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ASYMPTOTIC DISTRIBUTIONS FOR QUADRATIC FORMS
WITH APPLICATIONS TO TESTS OF FIT

By T. bpE WET AND J. H. VENTER
Potchefstroom University, South Africa

Let Zy, Z,, - - -, be independent and identically distributed random vari-
ables and {c;jx} real numbers; put T, = 37 ;_; cijn Zi Z;. This paper gives
conditions under which the distribution of T, — ET, converges to the dis-
tribution of 3} ym(¥m? — 1) with {r=} a real sequence and Y1, Y, - -+ inde-
pendent N(0, 1) random variables. The results are applied to the calculation
of the asymptotic distributions of test criteria of the form Q,W =
2 [Fo(Xkn) — k/n + 112W(k/n + 1) for testing the hypothesis that Xi,
Xon, +++, Xun are the order statistics of an independent sample from the
distribution function F,; here W is a weight function.

1. Introduction. Let Z,, Z,, --- be independent and identically distributed
random variables with EZ, = 0, Var(Z;,) = 1 and EZ* = p, < co. Let {c;;,,
i,j=1, ..., n} be real numbers with ¢;;, = c,;, for all i and j and put

(1) T, = 3tic1CimZiZ;.

In Section 2 of this paper we give some results on the characterization of the
asymptotic distribution of T, as n — oo under suitable assumptions on the c;;,’s.

Let X, X,,, - -+, X,, be the order statistics of an independent sample from
the distribution F and suppose H,: F = F, is to be tested. In Sections 3, 4 and
5 we show how the results of Section 2 can be used to characterize the asymptotic

distributions under H, of statistics of the form

) Q" = X (Fo(Xy) — kfn + 1)*W(k/n + 1)

where W is a weight function on (0, 1). These statistics are closely related to

the generalized Cramér—von Mises—-Smirnov statistics (see e.g. [1] and [3]).
Studies on asymptotic distributions of quadratic forms have been reported by

Varberg [11] but he considers only the case where the c,;,’s do not depend on

n. There are points of contact between the present work and that of Schach
([9], [10]) but the overlap is negligible.

2. Main results. Throughout this paper };,, >, and 3}, ; will denote summa-
tions in which i, j run through the indices 1 to n; limits will be taken with respect
to n — oco. Straightforward calculations show that

(3) ET, = Y cun Var (T,) = (¢, — 3) D chin + 2 245 Chin -

THEOREM 1. Let {b i=1,.-..,n,m=12,...} and {y,,m=1,2, ...}

Received March, 1972; revised July 31, 1972.

AMS 1970 subject classifications. Primary 62E20; Secondary 60F99.

Key words and phrases. Asymptotic distributions, quadratic forms, tests of fit, Cramér-
von Mises-Smirnov statistics.

380

&8
i
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to é%gé
The Annals of Statistics. MIKOJS

®

WWw.jstor.org



DISTRIBUTIONS FOR QUADRATIC FORMS 381

be real numbers (not all zero); let {M,} be a sequence of integers with M, — oo, put

(4) tn = fr{gl Irml

and assume that

(B1) max,;<, |Oima — O for each m ,
(B2) B, = maX,g, vou, | 205 Dimnbika — Opel = 0(£,7)

(B3) D, = maX,g, vgu, 2ii Opnblin = 0(1,77)

© ZiiClin ol = Zfra" <o

(BC) Co = maxX,g oy, [ 2,5 Cojnbimnbimn — Tnl = 0(6,77) -

Then

) D(T, — ET,) — D(L5 a(Y,? — 1)

with Y, Y,, - - . independent N(0, 1) random variables.

Proor. Put

(6) wn - Zm lrmbmmnb]mn ’ Tn* = Zi,] ijn Z Z

We then show that T,* — ET,* has the asymptotic distribution shown in (5)
and that

(7) Zi,j (cijn wn)z —0.
From this and (3) it would follow that Var (T, — T,*) — 0 and therefore that
T, — ET, has the same asymptotic distribution as 7,* — ET,* completing proof
of the result.
From (6) we get
T,* — ET,* = Yimmi 1Yo — Sha)
with Y, = >0, b,,.Z;, S%, = X, b2, ..
Put
= Zn-1Ta(You — Sha) -
By standard central limit theory, D((Y;,, - -+, Y},)) — N(O, I); by (B2) %, — 1;
hence D(X,,) — D(X,) with X, = > ¥y (Y, — 1). Also D(X,) —» D(X)ask — oo
with X the random variable in the asymptotic distribution of (5). In view of
Theorem 4.2 of [2] and Chebychev’s inequality it is now sufficient to show that

8) lim,_, limsup,_. E|Y, — X,,[*!=0
where Y, = T, * — ET * in order to establish that D(T,* — ET,*) — D(X).

But
Yn - an - Zfr{gk+l rm(ann - Sznn) .
Squaring and taking expectations we get

My,

Elyn - anI2 = myr=k+1 Tmrr mrn
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with
Appn = E(Y}, — zmxw — s,
(Au4 - 3) Zz imn zrn + Z(Zq, b'pmnb’l,r'n)

after some algebraic manipulations.
With A, = >3, b;,,.b;,. We have

A |H4 - 3ID Z(Amr - 5mr)2 + 45mr(Amr - 5m'r) + 25;7

Hence

EY, — X, < | — 31D, 1.} + 2B,,} + (4B, + 2) Xkt 1a” -

By (B2), (C) and (B3) we get 8.

It remains to show (7). Substituting for ¢, and squaring we get

(9) Zi,j (cijn 1]n)2 - Zz i z]n 2 Zm 1 rm Zz J 1anzmnb1mn
+ Zm,k=1 Tm (2 bimnbikn)2

= Zi,j C%jn - 2 Zme(Zm 3 z]nbzmnb]mn m) -

2ZimTm

+ Zm,k rmrk(Amk - 5mk)2 + 2 Zm Tmz(Amm - 1) .

The first and third terms together tend to 0 by (C); the second term is in absolute
value less than C,t, = o(1) by (BC); the fourth term is in absolute value less
than B2 = o(1) by (B2). The fifth term is in absolute value less than B,I" =

o(1). (7) follows and the theorem is proved.

In the theorem above it is not assumed that 3 |r,| < oo; the need for not
doing this will be apparent in our applications. However, with such an assump-
tion together with suitable boundedness assumptions on the b,,,’s simpler re-

quirements suffice to prove the same result.

THEOREM 2. Let {b,,,} satisfy

(B4) 23 bimnOisn — O

(BS) nb,,,| < b < o forall i,m,n.
Let {y,,} be a real sequence for which (C) holds as well as

(C1) 2l < oo

(BCI) 2iii Ciinlimalimn = T'm for each m .

Then (5) holds.

Proor. The proof of this result is much like that of the first one and is omitted.

REMARK. One source of applications for these theorems is that in which

(10) Ciin = ntce(ifn 4+ 1,jln+ 1)

with ¢ a measurable square-integrable function on the unit square, symmetric
in its arguments. Let {g,,} and {y,} denote the eigenfunctions and eigenvalues
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of ¢ and suppose {g,,} is an orthonormal system on (0, 1). If we then select

(11) bimn = n7g,(ifn + 1)

we can often expect that the conditions of Theorems 1 or 2 would apply; e.g.
the sum in (B2) is }3; b;pnbine = 17 X2 9u(i/n + 1)g,(i/n + 1) which approxi-
mates {; 9,,(x)9,.(x) dx = o, etc.

If 3 |r.l < oo then {}c(x, x)dx = ) 7, and we can also expect that ET, =
37 Ciin — 2 7 Which would entail the conclusion D(T,) — D(}] 7, Y,?) in ad-
dition to (5).

3. Application to certain tests of fit. Consider the test of fit problem mentioned
in Section 1 and assume that H, is true and that F, is a continuous distribution
function. Then we may write Fy(X,,) = S,/S,,, where S, = Z* + ... + Z,*
with {Z;*} independent random variables each exponentially distributed with
expectation one. Putting Z, = Z;* — 1 and introducing the function

(12) b, y)=1—y for x=y
= —y for x>y

it then follows that

(13) Q. = (n+ 1/8,:)' T

with T, as in (1) and

(14) Cojn = 17" 2321 W(k[n)g(i[n, k[n)¢(j[n, k[n) .

Since S, ,,/n + 1 — 1 with probability one we can expect the asymptotic distri-
bution of Q," to be the same as that of T,.
Note that here ¢;;, = n~'c,(i/n + 1, j/n + 1) with

ijn =

(15) ew(x, ) = Yo W(2)h(x, 2)P(y, 2) dz

assuming W to be such that this integral exists. Hence if ¢, is also quadratically
integrable we can expect to be able to apply the theorems of the previous para-
graph in the way indicated in the remark above.

For this purpose it would be necessary to calculate the eigenvalues and eigen-
functions of ¢,,. General results to this effect are given in the next paragraph
and some special cases are considered in the fifth paragraph.

4. The kernel c,,. Throughout this par'agraph we assume that W is such that
integral (15) defining ¢, exists and is finite for 0 < x, y < 1 and moreover that

(16) W) >0 for 0 <u<1
17) 05 §5 cw’(x, y) dx dy < oo .

Then ¢, has eigenfunctions {g,,} and eigenvalues {y,} with 7; > 7, > --- >0
satisfying

(18) nOn(X) = §3 €y (X, 1)9n(y) dy -
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Noting that {} ¢, (x, y) dx = 0 for all y, integration of (18) shows that
(19) (5 gn(x)dx =0 for all m.
Writing G,(x) = §¢ ¢,,(r) dt and substituting for c,,, (18) yields
(20) Fn0n(X) = §§ W@H(x, 1) () du
= —euWw)G,(u)ydu + §., (1 — u)W(u)G,(u) du

from which it follows that g, is differentiable for 0 < x < 1 satisfying the dif-
ferential equation

21) P(x)g,/(X) + 2, G(x) = 0

with

(22) P(x) = 1/W(x), Aw = 11, .
Also

(23) P(x)g,'(x) > 0 as x| 0 and x171.

Differentiating (21) we find that g,, satisfies the Sturm-Liouville-type equation
(24) dP(x)g, (x)/dx + Angun(x) =0

subject to (23). Conversely, it is easily seen that if g,, satisfies (24) and (23) and
is such that xg,(x) -0 as x| 0 and (I — x)g,(x) >0 as x11 then g, also
satisfies (18) and is an eigenfunction of ¢, with eigenvalue y,, = 1/4,. The use-
fulness of this remark can be extended somewhat as follows.

Consider the differential equation

(29) dp(u)z'|du + 2, r(u)z =0

with @ < u < b for some real numbers a and b and p, r real functions on this
interval such that

(26) pu) >0 and riw) > 0.

Put

@7) o= 1Sir(dr, U@ = p§er(nar

and introduce the new variable x = U(x). Then (25) becomes (24) with
(28) P(x) = p'p(U7(x)r(U7(x)) -

Our remark now applies to this equatio'n and the following theorem follows.

THEOREM 3. If h,(u) is a function on (a, b) and 2, a constant satisfying (25) as
well as

(29) ph,'(u) — 0 as ulb and u)a,
(30) Uu)h,(u) — 0 as ula, (1 — U))h, () -0 as ulb,
then g,.(x) = h,(U~\(x)) is an eigenfunction and y,, = 1/, an eigenvalue of c,, with

(31) W(x) = 1/P(x) = 1/p’p(U7(x)r(U(x)) -



DISTRIBUTIONS FOR QUADRATIC FORMS 385

5. Weight functions associated with the classical orthogonal polynomials. The
classical orthogonal polynomials ([5] page 163) satisfy the differential equation
(25) ([5] page 167 eq. (3)); using the so-called differentiation formula it is straight-
forward to verify that (29) is satisfied in each case; (30) is also easily verified in
each case. Theorem 3 therefore applies and with each of the sequences of clas-
sical orthogonal polynomials we can associate a weight function W and to each
of the corresponding Q,"’s we can try to apply Theorems 1 or 2 as follows.

5.1. Jacobi weight functions. In case of the Jacobi polynomialsa = —1, 5 = 1
and p(u) = (1 — u)**}(1 + u)?*, r(u) = (1 — w)*(1 + w)f witha > —1, 8> —1
and p = 27°*7/B(a 4+ 1, 8 + 1) and U(u) = F, (1 + u)/2) with F, , the beta
distribution function with parameters 8 + 1, « + 1; the corresponding weight-
function W, , can be determined from (31); the eigenvalues are

(32) Im=lmm+a+ p+1), m=1,2,...

and the eigenfunctions follow from Theorem 3 with #,, the mth Jacobi polynomial
(suitably normalized).

Consider now the statistic Q,*# = Q,"«s. Asin (15) let T,*# be the corre-
sponding quadratic form. With b, = n~h,(U~%(i/n + 1)) we wish to apply
Theorem 2. Since #,, is bounded and continuous, the sum in (B4) converges to
§0 (U (X)A(U™Y(x)) dx = p §L, h,(u)h,(u)r(u) du = 5, so that (B4) holds. The
other conditions can be verified similarly. Also

i = N0 2000 2ORst W (k[ n)gi(ifn, kn)
= n7" 2021 W s(k[n)k/n(1 — k[n)

and it is easy but somewhat tedious to show that this tends to §3 W, ,(x)x(1 —
x)dx = 31y, as n—oco. From Theorem 2 we conclude that D(T,*f) —
D(X Y,’[m(m + a 4 B + 1)) and by (15) Q,*# has the same asymptotic
distribution.

Some special cases of this result are noteworthy:

5.1, Fora= = —fweget W_, (x)=1for0<x< 1,7, = 1/m*and
the asymptotic distribution is that of the ordinary Cramér-von Mises—Smirnov
statistic W,* ([1]); this is to be expected in view of the fact that ([8] page 100)
W2 = 1/12n+ 3 (F(X,,) — (2j — 1)/2n)* = Q,"»~* + R, with R, = o,(1) under
H, as can readily be shown. .

5.1.2. For a=§8=0 we get W,(x) =1/x(1 —x) for 0<x< 1, 7, =
1/m(m + 1) and the corresponding asymptotic distribution is the same as that
of the Cramér-von Mises-Smirnov statistitic with this weight function as is to
be expected ([1]).

5.1.3. Other cases for which the weight function can be obtained in explicit
form are W, ,and W, .

ET, > =3¢

5.2. Hermitian weight function. In this casea = —oo, b = + oo, r(u) = ¢(u),
p(u) = ¢(u) with ¢(u) the N(0, 1) density function (we deviate slightly from the
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notation of [5] here). Hence U(x) = ®(u), the N(0, 1) distribution function
and

(33) W(x) = h(x) = 1/$(@7(x))*, Tm = 1/m,
and the eigenfunctions are #,,(®~*(x)) with 4,, now the mth Hermitian polynomial
(suitably normalized).

Consider now the corresponding statistic Q,*; as in (15) let T,* be the corre-
sponding quadratic form. As }; |r,| = oo here Theorem 2 does not apply; in
order to apply Theorem 1 a convenient choice of M, = [|®~'(1/n + 1)|] with
[x] the greatest integer function. Then ¢, ~ log M, increases very slowly with
n. Verification of Conditions (B1), (B2), (B3), (C) and (BC) amounts to getting
sufficiently good estimates of the differences between the various sums and cor-
responding integrals; the details of these calculations are quite involved and are
omitted (see [4]). It follows that D(T,* — ET,*) — D(}; (Y,* — 1)/m). As before
ET,» = n=* 3221 h(k/n)(k/n)(1 — k/n) = o(log n) as is easily shown. With S, ,
asin (15) (n + 1/S,,,)* = 1 4+ O,(n"%); hence from (15) Q,* — ET%,,and T%,, —
ET", have the same asymptotic distribution. Also EQ,* = (n + 1/n + 2)ET" ;
therefore

(34) D(Q," — EQ,") — D(Xy (Y, — 1)/m) .

The characteristic function of this limiting distribution can be written in various
forms such as

T e 51 — 2it/k)"t = (—2itl'(—2it))te=*c = r(t)e??®
with I' the gamma function, ¢ Euler’s constant, r(f) = (sinh 2z¢/2z1)~* and

0(t) = 4 Xiv., (tan* (2t/k) — 2t/k) .
Inversion of this characteristic function has been done and the distribution is
tabulated in [4].
We remark that this weight function /4 places relatively more weight on the ex-

treme order statistics than the Jacobi functions in the sense that 4(x)/ W, ,(x) — oo
asx 1 land x| O.

5.3. Laguerre weight functions. In this case a = 0, b = oo and r(u) = e "u*,
p) = eu*, a« > —1. Hence p = 1/I'(a + 1) and U(u) = F,(u) with F, the
gamma distribution function with parameter a« + 1; if f, denotes the correspond-
ing density, then

(35) W(x) = Wu(x) = 1/F, 7 ()f(F. 71 (%)) Tm=1/m

and the eigenfunctions are expressible in terms of suitably normalized Laguerre
functions.

The same analysis as that used in the previous case can be applied and the
conclusion is that the asymptotic distribution of 0, — EQ," is the same as that
in (34) regardless of the value of a.
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The special case « = 0 is of some interest; in this case
Wyx) = —1J)(1 — x)’log (1 — x) .

Now W(x)/h(x) — 2 as x T 1 while W(x)/ W, (x) — 1 as x | 0; hence this weight
function places weight similar to the Hermitian function on the upper order
statistics and relatively smaller weight on the lower order statistics.

6. Discussion.

I. For a stochastic process approach by means of which characterizations
similar to the above can be found see [1], [3], [6], [7]. This seems to break
down for the statistics Q" if W places too much weight on extreme order statis-
tics to which our approach still applies. Our method however is usable only
for statistics which can be expressed in terms of suitable quadratic forms; this
limitation does not apply to the stochastic process approach.

II. The methods outlined here have also been applied to statistics other than
Q,” and have been found useful in studies of the asymptotic power of certain
tests of fit. These results will be reported in a forthcoming paper.
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