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OPTIMAL STOPPING AND SEQUENTIAL TESTS WHICH
MINIMIZE THE MAXIMUM EXPECTED
SAMPLE SIZE!

By TzE LEUNG LAl
Columbia University

Among all sequential tests with prescribed error probabilities of the
null hypothesis Hy: § = —0; versus the simple alternative H;: 6 = 6,, where
0 is the unknown mean of a normal population, we want to find the test
which minimizes the maximum expected sample size. In this paper, we
formulate the problem as an optimal stopping problem and find an optimal
stopping rule. The analogous problem in continuous time is also studied,
where we want to test whether the drift coefficient of a Wiener process is
—61 or #1. By reducing the corresponding optimal stopping problem to a
free boundary problem, we obtain upper and lower bounds as well as the
asymptotic behavior of the stopping boundaries.

1. Imtroduction. Let X, X,, ... be i.i.d. N(@, ¢*), where ¢* is known and
6 is an unknown parameter. The problem is to test the simple hypothesis
H,: § = —@, versus the simple alternative H,: § = 6, (6, > 0) with prescribed
error probabilities

1) P_, (H, is rejected) < 1,
P, (H, is accepted) < 2

where 2 < 4 is a given positive constant. It is well known that the Wald se-
quential probability ratio test (SPRT) which stops as soon as |S,| = b, b being
determined by (1), minimizes the expected sample size under both H, and H,.
Although the Wald SPRT has this optimum property, its expected sample size
for 6 € (—46,, 6,) may actually exceed the fixed sample size required by the UMP
test satisfying (1), as has been pointed out by Woodroofe [14]. To remedy this,
Anderson [1] has proposed a modification of the SPRT where he replaces the
parallel straight lines x = b and x = — b by two convergent straight line bounda-
ries which are symmetric about the line x = 0.

Bechhofer [2] has pointed out the desirability of constructing a test which
minimizes the maximum expected sample size among all tests satisfying (1).
Kiefer and Weiss [9] and later Weiss [13] have considered this problem. They
have shown that such a test is a generalized sequential probability ratio test
(GSPRT). Using a Bayesian approach, Weiss [13] has found the truncation
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point for such a test and has pointed out that the construction of the continuation
region would be a very hard computational problem.

In Section 2, we shall formulate the problem as an optimal stopping problem.
We are in the non-stationary Markov case here, and non-stationarity accounts
for the difficulty in the construction of the continuation region. In Section 3,
we shall study this optimal stopping problem, and it will be shown that the
boundary defining the continuation region of our optimal stopping rule consists
of a pair of convergent decreasing nonlinear curves, symmetric about the time
axis. In Section 4, we shall consider the corresponding optimal stopping problem
in continuous time, where we shall replace the partial sums of N(0, 1) random
variables of Section 3 by a standard Wiener process and reduce the optimal
stopping problem to the solution of a free boundary problem. Throughout this
paper, we shall use ® to denote the distribution function of a standard normal
random variable.

2. Formulation of the optimal stopping problem. Let X, X,, - - . bei.i.d. normal
random variables with known variance ¢ and unknown mean 6. We want to
test Hy: 0 = —0,versus H,: § = 6,. A test (N, d) consists of a stopping time N
and a terminal decision rule which is represented by a critical function 4, i.e.,
o(xy, - -+, x,) is the probability of rejecting H, given that N = nand X, = x;, - - -,
X, = x, are observed. Throughout this paper, we shall restrict ourselves to
nonrandomized stopping rules. As in [13], we shall say that a test (N, d) is
symmetric if it satisfies the following two conditions for all n:

(A) 0(—xp +++y —x,)=1—0(x;, - -+, Xx,).
(B) For any Borel subset B of R,

N=n={(Xy, ---, X)eB}={N=n} = {(-Xp ---, = X,) e B} .

Let (N, ) be a symmetric test such that the inequalities in (1) are actually
equalities. Weiss [13] has shown that (N, §) minimizes the maximum expected
sample size among all tests satisfying (1) if there exists p € (0, 1) such that (N, d)
minimizes

) S(N, 0) = izi P_, (H, is rejected) + (1 — p)E,N

-+ !;_ P, (H, is accepted)
among all tests satisfying (1).

Since we assume 2 < 3}, a test (N, d) satisfying (1) must take at least one
observation. We now assert that for any given stopping rule N > 1, the
terminal decision rule §, which rejects H, if S, > 0, accepts H, if S, < 0 and
rejects H, with probability } if S, = 0 minimizes the function ¢(N, 6) among all
terminal decision rules 6. To prove this, we note that for any terminal decision
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rule 4,
PN, 0) = £ T e (200 P03, -, 3,

X exp {—2%2 (x4 .91)2} dx, - - - dx,
+ (1 - P) Z:=1 S(N=,,) (271'02)_"/2}1

X exp {'—2%72 i=1 xiz} dx, - .- dx,
3) + % 2=t Siwmmy Rma®) (1 — 0(x,, - - -5 X,))

xexp{__l. ,.=1(x,._01)2} dx, - dx,
2q?
nér 6

> N @) e {1 = p) + £ exp (=75 = D5}

1
X exp (-2_0; A xf) dx, ... dx,
= ¢(N, 9d,) .

It remains to find an optimal stopping rule which minimizes ¢(N, d,). We
observe that

N
G(N, 0 = L. E,{aN + exp (=3 8 — IZE Kool )|
where a = 2(1 — p)/p, B = 0,/o. In the following section, we shall find an

optimal stopping rule N which is symmetric, i.e., satisfies condition (B) above.
Hence the test (N, d,) is a symmetric test. For simplicity, we shall assume that

g=1.
3. The continuation region and other properties of the optimal stopping rule r.
Let X, X,, --- be i.i.d. N(0,1) random variables and S, = X, + -+ 4+ X,

(Sy = 0). Let « > 0 and define Z, = an + exp(—4n — |S,]). In this section,
we shall find an optimal stopping rule = for the loss sequence Z,, i.e., EZ =
inf, EZ,, where the infimum is taken over all stopping rules 7. From the theory
of optimal stopping, we are in the non-stationary Markov case here (see [4],
Chapter 5). In this connection, we remark that if we replace Z, by Z, = an +
exp(—4n — S,), then the loss sequence Z, is a submartingale and the optimal
rule is not to take any observation. For the sequence Z,, it is obvious that one
should not continue sampling after stage » if exp(—4n — |S,|) < a, or equiva-
lently if |S,| + $n = —log a. In particular, = is bounded by M, where M is the
smallest nonnegative integer > —2 log a. This agrees with a result of Weiss [13].
From now on, we shall assume that « < 1 so that M > 1. Let Y be a standard
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normal random variable and define

v(x, n) = exp(—% — |x|);

u(x, n) = v(x, n), if n>M,

4 =min {v(x, n), @« + Eu{x + Y, n + 1)},
if n=0,1,..., M—1;
d(x, n) = v(x, n) — u(x, n);
r=inf{n = 0: d(S,, n) = 0}.

It is easy to see ([4], Chapters 3 and 5) that = is an optimal stopping rule for
Z,. As first indicated by Kiefer and Weiss [9] for the corresponding sequential
test, we now prove directly that the continuation region of our optimal rule ¢
is defined by a non-increasing sequence (b,) with b, = 0 for n > M, i.e., 7 is
the first n > 0 such that |S,| = b,.

THEOREM 1. There exists a nonnegative sequence (b,,0 < n < M) with b, = 0
such that the optimal stopping rule © is given by = inf{n = 0: |S,| = b,}. Fur-
thermore, for each n fixed, the functions d, u, v are continuous even functions in x
and d(x, n), u(x, n) are both non-increasing in x = 0.

Proor. We shall prove the theorem by backward induction. We note that
t < Mandd(x,n) = 0if |x| + 4n = —loga. Suppose thatfori=n+ 1, ..., M,
d(x, i) and u(x, i) are both continuous even functions and are both non-increasing
in x = 0. Then we define b, = inf {x = 0; d(x, /) = 0} and note that

u(x,i) = a + Eu(x + Y,i + 1) if |x| <b,,
= v(x, i) if x| =b;.
Obviously #(x, n) is a continuous even function in x. We now construct b,.

At stage n, if we observe S, = x > 0, then the optimal rule = will stop sam-
pling if

v(x,n) S a + Elj,ypi5, exp(_n ;— I |x + Y|>

+ Elpyyich q(x + Y, n 4 1)
or equivalently if ,

(5) Oga-{-Eexp(—n—;l—|x+Y|>—v(x,n)—Ed(x+ Y,n+1).

Now Eexp(—%(n + 1) — |x + Y|) — v(x, n) = e7"*{e*®(—1 — x) — e7*®(1 — x)}
is a continuous increasing function in x. Also the family of densities of the
random variables |[x 4 Y|, x = 0, has monotone likelihood ratio. By induction
assumption, —d(z,n + 1) is a continuous non-decreasing function in z > 0.
Hence —Ed(|x + Y|, n + 1) is a continuous non-decreasing function in x > 0
([11], page 74). Therefore the set of all x > 0 satisfying (5) is an interval, say
[b,, ), with b, < (—loga — in)*.
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We now show that d(x, n) is a non-increasing function in x > 0. For x > b,
d(x,n) = 0. Now let x < b,. Then d(x, n) > 0 and

d(x, n) = v(x, n) — u(x, n)

6) =v(x,n)—Eexp<—n;1—|x+ Y|>

—a+ Edx+Y,n+ 1)
=e"e*P(l — x) — eP(—1 — x)} —a + Ed(x + Y,n + 1).
Hence d(x, n) is non-increasing in x > 0. Similarly, since u(x,n) = a +
Eu(x 4+ Y,n 4 1) if x| < b,, and = v(x, n) if [x| = b,, we can prove that u(x, n)
is non-increasing in x = 0. [J
THEOREM 2. For each x, the functions d(x, n) and u(x, n) defined by (4) are both

non-increasing in n. Consequently the sequence (b,,0 < n < M) constructed in
Theorem 1 is non-increasing.

Proor. We first show that for x > 0,
©) d(x,n) = d(x,n + 1) with strict inequality if x < b, .

We shall prove (7) by backward induction. Obviously (7) is true for n > M.
Now assume that (7) holds for n = m 4+ 1. In the case where x > 0 is a con-
tinuation point at stagesmand m + 1, i.e., x < b, and x < b,,,,, then it follows
from (6) that d(x, m) > d(x, m + 1), since using the induction assumption, we
have Ed(x + Y, m + 1) = Ed(x + Y, m + 2). We now show that 5, = b,,,,,
so that the only remaining cases are b,, ., < x < b, (and therefore d(x, m + 1) =
0 < d(x, m)) together with x > b, (and therefore d(x, m) = d(x, m + 1) = 0).
If b,, = 0, then obviously 4,,,, = 0. Now assume b,, > 0. To prove b,, > b,,.,,
we recall that b, = inf {x = 0: x satisfies (5)}, and so it suffices to show that

a+Eexp<—mT+2— 16, + Y|> — by, m 4+ 1) — Ed(b, + Y, m +2) >0

or equivalently,
®) a + e~ en@®(—1 — b,) — e7tnD(1 — b,,)}

— Ed(b,, + Y, m+2)>0.
Since b,, > 0,
) a4 emHen®(—1 —b,) — e O — b,)} — Ed(b,, + Y, m + 1) =0.
Using induction assumption, Ed(b, + Y, m + 1) = Ed(b,, + Y, m + 2). Also
etn®(—1 — b,) — e7?»®(1 — b,) < 0. Therefore (8) follows from (9).

To prove that u(x, n) is non-increasing in n, we note that this is obviously
true for n > M. Defining b, = 0 for n > M, we can write foralln = 1,2, ...,
u(x,n) =a + Eu(x + Y,n + 1) if |x]<bo,,

= v(x, n) if |x]=b,.



664 TZE LEUNG LAI

Using backward induction, we find thatif 0 < x.< b,,,thenEu(x + Y,n+ 1) =
Eu(x + Y, n + 2) and therefore u(x, n) = u(x,n + 1). If x = b,, then u(x, n) =
v(x,n) = v(x,n + 1) = u(x, n + 1). Firally, ifb,,, < x < b,, then
ux,n + 1)y =v(x,n+ 1)< a + Eu(x + Y,n 4+ 2)
<a+ Eux+Y,n+1)=ux,n). d

The following theorem gives upper and lower bounds and the asymptotic
behavior of b, as a | 0.

THEOREM 3. The sequence b,, 0 < n < M, constructed in Theorem 1 satisfies the
following inequalities:

(10) fr<bys(—2 —loga)’

where x = f3, is the positive solution of
(11) ae"? = e7*Q(1 — x) — eDP(—1 — x)

if (11) has a positive solution and B, is defined as O if otherwise. Furthermore, as
a — 0, we have M — oo and for each fixed n =0,1,2, ...,

(12) b, ~ —loga.

Proor. We have already shown that b, < ( — $n — log @)*. Since b, satisfies
(5) and d = 0, it follows that

a + e etn®D(—1 — b,) — en®(1 — b,)} = 0.

Therefore b, > 8, = inf{x = 0: ae"”? = e*®(1 — x) — e*®(—1 — x)}, noting
that the function e=*®(1 — x) — e*®(—1 — x) is a continuous positive decreas-
ing function for x = 0.

To prove the asymptotic formula (12), we now derive another lower bound
of b,. Forany k = 1,2, ..., we note that

u(x, n) < ak + e~ **t"2 Eexp(—|S, + x|)
= ak 4 e **e~*(1 — O(k~}(k — x))) + e@k~}(—k — x))}.

Therefore d(x, n) = e "*e~*®(k~}(k — x)) — ee®(k~¥(—k — X))} — ak.
Since d(b,, n) = 0, it then follows that
(13) e e ' ®(k~}(k — b,)) — ek} (—k — b,))} < ak.

It is easy to see from (10) that for n fixed, b, — oo as a | 0. Setting k = [b,]
in (13), we obtain thatas a | O,

(4 + o() exp(—2 —b,) < ab,

and therefore b,(1 + o(1)) = —loga. This inequality, together with the upper
bound in (10), gives the asymptotic formula (12). [
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Let @« = e7"”? where M is a positive integer. Define my(x) = go(x) = e~*(1 —
®(1 — x)) + e*®(—1 — x) and let x = ¢, be the positive solution of
(14) Ty (x) + et =e".
Then define
g:(x) = e (1 — O(1 + ¢; — x)) + e€P(—1 — ¢, — x),
m(x) = (2me)? S”_lcl m(2) exp(—(z — x)*/2) dz + g,(x),
A(x) = O(c; — x) — O(—c, — x)
and let x = c, be the positive solution of
(15) T (x) + e Y1 + A4(x)) = e™=.
In general, having defined ¢,, - - -, ¢;, we let x = c;,, be the positive solution of

(16) T(X) + e L 4 2(X) + A (X)) + e A+ Ay (X)) = e
where
Ty (x) = (2ne)™* §Z,, 7;_i(2) exp(—(2—x)*/2) dz + gi(x) ,
g:(x) = e*(1 — O(1 4+ ¢; — x)) + e@(—1 — ¢; — x),
4i(x) = @(¢; — x) — D(—¢; — x),
A;501(%) = (2m)7H 25 2,(2) exp(—(z — x)[2) dz,
Tsense®) = Q) H§52 2, 50(2) exp(— (2 — X)) dz, etc.
Note that the functions g,, r;, 4;, 4; ;,,, etc., defined above are all even functions.
Numerical solution gives us ¢, = .08, ¢, = .4, ¢, = .73, ¢, = 1.1, ¢; = 1.5, etc.,
and the points (i, ¢;) are not collinear.
We assert that b, = 0 and b,_;, =c;, fori=1,..., M. To prove this, we
note that if 6, > 0, then x = b, is the positive solution of

1
(1) ™2 4 El, sy, gexp <_” sz x4 Y|>

+ EI[I:+Y|<bn+1]”(x + Y, n+ 1) = v(x, n)
where Y is N(0, 1). Since b, = 0 and u(x, M) = v(x, M), equation (17) with
n = M — 1 reduces to equation (14), and so b,_, = ¢;. Then for x > 0,
u(x, M — 1) = e ™2 4 e~¥-D7i2g (x) if x<g¢,
=v(x, M — 1) if x=g¢.
Therefore equation (17) with n = M — 2 reduces to equation (15) upon multi-
plication of both sides of (17) by e*-?/, and so b,_, = c,. By induction, we
see that in general, for x > 0and i =2, ..., M,
u(x, M — i) = e™™*(1 + 2, (%) + Aigia(X) + -+ + A1 ia(X))
+ e~=9lg, (x) if x<e¢;,
= v(x, M — i) if x=g¢,
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and equation (17) with n = M — (i + 1) reduces to equation (16). Therefore
by i1y = Cipre

We now consider the case where a = e~"~2/2, M being a positive integer and
0 €(0, 1). First suppose that e=*~"/2 < ®(1) — ®(—1). Then the equation

(18) 7o(X) + e-0-D = g==

has a unique positive solution x = ¢,*. Define g,*, =,*, 2,* as before, only re-
placing ¢, by ¢,*. In general, we shall replace equation (16) by

19 TH(X) 4 eGR4 A K(x) + - -+ AFL (X)) = e7®

and let x = c¥,, be the positive solution of (19), where =, *, 1,*, etc., are defined
as before with ¢;* taking the place of ¢,. In this case, we have b,_;, = ¢;*
i=1,..., M). .

In the case where e=*=9/2 > ®(1) — O(—1), we define ¢, = 0 and let x = ¢,
be the positive solution of
(20) To(X) + e 32 = g7,

In general we shall replace equation (16) by

1) Zi(x) + eI L(x) + e+ Ayu(0) = €T

and let x = ¢,,, be the positive solution of (21), where #,, 4;, etc., are defined
as before with ¢; taking the place of c,. In this case, we have b, , = ¢, , for
i=1,..., M.

In practice, although we can solve numerically the system of equations (14),
(16) (or the system (18), (19); or the system (20), (21)) to obtain the sequence
b, defining the optimal stopping rule z, the operating characteristics of the test
using such a stopping boundary cannot be obtained analytically since the stopping
boundary is given only numerically and does not have a nice functional form.
In practical situations, the preassigned upper bound 2 in (1) for the error proba-
bilities of the test is usually small, and in this case, it is easy to see that the
number «a defining the corresponding loss sequence Z, is also small. The follow-
ing theorem shows that as «a | 0, the (upper) stopping boundary b, is asymp-
totically linear with slope —3 and intercept —log a, and let us approximate it
by the line x = (—4n — loga)*, n =0, 1, . ... The corresponding approxima-
tion to our test is then to stop as soon as |S,| 4+ 4n = —loga, and is therefore
a special case of Anderson’s test whose operating characteristics have been de-
rived in [1].

THEOREM 4. As a | 0, the asymptotic shape of the boundary b, is linear; more
precisely,

b[_,loga]~|logal<1—%> if 0<t<2,

b 310501 = O(1)
and b, = 0 if n > —2loga.
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Proor. We have already seen that b, = 0if n > —2loga and b;_,,,.,; = 0
or ¢;*, where ¢,* is defined by (18). Now let 0 < ¢ < 2 and in relation (13),
set n = [—tloga] and k = [b,]. With these values of nand k, since (10) implies
that b, — oo as @ | 0, (13) then reduces to

(b + o) exp(—7 — 5,) < ao,
and therefore

% 1oga — by_,105a1(1 + 0(1)) < loga .

This inequality, together with the upper bound in (10), gives the desired
conclusion. []

4. Extension to the continuous-time analogue. Let W(f) be a standard Wiener
process and let X(f) = W(t) + 0t. Wewanttotest H: § = —1 versus K: 6 = 1
with prescribed error probabilities

(22) P_,(H is rejected) < 2,
P,(H is accepted) < 4

where 2 < 4 is a given positive constant. As in the discrete-time case, a sym-
metric test for which the inequalities in (22) become equalities minimizes the
maximum expected sample size among all tests satisfying (22) if we stop as soon
as | X(7)| = b(r), where for some a > 0, b(f) and —b(¢) are the boundary curves
of the continuation region of the optimal stopping rule ¢ which we shall con-
struct below for the loss process Z(f) = at + exp(—4t — |W(¢)|), and if the ter-
minal decision rule rejects H when X{(r) > 0 and accepts H when X(7) < 0.

We now proceed to find an optimal stopping rule ¢ for the loss process Z(t),
i.e., EZ(s) = inf, EZ(T), where the infimum is taken over all stopping times
T. Let Y(¢) be the space-time Brownian motion, i.e., Y(¢) is a continuous sta-
tionary Markov process whose transition function P(t, y, A) with y = (x, 5) and
A being any measurable subset of (—co, o0) X [0, co) is determined by

P(t,(x,5), T x C) = P[W(s + t)eI'| W(s) = x] if s4+1teC,
=0 otherwise.

Properties of space-time processes and their harmonic functions have been
studied by Doob [5], I1t6 and McKean [8] and Lai [10]. If G is an open subset
of (—o0, 00) X [0, o) and h: G — (— o0, o), then it is known ([10], Theorem
3) that & is harmonic for Y(¢) iff 4 is a continuous (and therefore by the maxi-
mum principle C=) solution of

Laor 9k _y

2 ox? ot
on G. (We refer the reader to Chapter 12 of [6] for the definition and properties
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of harmonic functions of a continuous Markov process.) Define

(23) g(x, 1) = at + exp (_% - |x|) = at + v(x, 1),
fix, 1) = inf, E[g(Y(T))| Y(0) = (x, )] = at + o(x, 1)

where ¢(x, f) = inf, {aET + e *2?Eexp(—|x + W(T)| — 3T)}.
It is known (see [7]) that the function —f is the least excessive majorant of the
function —g and that f is harmonic for the space-time process Y(¢) on the set
{(x, 1)1 f(x, 1) < g(x, £)} which is an open subset of (— oo, c0) X [0, o0).

We now approximate this continuous-time optimal stopping problem by a
sequence of discrete-time problems. For fixed xreal,t > 0and N=10,1,2, ...,
let Z¥, denote the sequence (Z%¥ ,(n),n =0, 1, 2, -..) where

Z3dn) = an2™V + e~ exp(—|x + W(n2™")| —n27"7).

For x =0, t = 0 and N = 0, this reduces to the sequence considered in the
previous section. The value of the loss sequence Z7, is given by u,(x, t), where
we define

M, (f) = smallest nonnegative integer n such that ¢ 4 n2=% =

—2log2%a;
uy(x, n; £) = v(x, t + n27") if n= My,
(24) = min {v(x, t + n27%), a2¥ 4+ Euy(x + W2 %), n + 1; 1)}

if n< My(t);
uy(x, t) = dN(x, 0;1),
dy(x, t) = v(x, t) — uy(x, t),
by(t) = inf {x = 0: dy(x, r) = 0} .

Since the process as + exp(—|x + W(s)| — %(t + 5)), s = 0, is continuous and
bounded by the function as + 1, it follows from [12] that

(25) uy(x, t) | o(x, 1) as Nloo.

For ¢t > 0, since uy(x, t) is an even function in x, we obtain from (25) that
¢(x, t) is also an even function in x. Defining p(x, f) = v(x, 1) — (X, 1) =
g(x, f) — f(x, t) and b(f) = inf {x = 0: p(x, t) = 0}, we find that as N1 oo,
dy(x, £) 1 p(x, ) and b,(f) 1 b(f), and it can be shown that the function b is
everywhere positive and b(7) is strictly increasing in N for all sufficiently
large N.

Using a similar argument as in the proof of Theorem 1, we can prove that
for each ¢ fixed, d,(x, #) and uy(x, f) are both non-increasing in x > 0. Therefore
p(x, f) and ¢(x, 1) are both non-increasing in x > 0. Hence f(x, 1) < g(x, ?) iff
x < b(1), and since f is harmonic for Y(f) on G = {(x, #): f(x, 1) < 9(x, 1)}, it
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follows that f € C=(G) and

(26) % aa% + %f; =0, x| < b(r)
(27) flx, 1) =g(x, 1), x| = b(t) .

Since for fixed t = 0, f(x, f) is an even function in x, we have
(28) % 0,5=0.
. 0x

In fact (9*/ax*)f(0, 1) = 0 if n is odd. From now on, we need only restrict
ourselves to the quadrant {(x, f): x = 0, t = 0} and the function g isa C= func-
tion on this set. We remark that the restriction of —f to this quadrant is the
least excessive majorant of the restriction of —g to the same set with respect to
the space-time process of reflecting Brownian motion and equation (28) represents
the boundary condition at the reflecting barrier x = 0.

We now make use of the discrete-time approximation of ¢(x, f) together with
equations (26), (27), (28) to obtain further properties of the function f.

LemMma 1. If 0 < x < b(¢), then

(29) —exp<__; — x> < g];(x, H<0,

(30) a—%exp(—%—x)ég(x,t)ga.

ProoF. Obviously df/dx = dp/dx and df/dt = a + d¢/dt, and so we need only
consider the function ¢. Since ¢ and p are non-increasing in x > 0, dp/dx < 0
and dp/dx £ 0,i.e., 9v/ox < 0¢p/dx < 0. To prove (30), letg, = k,2°™, q, = k,27™
be two dyadic rationals with k, > k, > 0. Then by a similar argument as the
proof of Theorem 2, we can show that dy(x, g,) = du(x, ¢,) for all N > m.
Therefore for fixed x = 0, p(x, ¢) is a non-increasing function on the set of
dyadic rationals. Hence if 0 < x < b(?), then (3/df)p(x, ) < 0 and therefore
(9/at)v(x, t) < (8/01)¢(x, t). Similarly we can show that (9/df)¢(x, ) < 0. []

LeEMMA 2. For each t = 0, b(f) < oo. Furthermore, lim,_,, b(t) = 0 and the
function b is continuous and strictly decreasing on [0, o).

Proor. Integrating equation (26) from x = 0 to x = ¢ and using (28), we
obtain

(31) %g{(&,t)+§§%£t(x,t)dx=0, 0< &< br).

Suppose b(f) = co. Then it is easy to see from (30) that §§° (9/07) f(x, f) dx = oo.
Therefore (31) implies that lim,_, (0/dx) f(§, f) = — oo, contradicting (29). Hence
we must have b(f) < oo. A similar application of (29), (30) and (31) proves that
lim,_,, b(r) = 0. It is also easy to check that 5(¢) is continuous and strictly de-
creasing on [0, o). (]
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LEMMA 3. The function ¢ is continuous on [0, co) X [0, o0).

Proor. We know that ¢ € C~(G) and ¢(x, t) = v(x, t) if x = b(r). Therefore
it remains to prove that ¢ is continuous at the points (6(?), 7), t = 0. Let (x,, t,)
be any sequence in G converging to (b(¢), ). By the mean value theorem and
Lemma 1, it follows that ¢(x,, 7,) — ¢(x,., t,) — 0as n— oo, m — co. Therefore
by the Cauchy criterion, lim, ., ¢(x,, ,) exists. Since ¢ < v and ¢(¢, ) is non-
increasing in £ > 0, it is easy to see that lim,,,.,, o(&, 1) = ¢(b(?), 7).

THEOREM 5. Let ¢ = inf{t = 0: |W(t)| = b(r)}. Then o is optimal for the
process Z(t), i.e., EZ(¢) = inf, EZ(T). Furthermore, defining o(x,s) = inf{t = 0:
|x + W(t)| = b(t + s)}, we have

o(x, 5) = aEo(x, 5) + e*2Ev(x + W(o(x, 5)), o(x, 5)) .
Proor. See Theorem 7.3 and Section 10 of [12].

LEMMA 4. For fixed t = 0, df/0x is a continuous function in x, and the smooth
fit property

(32) 7 (b 0 = 22 (9. 1
X X
holds for all t = 0.

Proor. Let & = b(r). Then by (26) and (30), (9*/0x*)f = —2(9/dr)f is
bounded on G. Therefore using the mean value theorem as in the proof of
Lemma 3, it is easy to see that lim_,, f,(x, f) exists and is finite. Since f{(x, 7) is
continuous at x = &, an easy application of the mean value theorem shows that
the left-hand derivative f,~(§, #) exists and is equal to lim,,, f,(x, 7).

To show the smooth fit property (32), we follow Chernoff ([3], page 233).
Obviously the right-hand derivative ¢,* (£, 1) = v,(§, 7). For0 < x < &, o(x, 1) £
v(x, t) and therefore ¢, ~(§, t) = v,(§, 7). To prove the reverse inequality, we
note that since ¢, = f,, is bounded on G and ¢,, = v,, is bounded on {(x, 7):
x = b(r)}, we have

(33) P(E 4 x0%, 1) = (&, 1) + xdp,*(E, ) + x*0(5), 0< x< ot
= ¢(§, 1) + xdtp,~(§, 1) + x*0(9), —&t<x<0O.

Since ¢ is bounded, it then follows from (33) that
(34)  Ep(§ + W), 1) = ¢(§, 1) + (32m)Hv.(€, 1) — ¢,7(, )} + 0(9) -

Now ¢(&, 1) < ad + Ep(¢ + W(0), r)and so (34) implies that v,(&, £) = ¢, (¢, 7). []

The equations (26), (27), (28) and (32) restricted to the quadrant {(x, #): x > 0,
t = 0} constitute a generalized Stefan problem (or free boundary problem). We
now integrate these equations to obtain upper and lower bounds and the asymp-
totic behavior of the stopping boundary b().
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THEOREM 6. Define

t t . t
= —_-— — —_ —_—— _—— - >
(1) = — - — log 2 — log ( + — log 2a> i - —log2azl,

t + .
= (—? — log 2a> otherwise.
Then for t = 0,
(35) Bl) < b(t) < et
2a
Furthermore,
(36) b(t) ~ Zi etn as t— oo
a

For fixed t = 0,
37) b(t) ~ —loga as a | 0.
Proor. Letting £ 1 6(¢) in (31) and using Lemma 4, we obtain

(38) 3 exp(—% ~ b(t)> = jo % (x, ) dx .

It then follows from (30) and (38) that
(39) ab(t) + je-tAe — 1) < %exp(—% — b(t)) < ab() .

From the above inequalities, we easily obtain (35) and (36).
To prove (37), we.shall write b(f) = b(; @) and ¢(x, f) = ¢(x, t; a) for clarity.
In view of the lower bound in (35), we need only show that

lim sup, |, 6(t; a)/|loga| < 1.

First consider a fixed ¢ >> 0. Suppose there exist ¢ > 0 and a sequence «a, | 0
such that b(¢; a,) > —(1 + ¢) loga, > 0 for all n. Let x, = —(1 + 4¢)loga,
and take a fixed ¢, € (0, #). Thenclearly x, < b(t; a,) and ¢(x,, t;; a,) = a,Eo,,
where ¢, = inf{s = 0: |x, + W(s)| = b(t, + s; a,)}. Since b(t; a,) — x, >
elloga,|, we have liminf, ., Eo, = (¢t — t,). Therefore

a,(t — )1 + o(l)) £ a,Eo, < v(x,, t;) = e /q 1D

which is a contradiction.
We now observe that

o(x, £; @) = inf, {aET + et exp<—|x + W(T)| — %)}

= e~ "p(x, 0; ae'’?),

and so b(0; a) = b(t; ae~*?). Hence the asymptotic formula (37) for ¢+ = 0 fol-
lows from the asymptotic result which we proved for ¢t > 0. []
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For fixed xand ¢, let us write h(a) = h(a; x, ) = ¢(x, t; «) and define a(x, 1) =
inf{a > 0: ¢o(x, t; a) = v(x, t)}. The function  has some interesting properties.
It is continuous on [0, o0), strictly increasing on [0, a(x, t)], #(0) = 0 and
he C=(0, a(x, t)). We note that

flx, 6, a) = at + o(x, ; a) = at + e ?p(x, 0; ae'’?)
= at + e "?h(ae'’?) .
Therefore (9/01) f(x, t; @) = a — Le~'*h(ae'’?) + tah'(ae'’?). Hence (30) implies
(40) 0 < ak'(a) £ A(a), O<a<a(x ).
Obviously 4 is concave, and this in turn implies that if |x| < &(7), then
gﬁ: < Je-tMh(ae'®) — tak(ae?)
t

— ;}e“/?h(ae‘/’*) é i_e—t/Z—lxl ,
and therefore (0%/0¢%) f < (9%/0t%)g.

The following theorem gives the asymptotic shape of the boundary b(7) as
a | 0.

THEOREM 7. Asa |0
b(—s log a) ~ |log a| (1 — %) if 0<s<2,
b(—sloga) ~ a1 if s>2,
and b(—2 log a) is a positive constant independent of «a.

Proor. Let 0 < s < 2. In view of the lower bound in (35), we need only
show that

(41) lim sup, ,, b(—s log a; @)/|loga] < 1 — %

where we write b(f) = b(t; a) and ¢(x, t) = ¢(x, t; a) as in the proof of Theorem
6. Suppose there exist ¢ > 0 and a sequence «,, | 0 such that b(—slog a,; a,)>
—(1 +e—43s)loga,and a, < e for all n. Let x, = —(1 + 4¢ — 4s) log a,.
Clearly x, < b(—sloga, — 1; a,). Using a similar argument as in Theorem 6,
we obtain that

a, (1 + o(1)) £ ¢(x,, —sloga, — 1; a,)
< ’I)(Xn, —S log an — 1) — eian1+(5/2) ,

which is a contradiction. Hence (41) must hold.

We now consider the case s > 2. It follows from the upper bound in (35) that
lim, , b(—slog a; @) = 0. Therefore setting t = —sloga in (39), we obtain
b(—slog a; a) ~ }a**~'. Finally, since b(0; &) = b(t; ae*?), it is easy to see that
b(—2loga; @) = b(0; 1). []
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