||0* — 6°|| = O,(p?),
then we can show in the same way that just one step of Newtons’s method (for
solving ®(f) = 0, with trial value 6*) leads to an estimate §* satisfying

6% — ]| >0, ||6% — 6] — 0

in probability, provided ep* — 0.

(I conjecture that (3.26) holds for any-fixed or random-choice of @ which is
independent of the observations, provided ep — 0. On the other hand, it appears
that (3.26) is not true in general if ep —» 0, see Section 5.)

4. Some formal power series expansions. The proofs employed in the preceding
section break down when ¢ converges to zero at a slower rate than o(1/p®) or
o(1/p). It is by no means clear whether the results break down too. In order
to obtain some heuristic insights into what is going on, I resorted to (formal)
asymptotic expansions, ordered according to powers of e. Although I was not
able to bound the remainder terms and thus not able to show that the formal
expansions are indeed asymptotic expansions, the leading terms give an interesting
picture and prepare a fertile ground for conjectures and speculations, some of
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which are mentioned at the end of Section 6. In particular, the strikingly dif-

ferent behavior for symmetric and asymmetric error distributions is intriguing.

The expansions of this and of the next two sections make sense already for p = 1.
Put

(4.1) At) = E(¢U + 1)) .
As before, we denote the fitted values by
(4.2) T.= %, ¢,0;

where (4,) is the solution of (1.7).

The guiding idea is to expand (1.7) into a Taylor series around the true value
6 = 0, and to find asymptotic expansions of the interésting quantities, ordered
according to powers of .

We rewrite (1.7) as

_ 5 40
(4.3) 5= Ze Gy o+ RAD).

where the remainder term is

(4.4) R(T) = X 2,(0) rar [P(Xs = T)) — $(Xy) + 2 (0)Ti]ey; -

We put for short

4.5) Y, = 9”"”“2/(;) A9(0) k=0
(4.6) B = A(0)/(0)

(in these two formulas the upper index k stands for k-fold differentiation) and
expand the remainder term into a Taylor series

(4'7) Rj(T) = Zkg1 Rkj(T)

with

@8 Ry = S mo T 4 2 B BT
In particular, (4.3) now reads

(4'9) 21 01 %7 + R (T)

We start a bootstrap procedure puttlng

(4’10) 0 W = Z 01 %7

(4.11) T = Z.ﬁ.<k>c..

(4.12) 3 (k+1) Z 0: € ” ‘l‘ R (T(k’)

We may view these quantities as formal power series in the Y,;. The terms of
order k in the Y’s are the same in 6%, §*+V, ... so the procedure converges in
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a formal way. Evidently, we obtain the same expansion if we replace the recur-
sion formula (4.12) by

(4.13) éj(k+1) — 9.7'(1) + [le(T(k)) + sz(T(k—l)) + e + Rkj(Tu))]k+l

where [ ],,, means that only the terms of order < k + 1 in the Y are retained.
Since (4.13) involves only polynomials in the Y, it is more suitable for the actual
calculation of the expansion.

Let U,; be the sum of all terms of order k in this expansion of 9j, so that

(4.14) g‘j(k) =U; +U;+ - +U,.
A tedious calculation gives the following initial terms:
U; =2 Yy

Uy = —2ZaYuYura ¢; + ﬁ;g 2iitm Yo Yon Tit Vim €ij
Uy = 2 Yo YuYutatin Cij — % 2 You Yoo Yiilu Vim 71 Cis
. 2
— B 2 Yo Yo, Yurautinti, c; + %2— 2 You Yoo Yos Vit Vim V10 71 Cis

+ % Z YOm YOg Y2i rim rig cij - % Z YOm YOg YOs rim Tig Tis cij .

In the symmetric case (when the errors U, are symmetrically distributed and p
is symmetric around 0), the even numbered coefficients g, are zero and about
half of the terms disappear. For reasons of symmetry, we have then also

E(U,;) =0
and there is strong evidence (although no proof yet) that
E(UZ) = O(ek7) .

In the symmetric case the situation is rather more complicated since there are
very sizeable bias terms, but the U,; still appear to be ordered according to
powers of e.

S. The bias terms. In the beginning of Section 3 we standardized our problem
in such a way that, ideally, the estimates 6, should have a non-degenerate normal
distribution centered at 0, but in the asymmetric case there can be sizeable shifts
or “biases.”

The first nonzero bias term is

(5.1) E(éjm) = E(Uy) = Ky 2135645

with

(52) K= —E(Y,Y) + 2 E(vg).

(We are writing Y,, Y,, - - - instead of Y,, Yy;, - - - in formulas holding for any

fixed i.)
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The corresponding bias term of @ = Y a,0;, with Y a? = 1, is

PR

(5.3) E(@®) = Ky 2:7165:»
with s; = X7, ¢;;a;. Schwarz’s inequality gives
(5.4) |Zsras] = (X = (ep)t -

This need not be small when ¢ is small, and the bias can be very serious indeed.
For example, take the balanced case y,; = p/n, and assume that 6, corresponds
to a main effect equally affecting all observations, i.e., ¢;, = 1/nt. Then

(5.5) E@,®) =K, L.
nt

B0 =0, > 1.

and the bias of 6, does not tend to 0 unless ¢p = p*/n — 0. (But I should hasten
to point out that this bias is still negligible in comparison to the bias ont of 6,
caused by a systematic error 44 in all observations.)

The leading bias term of the fitted value T; is

(5.6) E(T,™) = Ko 2 ruli -
The Schwarz inequality gives
(5.7) | X rursl = (Zirh Zori)? < ep*
The following simple design matrix shows that this bound is asymptotically sharp:
e 0..-0 0
0 e..-0 O
5.8 c=|- :
(>-5) 0 0 e 0
00 0 e
g g---9 g

where e stands for a column vector with all » components equal to 1, and g =
r/(n — p)-

That is, we assume that n = pr 4 1, that each 6, is observed r times, and that
there is an additional observation X, of g - (6, + --- 4 6,). This C does not
satisfy CTC = I; but y,; = p/n, and

(5:9) Ziruto = (L) [+ (tn = p)] ~ L pt-

Evidently, the small biases in the f, may add up to a large bias in T, = g X
0,4 - +46,).

Thus, an outlying residual X, — T, might have been caused not by a gross error
in X,, but by a large bias in the fitted value T,!

By the way, in the frequent case where the diagonal vector (r;;) either belongs
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to the span of the column vectors of C, or is orthogonal to it, (7,;) is an eigen-
vector of I' to the eigenvalue 1 or 0 respectively, hence (5.7) improves to

| Zirurul S e
Some (unchecked) calculations indicate that the higher order bias terms behave
as follows. While E(U,;) = 0, E(U,;) = O((¢p)}), it appears that E(U,;) and
E(U,;) are of the order O(e(ep)?), and E(U,;), E(Uy;) of the order O(e¥(ep)?).

6. The covariance terms. As already mentioned, calculations for k = 1, 2, 3
indicate that in the symmetric case

(6.1) Var (U,;) = O(e+Y) .

Thus, we can hope that

(6.2) Cov (0;, 8,) = Cov (4,2, §,) + 0() ,
(6.3) Cov (4;,8,) = Cov (4,®, 6,%) + 0(?) ,
and

(6.4)  Cov (6,®,8,%) = Cov (Uy;, Uy,) + Cov (Uy;, Uy,)
+ Cov (Uy;, Uy) + Cov (Uy;, Uy)
+ Cov (Uy;, Uy,) + Cov (Uy,, Uy) + O(&Y) .
In the asymmetric case we can expect that the large bias terms will cause trou-

le and spoil the remainder terms. Nevertheless, we shall evaluate (6.4) in the
general asymmetric case:

(6.5) Cov (éj(s)’ 91:(3)) = E(Y?)o, + Ky Dlirscisea + Ky Zarh Ci; Cux
+ Ky ZararuCiica + O(E)
with
K, = 3E(YHE(Y?) — 2E(Y'Y)) + 3E(YR)E(Y,Y,) — By(E(YH))?

Ky = 3(EY V)P + BEYS) — 8HEXDEY,Y) + 5 (B(ro)y

K, = 2(E( Y, Yl))z — 3B, E(Yog)E(Yo Yl) + ﬂaﬁ(E(Yoz))2 .

In the symmetric case one has K, = K; = 0.
Let @ = Y a;0; with Y a? = 1 and 5; = ) ¢;;a, as before, then

(6.6) Var (&) = E(YP) + K, 2 rasd + Ky Zarhisis
+ K, 2 (X raru)si + O .

Evidently, 0=y s
= iTusSi =€

The next term satisfies
0= Yaurhsiss < e.

Proor. Let (#,) be an eigenvector belonging to the largest eigenvalue 2 of (7}).
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Then Aty = 2 rht £ 2 rhmax, g =y max; /.

Thus Amax, t, < emax, ¢, ,

hence 1 < ¢, and thus
0= Xaurhsisi=e.

But the third term causes trouble. I do not know whether the obvious bound

|20: 2T Tusl £ 5[7)"

(which follows from (5.7)) is sharp. With the matrix (5.8) and a; = 1/p* one
obtains

2
i 2uTarust ~ <'§‘) pt=¢pt.
In any case, the third term in general is not of the order O(¢), thus, in the asym-
metric case, the conjectures (6.2) and (6.3) cannot both be true.
We summarize this section with a few conjectural conclusions based on the

formal expansions.

Conjectural conclusions. Assume first that the error distribution and p are sym-
metric around 0. Then it appears that the estimates have reasonably simple
asymptotic properties if and only if ¢ — 0. In particular, @ = 3} a,0,m =«
then is asymptotically normal for any (a;) with 3} a; = 1, and the difference
between @ = Y a,0, and & appears to tend to 0 in probability.

The asymmetric case seems to behave well only under the stronger assumption
thatep — 0. In particular according to (5.5), E(@ — @) ~ K, X, ;;5; can be of
the order (ep)?. And unless ¢p* — 0, we cannot even expect that the variances of
& and @® are close to each other. But unless p is well above 100, these effects
are hardly noticeable in practice, cf. Section 9, Table 2.

7. Estimation of the covariance matrix of . Analogy with the classical expres-
sion suggests to estimate the covariance matrix of 6 by a matrix of the form

1
Z X =Ty

n—pr T (M\—1
(7.1) T = (CTC)™1.

(L ze-1))
Perhaps the denominator n — p is inaccurate, and perhaps C”C should be replaced
by a matrix proportional to W = (w,):
(7.2) Wi = 2:9'(Xs — To)ci; cq -

Also here, formal power series expansions may give some heuristic insights.
From now on, we shall assume that p — oo, so that 1/n is negligible against p/n.

i) The termn=* Y ¢'(X; — T;). The expansion of ¢'(X; — T;)/2’(0) begins with
) 2z ) p g

7.3 ¢I(Xi_Ti)=1 Y. — BT —Y..T. E‘”AT.Z
( ) 2,(0) ) + 1z ﬂz 2 21 1+ 2 % +
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The leading bias terms are

(7.4) ET;) =Ky 2ruru+ -+ (cf. (5.6))
(7.3) E(YyT,) = E(Y,Yy)ru+ -+
(7'6) E(T?) = E(Y)ry+ -

Thus, after summing over i,

an el zga-nf =10 {1- 2K+ Z%K]} TR
with

m:ﬂnm—%awy

K, = ,K,.

If the diagonal (7,;) belongs to the span of the columns of C, the factor in front
of K, is 1.
The variance of n~! 3 ¢'(X; — T;) is negligible, being of the order O(1/n).

(ii) The term n=* 3] ¢(X; — T;)*. The expansion begins with
(.8) P = T = v 4 X1+ Ve — 2T Y1 + Vi)
21(0)2
+ T3You(By + Yu) + - -

and the leading bias terms are
E(TX(1 + Yi)) = ru E(Yog)(l +EYS) A+ -
E(2T; Yo (1l — Yy) = 7:(2E(YS) + 2E(Y'Y))) + 2 rur) K E(Y, Yy) + - -
E(Tiayoi(ﬂz + Yy) = 7 E(YP)E(Y, Y)) + -

Thus we obtain
19 B[l me -1y

— 20V 2 _Pl1_«k _ZuTzzTuK] .
PR (1 = £[1— K, — Baule g |4
with

E(YY))
E(Y?)

K, = E(Y;?) — 2 + E(Y,Y,)

K, = ZM — BEY,Y,) = —2 E(Y,Y) K,.
E(Y¢) E(Y?)

The variance of n~* 37 ¢(X; — T)* is again negligible, being of the order O(1/n),
thus

(7.10) EL:§;Z¢M%—TNJ

= OYE) {1+ LK 4 Balulug oo

n
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(iiiy The matrix W. Assume C?C = Iand define I as in (7.2), then we obtain

W

FIOR

(7.11)

where the expansion of the matrix B begins
(7.12) B, = 2 [ Y — By + You)T; + %ﬁsTiz]cijcik + .-
We are interested in W = 2'(0)({ 4 B)

(7.13) Wt = Z,(0)( —B4+B— ...

W = I—2B 4 3B — .
2,(0)2 i ( + )

The leading bias terms are
E(Bj,) = — 25 [Kirii + Ks 20ruri] € +
(7.14) E(Y B Bni) = E(YY) i TiCijCan + 2K 20a rhecy -

Thus, in particular,

(7.15)  E(W3%) = 2’(0) {050 + [Ki + E(Y)] 2067445 Can
+ K 3 (S rurie)cca + 2K Darhecu) + o0
(7’16) E(Wj_kz = 2,(0)2 {6170 + [2K + 3E(Y2)] Z T‘ucm Cik

+ 2Ky 31 (i ruris) € Ca + 6K; 2l 1hCi; P R

The three simplest proposals for estimating the covariance matrix of 0 seem to be

T D= T
(1.17) _ (CTC)
[—zwm—nﬂ
n
S D= T
(7.18) W
Lo -1y
n
(7.19) ST (X, — TP W-CTC)W-1.

n —

All three reduce to the classical expression in the classical case ¢(x) = x. All
three agree if p = 1, ¢;; = 1/n* (estimation of a location parameter).

We now insert the expressions derived in (i), (ii), (iii) into these estimates, in
order to compare them with the covariance matrix (6.5). This leads to perfectly
horrible and not easily comparable formulas. However, if we assume that the
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error distribution and p are symmetric and that the matrix C is balanced (7,; =
p/n), there is a considerable simplification. It turns out that all three covariance
estimates contain a bias of the order O(p/n), and that it is possible to make them
unbiased up to O(p?/n?) terms, if one multiplies them by a correction factor K?,
K or K-* respectively, where

(7.20) K=1+ L EYp.
n

(In actual use, one would have to replace the unknown E(Y,?) by an estimate.)
8. Computation of such estimates. We propose to use the derivative of (1.6), i.e.,
(8.1) ¢(x) = max (—¢, min (c, X)),

and we intend to estimate simultaneously with 6 also a scale parameter ¢. (Since
the variance of the estimate of ¢ will be of the order O(1/n) = o(p/n), this modi-
fication does not influence the asymptotic theory which we had derived for fixed
o.) Admittedly the above ¢ does not possess the smoothness postulated in Sec-
tion 3, but it is quite unlikely that this should make any difference in the results,
if the distribution of the errors U is reasonably smooth.

We propose to solve the non-linear system

(8.2) Zigz,(_&:%k_%f’k)c“:o, j=1,.p
2k € b
(8.) R e
with
B=E,p(U) .

There are two main methods for solving (8.2), a crude and a somewhat more

sophisticated one.
First the crude method. The idea behind it is simply to linearize (8.2):

(8.4) 2:0¢ <A;i> DN ¢’< )cwqﬁ =0,

to replace ¢’(X;/o) by its expected value (or an estimate of it) and then to solve
for §. To improve accuracy, the procedure can be repeated with the X, replaced
by the current residuals X; — T,.

More precisely, the procedure can be described as follows

1. Compute (C*C)~*.
2. Take starting values 6, o.

3. Let
T; = 3l a0y mz%ng'()_(i; T«;)
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e ()

a9 = L (creyry
m

4. Put

Onew = 0 + AG .
5. If ||A@]| is smaller than some predetermined threshold, stop. Otherwise

begin again at 2., with the new values for 6 and ¢.

The idea behind the sophisticated method is as follows. If ¢ is piecewise
linear, and if it would be known to which linear piece.of ¢ each residual belongs,
the solution of (8.2), (8.3) is a problem of elementary algebra. Let 8", ¢ be
trial values, then, with (8.1) there are three classes of residuals:

the lower class I ={i|X; — 3 ¢;, 0, < —co™}
the middle class I ={i| —co” < X, — X} ¢, 0,7 < co}
the upper class LY ={i| X; — > ¢;, 0, > co"}.
If the partition I_, I, I, agrees with that induced by the solution of (8.2),

(8.3) then this final solution can be reached in just one step. In order to see this,
we rewrite the system as

(8.5) 20 (X — Zecub)es; + (Xy e — D-cy)eo =0
(8.6) 20X — et + (S 1+ > - Do = (n — p)fo?,
where the index 0, 4, — at the summation sign indicates summations over

I, 1., I_™ respectively.
The computational procedure now is as follows.

1. Choose some starting values 6, ¢®. Let r = 0.
2. Find the sets I,", I, I_".
3. Compute the matrix

(8.7) Wi = 210 Ca »
the vectors
(8.8) Yy= 20 Xicy

R, = 24— 2_Cap»
and the scalars
(8.9) 0 =,X?
M=%, 1+3%_1.
4. Solve .
(8.10) ZijTkZY-:’ j:l’...’})

2 Wy =R, j=1-p
for r and for é.
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5. Then 6,(s) = 7, + cod, satisfies (8.5) identically in ¢; if we insert this linear
function into (8.6) and solve for ¢?, we obtain

(8.11) (67 +) = 200 (X — 2ecan i)
(n—p)B— 20 (Dkcin0s) + M]

or equivalently (but somewhat more sensitive to rounding errors)

(8.12) (67 V) = 0 — 2LVt .
(n—p)B — [ 2R, + M]

6. Put 6,7*" = 7, 4+ c6"*Vg, and find the corresponding partition 7,"+V,
I+, I +b If it agrees with the preceding one 1™, 1,7, I_, then (§+V,
¢ +V) solves (8.2). Otherwise replace r by r 4 1 and go to 3.

In order to improve numerical accuracy, it may be preferable to replace X;
by the current value of the residual X; — >}, ¢, 0, in (8.8) ff. Then, in 6.,
we have

0k(r+1) — 0k(r) + Ty + co-(r+l)5k .
Since there are only finitely many possible partitions 1,, 7., I_, the procedure
must either stop after finitely many steps, or it must repeat itself periodically.

The sophisticated procedure ordinarily shows a very fast convergence (3 to 5
iterations are typical) but it is not foolproof. For larger values of p/n (above
0.1 or so) it happens with increasing frequency that either the matrix W becomes
singular or that the denominator of (8.11), (8.12) becomes negative. (This occurs
in particular if the initial value of ¢ is chosen too small.)

The crude procedure may need 15 to 30 iterations but seems to be foolproof
(especially if m is replaced by a constant; convergence has not been proved yet).
Its slowness is in part counterbalanced by the fact that some time consuming
matrix operations have to be performed only once; moreover, it works for
arbitrary ¢.

Finally, according to Section 7, the covariance matrix of ] might be estimated

either by
1 . — T.\?
Z (/} <X1 T1,> 0.2
(8.13) il 4 i KW~
: 1 (X, — T,
Z 29 (57)
or by
1 ; 2
Z (/} <Xz T1 0.2
n — P g
(8.14) K¥CTC)*.

oz (550

Incidentally, the choice of starting values for ¢ and ¢ presents a problem. In the
regression case there is no easy analogue to the sample median, and despite its
known inadequacy (see Andrews et al. (1972)) one might have to start with the
least squares solution.
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9. Monte Carlo results. As the power series expansions of Sections 4 ff. are
rather shaky, it was doubly necessary to check them by Monte Carlo calcula-
tions. Evidently, the matrix C must be chosen such that computational short-
cuts are possible; for most of the experiments the matrix (5.8) was used, with ¢
as in (8.1). In most cases, there were 50 replications if n < 1025, but only 10
or fewer for larger n. .

Tables 1 and 2 summarize some results for fixed ¢. For the error distribution
we took the normal, a conventional contaminated normal, the Cauchy and two
highly asymmetric distributions, namely, the y* with 2 and 4 degrees of free-
dom respectively (apart from a different scale; location was adjusted such that
E§(U,) = 0). \

By “Var (0;)” the average variance of a parameter orthogonal to the last row
of (5.8) is meant; the theoretical value is that given by (6.5) or (6.6), etc. In
parentheses, we give the estimated standard deviation of the Monte Carlo aver-
ages, in units of the last given digit.

ESVAR is the Monte Carlo average of the coefficient of (C”C)~* in (8.14):

ESVAR — ave {110 = p) T ¢(X, — Ty x)

m2

where
1 ’
m_—~7 > PN(X; — T;)

and where (7.20) has been estimated by

1—m
m

n

(see the end of Section 7 for the motivation). Besides ESVAR, the ratio
[observed Var (6,)]/ESVAR is also given.

For the asymmetric distributions, the “‘bias” is the average of (n/p)!T,, as given
theoretically by (5.6), (5.9). Note that the variance of (n/p)!T, is asymptotically
the same as Var (4,).

The agreement in general is very good, for normal errors is even fantastically
good, and this down to n/p = 4. For Cauchy errors, the agreement is very good
for n/p = 16 and tolerable for n/p = 8.

Some larger, but mostly explainable discrepancies show up with the density
et x> &, For instance, the difference between the theoretical and the
observed value of n~! 3 ¢'(X; — T;) coincides almost exactly with the observed
frequency of residuals < —c, which is wrongly calculated as 0 by the Taylor
expansion.

When the nuisance parameter ¢ is estimated simultaneously, the results (not
shown here) are essentially the same, as predicted in Section 8.
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TABLE 2
Asymmetric distributions, fixed scale

Var (8;)
(ap;/rlz)x.) p n theor.  obs. ratio ESVAR ratio
o .552
32 33 1025 .562  .589(28) 1.05(5) .574 1.03(5)
32 129 4097 -591(33) 1.05(6) 569 1.04(6)
flx) = e=tatd) 16 65 1025  .572  .616(18) 1.08(3)  .586  1.05(3)
x>—£ (=1 16 257 4097 .580(21) 1.01(4) .592 .98(4)
8 129 1025 .592 .666(12) 1.12(2) .618 1.08(2)
8 513 4097 .669(17) 1.13(3) .616 1.09(3)
8 1025 8193 .653 1.10 .624 1.05
4 257 1025 .633 .750(26) 1.18(4) .645 1.16(4)
co 1.519
32 32 1025  1.56 1.66(7) 1.06(4)  1.572) 1.06(4)
fix) = (x + &e=t=+8) 16 64 1025 1.60 1.604) 1.003)  1.56(1) 1.02(3)
x>-¢ (=15 8§ 8 65 1.68 1.66(7)  .994)  1.60(3) 1.03(4)
8 32 257 1.68 1.71(7) 1.02(4) 1.58(3) 1.08(5)
8 128 1025 1.68 1.66(3) 99(2)  1.58(2) 1.04(2)
4 256 1025 1.83 1.76(3) 962)  1.612) 1.102)
1 1
E[-nya-1)] E[ -~ % g% - Top bias of (1/p) T
theor. obs. ratio theor. obs. ratio theor. obs. ratio
.841 .391
.846  .840 .993 400 .400(2)  1.000(5) 75 .194(13) 1.11(7)
.841 .994 .308(3)  .995(8) 342 .374(27) 1.09(8)
.853  .840 .985 408 .4043)  .990(7) 340 .415(16) 1.22(5)
-839 .984 .4072)  .997(5) 671 .790(35) 1.18(5)
.863  .841 .975 425 41712 .982(5) 655  .862(21) 1.32(3)
-841 .975 J416(2)  .980(5)  1.297 1.75(7) = 1.35(5)
.839 972 .419 .990 1.829 2.47 1.35
.885  .859 .971 458 .439(4)  .965(10)  1.216 1.708)  1.40(7)
.8034 .9803
.808 .803(2)  .993(2) .987 .994(5) 1.007(5) .37 .37(2) 1.01(5)
814 .811(2)  .997(2) .93 .997(4) 1.005(4) 73 .683)  .93(4)
.824  .825(3) 1.001(4) 1.005 1.008(9) 1.002(9) .36 .32(2) .88(5)
824 .825(4) 1.001(4)  1.005 1.009(10) 1.004(10) .72 .62(4) -86(5)
824 .823(2) .999(2)  1.005 1.015(5) 1.010(5)  1.42  1.29(4) -91(3)
.844  .851(2) 1.008(2) 1.030 1.068(6) 1.037(6)  2.64 2.39(8) .90(3)
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TABLE 3
Constants of Sections 5 to 7
NO,1)  NO,1) .85N0, 1) Cauchy e-@+8), x > —& (x4 &e=(=+8)
+ . 15N(0, 9) x> —&
c=1.5 ¢=1.0 c=1.0 c=1.0 c=1.0 c=1.5
E(¢?) .77847 .51606 .56234 .63262 .39077 .98025
E(¢) .86639 .68269 .61945 .50000 .84141 .80338
Ky 0 0 0 0 .1720 .3753
K —.0437 —.0709 .3975 5.948 .3230 .0821
K, 0 0 0 0 —.0408 .8203
K3 0 0 0 0 .0413 .3574
Ky —.2881 —.6459 —.6788 —.4627 —.1720 —.2522
Ks 0 0 0 0 —.0324 .0499
K¢ .2196 .2982 .4002 .8684 .5522 .0690
Ky 0 0 0 0 .1396 .1356
13 .84141 1.81045
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