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L-STATISTICS IN COMPLEX SURVEY PROBLEMS!

By Jun SHAO
University of Wisconsin-Madison

We study linear combinations of order statistics (L-statistics) in survey
problems with a stratified multistage sampling design. Two general types
of L-statistics are considered: smooth L-statistics with weights generated
by a smooth function and nonsmooth L-statistics (sample quantiles). The
trimmed sample mean, the decile mean and variance, the sample Lorenz
curve and the sample Gini’s family parameters are examples of smooth L-
statistics or functions of smooth L-statistics used in survey problems. It is
shown that under weak conditions the smooth L-statistics are asymptoti-
cally normal and their asymptotic variances can be consistently estimated
by jackknifing. For the sample quantiles, their asymptotic normality re-
quires more conditions on the finite population distribution functions. Con-
sistent estimators for the asymptotic variances of the sample quantiles are
derived. Asymptotic validity of the Woodruff’s confidence intervals for pop-
ulation quantiles is also proved.

1. Introduction. One of the most commonly used class of statistics in
statistical analysis is the class of linear combinations of order statistics, termed
L-statistics in the literature. Simple statistics such as the sample mean, the
sample quantiles and the trimmed sample mean are special types of L-statistics.
Asymptotic properties of L-statistics are well known in the case where the data
are independent and identically distributed (i.i.d.) observations [e.g., Serfling
(1980), Chapter 8]. Theoretical studies of the L-statistics in some non-i.i.d.
cases have received considerable attention in recent years. For example, Bickel
(1973), Koenker and Bassett (1978), Ruppert and Carroll (1980), Koenker and
Portnoy (1987) and Welsh (1987) established many asymptotic properties of
L-statistics in linear regression problems.

The purpose of this work is to study asymptotic properties of L-statistics with
complex survey data. Sample surveys often use one or a combination of several
of the following sampling methods: stratified sampling, cluster sampling, un-
equal probability sampling and multistage sampling [Kish and Frankel (1974)].
Simple random sampling is rarely used in practice because of both practical and
theoretical considerations. Due to the complexity of the sampling design, the
resulting data are heavily non-i.i.d.

Throughout the paper we consider the following commonly used stratified
multistage sampling design. The population under consideration has been
stratified into L strata. From each stratum, some first-stage units (clusters)
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L-STATISTICS IN SURVEYS 947

are selected using unequal probability sampling with replacement (or simple
random sampling without replacement) and the samples are selected indepen-
dently across the strata. Within each first-stage unit (cluster), some ultimate
units are sampled according to some sampling methods. Note that we do not
need to specify the number of stages and the sampling methods used after the
first-stage sampling.

Under this stratified multistage sampling design, Krewski and Rao (1981)
established some asymptotic results for the sample mean, a special L-statistic
and functions of several sample means (e.g., ratio estimators). The use of other
L-statistics in complex survey problems has become more and more popular
in recent years. For example, the sample quantiles are important statistics for
survey problems related to earnings. An asymptotic study is given by Francisco
and Fuller (1991). Other examples, including the trimmed means, the Gini’s
family and Lorenz curve, are described in Section 2.

Section 2 contains an introduction of notation, a formal definition of L-
statistics and some examples. The asymptotic normality of the L-statistics in
stratified multistage survey problems is established in Sections 3 and 4. Consis-
tent estimators of the asymptotic variances of the L-statistics are also derived.
These results are useful for large-sample inferences.

2. Definitions and examples. Let {P;,k =1,2,...} be asequence of finite
populations. Throughout the paper & is used as the index of the finite population,
but it may be omitted frequently for simplicity. Each P contains L strata, and
the hth stratum contains Nj, clusters. Associated with the jth ultimate unit
in the ith cluster of stratum % is a characteristic Y3,/ = 1,...,Np;; © = 1,
...,Np; h =1,...,L. Here N}, is the number of ultimate units in the ith cluster
of stratum h. Note that L, Nj, Ny;, Y3, and so on depend on k also but the
subscript % is omitted. Let I(A) be the indicator function of the set A. The kth
finite population distribution function is

L N, Ny

(2.1) i) = 2233 > 1% <),

h=1i=1j=1

where M = 3.k _, ZJiV:lNhi.

Suppose that in the first-stage sampling, n;, > 2 clusters are selected from
stratum 4 (independently across the strata) with probabilities pp; > 0,7 = 1,
..,Np;h = 1,...L; Zﬁ"iphi = 1. For a fixed h, if pp; = 1/N;, the sampling
method is simple random sampling (equal probability sampling) and the clus-
ters are selected either with replacement or without replacement. If unequal
probability sampling is used, we assume that the clusters are selected inde-
pendently (with replacement). Within each cluster, some second-stage, third-
stage,. . . units are sampled according to some methods (e.g., stratified sampling,
cluster sampling, unequal probability sampling). Let np; be the number of ulti-
mate units drawn from the ith cluster of stratum %, y; ; and wp; ; be the observed
characteristic and the survey weight associated with the (%, , j/)th ultimate unit,
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j = 1, NI (13 i= 1, o,y h= 1, N ,L.Again, Np, Npiy Yhij and ibhij dependonk
but the subscript & is omitted. Suppose that the survey weights are constructed
so that

Np Nhi

(2.2) Gpx) = = Z SN wngI(ynij < x)

h 1i=1j=1
is unbiased for Fj(x), that is,
E[Gy(x)] = Fj(x) for any x

[see, e.g., Krewski and Rao (1981)]. However, G, may not be a distribution
function since Gi(c0) = M~1xE_, v, X% Wy is not necessarily equal to 1.
Furthermore, in many cases M, the total number of ultimate units in the pop-
ulation, is unknown and therefore G, is not an estimator. Hence we consider
the normalized Gy:

2.3) Fox) = Go(x)/qn,

where q;, = Gr(00). Then I?‘k is a distribution function for any % and can be used
to estimate F}, since the unknown M is cancelled in the ratio in (2.3).

Letn = 27, np be the number of sampled clusters in the first-stage sampling.
We always assume that n — co as £ — co. Denote wy;;/M by wp;;. Assuming

(Al) max NpiWhij = 0(%)

JS<Npi;,i<Np,h<L

and using

Npi 2
Var (G, ()] < Z ZE ( > whid(ynij < x))

h=1i=1 j=1

Mhi
<E ( Z Znh, Z th> < max NpiWhij,

h=1i=1 Jj=1

we obtain that, for any x, Gy(x) — Fi(x) —p 0. In particular, since q; = G4(c0)
and Fj(c0)=1,9; — 1 —, 0 and therefore

Fi(x) — Fy(x) —, 0 for any x.

Assumptions (A1) means that no survey weight is disproportionately large.
It is of interest to see what (A1) reduces to in some simple special cases. If the
sampling design is only one-stage and simple random sampling is used, then
whij = Np/Mny, and (Al) is the same as

(2.4) max—J—Vh— =0 (—1—> ,

r<L Mn, n
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an assumption given in Rao and Wu (1985). If the sampling design is a stratified
two-stage sampling design and the second-stage sampling is also simple random
sampling (within each cluster), then wy;; = N}Ny;/Mnyny; and (A1) reduces to

2.5) max Mﬂw(l).
i<N,h<L Mn n

Note that Np; is the number of units in the ith cluster of stratum A. If Ny;,
i = 1,...,N;, are relatively the same or they are bounded, then (2.5) is the
same as (2.4).

Let J be a function on the interval [0, 1] and
2.6) T(F) = / 2J (F() dF (),

for any distribution function F. An L-statistic is generally of the form

(2.7) Ty =TF) + Y aFy Y py),

t=1

where m is a fixed integer, p; and a; are constants, 0 < p; < 1 and F~1(p) =
inf{x: F(x) > p} for any distribution function F. Note that f‘k' 1(p) is simply the
p-th quantile of the distribution function f‘k. T}, is also called the L-estimator
of T(Fp) + X7, atFk'l( pe). Ifa; =0 for all ¢, then T}, = T(ﬁ'k) is called a smooth
L-statistic (an L-statistic with smooth weights). If J(¢) = 0, then T}, = Yiqat
f‘k' 1(p,) is a linear combination of sample quantiles and will be called a non-
smooth L-statistic.

Let {yq), 1 =1,...,5k_; £ ny} be the order statistics of the sample {ys;;,
j = 1, RO (73D I = 1, R (3% h= 1, cen ,L} and wp = whij/qk ify(l) =Yhij- Then

l
(2.8) T(Fk) = chy(l), Cc] = le(Zwt)
l t=1

and T} is a linear combination of the order statistics.

We now discuss some examples of useful L-statistics in survey problems.
Obviously the (weighted) sample mean (J = 1 and a; = 0) and the sample
quantile (J = 0) are the most commonly used L-statistics. Some other examples
are given as follows.

EXAMPLE 1 (Trimmed sample mean). Leta; = 0 and J(¢) = (8 — o)~ U(a <
t < ), where 0 < a < 8 < 1. The resulting T}, is then a trimmed sample mean.
T} is not necessarily asymptotically normal if {F,} does not have a continuous
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and differentiable limit [Stigler (1973)]. Hence we may smooth J(¢) and use

( 2t — @)
(@e—a)B—a+b-a) ast<a,
2
Jt={ B—a+b—a) a<t<b,
28 -t)
B-b)B—-a+b-—a) b<t<p,
L0, otherwise,

where a and b are constants satisfying o <a < b < .

ExAMPLE 2 (Weighted decile mean and variance). In the problems where
we study income shares for different quantile groups we need to consider the
(weighted) mean and variance of a given group. Suppose that we divide the sam-
pleinto D = 10 ordered decile groups. Ford =1, ..., D —1,let iy = Yy cq v/ Aa
and ﬁg = Yealyg — ﬁdlz /Ad, where \g = ¥ cq; and ¢y is generated according
to (2.8) with the function

d
1, ——<t<=,
J(t) = J42) = D D d=1,...,D.

0, otherwise,

The decile mean /iy and variance p2 are functions of Ay, {14 = ;cayq and
Eoqg = Yica y(zl); £14 is an L-statistic; )y and &y are L-statistics of the more
general form considered by Chernoff, Gastwirth and Johns (1967) with J = J,
but with the characteristic y;) replaced by 1 and y(zl), respectively.

ExXAMPLE 3 (Lorenz curve). The Lorenz curve (or curve of concentration)
is one of the most frequently used devices to describe inequality in income
or wealth distributions [Beach and Kaliski (1986)]. The sample Lorenz curve
ordinates are expressed as 73 /(D7p), where 31 = [i1, %z = (d —1/d)74-1+(1/d)Liq,
d=2,...,D, and [iy are given in Example 2. The 7, are functions of smooth
L-statistics.

EXAMPLE 4 (Gini’s family). The sample Gini’s mean difference is a well-
known smooth L-statistic with J(¢) = 4¢ — 2 [Serfling (1980), Example 8.2.4B].
A related quantity is the sample Gini’s coefficient (a measure of variability),
which is equal to

[sample Gini’s mean difference — [« dFy(x)/M ]
[xdFy(x) '

This is a function of smooth L-statistics.
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More generally, in survey problems we may consider a family of parameters
called the Gini’s family [Nygard and Sandstrém (1985)]:

fo(Fk(x)) dFk(x)

(2.9) GI, = [xdF@)

For example, when J(¢) = 1 — 3(1 — ¢)?, GI;, in (2.9) is the Mehran’s measure;
when J(t) = (3t2 — 1)/2, GI}, is the Piesch’s measure. The sampled version of
GI,, is a function of smooth L-statistics.

3. Results for smooth L-statistics. We establish asymptotic normality
of smooth L-statistics in this section and will treat nonsmooth L-statistics in
the next section. The results can then be extended to general L-statistics of the
form (2.7) in a straightforward manner. For smooth L-statistics T(F;) with T
given by (2.6), we can write [see, e.g., Serfling (1980), Chapter 8]

T(F,) — T(F) = / o, F) dFy(x) — / Q@) [Fy(x) — Fy(@)] dx

where

o (Fo®)) — v (Fa(x) L
= —J(F , if F, Fy(x),
@@= Fw - F@ (Fu@), ifFy)#Fi0)

0, if Fy(x) = Fy(x),

W(t) = [3 J(s)ds, and
o, Fi) = - / [T <) — Fy()]J (Fu(») dy

is the influence function. Let zz;j = ¢(ypij, F) and Zy;j = ¢(Ypij, Fr). Then

ny  np;

(3.1) / $(x, Fy) dFy(x) = ZZZ w’”fz’”f
h=1i=1 j=1
and
L Ni Nu
O I
h 1i=1j=1

There are two types of J-functions, trimmed and untrimmed ¢/, and we will
treat them separately.

'3.1. Trimmed L-statistics. A trimmed J satisfies

(38.2) J@#)=0 ift<aort>p,
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where o and 3 are constants satisfying 0 < a < 8 < 1. The corresponding
L-statistic is called a trimmed L-statistic. The trimmed sample mean in Exam-
ple 1 and the weighted decile mean and variance in Example 2 are trimmed
L-statistics. Let

L np npy
(3.3) 0’,3 = Var(ZXh:Xh:whuzhu) .

h=1i=1 j=1

THEOREM 1. Suppose that assumption (Al) and the following assumptions
hold:

(A2) liminfy, _, no’% > 0.

(A3) The function J is trimmed li.e., J satisfies (8.2)], bounded and m(D) = 0,
where m is the Lebesque measure and D = {x:J is discontinuous at a limit point
of {Fplx),k=1,2,...}}.

(A4) There are constants c, and cg such that

sup Frlcy) <a and ilk)f Filcp) > .
k

Then
(3.4) T(F}) = T(Fy) +Z/q) +0p(n~2)
and
[T(F) — T(F)] /or — £ N(,1).
REMARKS.

(i) As we discussed in Section 2, the condition m(D) = 0 in (A3) cannot be
relaxed. For the trimmed mean with J(¢) = (3 —a) (e <t < 3),D = {x:aor g
is a limit point of {F}(x)}} and J satisfies (A3) if m(D) = 0. Assumption (A3) is
not needed if we use the smoothly trimmed sample mean in Example 1.

(ii) Assumption (A4) is much weaker than the tightness of the sequence {F}}.

ProoOF OF THEOREM 1. Under assumptions (A3) and (A4), {z;;} is bounded.
Under assumptions (A1)-(A4), Liapounov’s condition holds for the “weighted
average” Z in (8.1). Thus, by Bickel and Freedman [(1984), Theorem 3] or
Krewski and Rao [(1981), Theorem 3.1] (Z—EZz)/o;, —r, N(0, 1). Since EZ = 0 and
qr —p 1, 2/(qror) —¢ N(O, 1) and the second assertion of the theorem follows
from the first assertion. Since

TF) - T(F) =2/as - [ Qu[Fue) ~ Fuw)] d,
the result follows if

(8.5) nl/2 /Qk(x) [ﬁk(x) — F(x)] dx —, 0.
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Define
Ap = {f‘k(cﬁ) > B and Fi(ca) < a}.

From assumption (A4) and the fact that f‘k(ca) —Fj(ca) —p 0 and f’k(cﬂ) -
Fi(cg) —p 0, we have P(A;) — 1. On the event Ay,

‘ / Qk(x)[ﬁk(x)-Fk(x)] dx

ca N
(3.6) = /c ) Qk(x)[Fk(x)—Fk(x)]dx‘

C cp 1/2
< { / " (@) dx / ’ [Fk(x)—-Fk(x)]zdx} .

From the assumption (A3) and Fj(x) — Fj(x) —5 0, @4(x) —, 0 for x ¢ D. Also,
1@rllco < 2|l||0o- Hence

3.7) / * [@u)2dx —, 0.

For any x, E[Gy(x) — Fy(x)]? = Var[Gy(x)] < max; ; 5 nuwsy < cn™! by assump-
tion (A1), where c is a constant. Hence

(3.8) E / " [Gae) — Fy) dx < S _ o),

Since f‘k = G /qp, we have

/ * [Fu) - Fy)dx < 2 / " [Guw) - Fy@)|®dx+2 / " [Fu) - Gy dx

<2 / " [Gaw) — Fy@)]? dx + 2(g — D¥ep — ca)

= Op(n7Y),

by (3.8) and g, — 1 = Op(n~1/2). This, together with (3.6) and (3.7), implies (3.5).
The proof is complete. O

3.2. Untrimmed L-statistics. For untrimmed L-statistics, some moment
conditions are necessary. We only consider smooth functions JJ.
THEOREM 2. Suppose that assumptions (Al), (A2) and the following hold:

(A8') The function J is Lipschitz continuous on [0, 1];
(A4') sup,, [*° o x| dF(x) < o0 and there is a § > 0 such that

L n,
(3.9) n**8>" N " Efup — Eupg**? - 0,
h=1li=1
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-
where uy; = )  WhijZhij.

Then the conclusions of Theorem 1 still hold.

REMARK. Note that (3.9) is a Liapounov-type condition similar to condition
C1 in Krewski and Rao (1981).

PRrOOF OF THEOREM 2. Under (A2) and (3.9), (Z -EZ2)/o;, — ¢, N(0, 1). Thus,
from the proof of Theorem 1, we only need to show that (3.5) holds. Since J
is Lipschitz continuous, there is a constant ¢; > 0 such that |J(¢) — J(s)| <
cslt —s|,t,s € [0,1]. Then

<ecy / [ﬁ'k(x) - F;;,(x)]2 dx

[ @ Fu) - Fuw)] da
From F}, = Gy /as,

o0 2
/ [Fy(x) - Fo@)) dx

—0oQ

0 0o
<2 / [Gy(0) — Fyw)]dx + 2 / [Fa@) — Gya)]

—00

0 0
p / [Gy) — Fy)]2dx +2(g;* — 1) / [G(0)] % dx

—00 —0Q0

Note that (g;* — 1) = ¢; %(g — 1)% = O,(n" 1Y),

0 0 0
E / [Gy)]2dx < / E[Gy()] da = / Fy@dx < / x| dFy )
and

E / [Gr(x) — Fy (x) / Var[G(x)] dx

n,u 2
/ ZZE[thLJI(yhu <x)]

P p=1i=1 Jj=1

<o) / Fyw)dx=0(Y),
where the last inequality follows from assumption (A1l). Hence

0
/ [Fy@) — Fy)dx = 0p(n~Y).

—0Q0

Similarly,

| B - Fuw)” d = 0,07,
0
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and therefore (3.5) follows. This completes the proof. O

The J-functions corresponding to the untrimmed L-statistics in Examples
1—4 are clearly Lipschitz continuous on [0, 1].

In some cases we need to consider a statistic S, which is a function of several
L-statistics (Examples 2-4), say T;J)’ j=1,...,m. The asymptotic distribution
of S can be obtained by using the results in Theorems 1 and 2. Since each T}eﬁ
can be approximated by a weighted average according to (3.4), we can apply
the central limit theorem and the §-method. The details are omitted.

3.3. Variance estimation by jackknife. For various purposes in statistical
analysis we need to estimate the unknown asymptotic variance of a given statis-
tic. When the given statistic is a smooth L-statistic, a formula for its asymptotic
variance is given by (3.3). When the given statistic is a known function of sev-
eral L-statistics, a formula for its asymptotic variance can be obtained by using
the §-method and calculating partial derivatives of the known function. In some
cases, the asymptotic variance can be estimated by substituting the unknown
quantities in the formula of the asymptotic variance by some estimators. This is
called the substitution method. Another very popular method in sample surveys
is the jackknife [Tukey (1958)]. Unlike the substitution method, the jackknife
does not require knowing a formula of the asymptotic variance, which is one of
the reasons why the jackknife is so attractive. Note that for statistics such as the
sample Lorenz curve ordinates (Example 3), the derivation of their asymptotic
variance is quite complicated and tedious. The jackknife replaces the theoreti-
cal derivation by repeated computations of the given statistic. Many agencies
(e.g., Statistics Canada) have computer software to implement the computation
of the jackknife variance estimators.

Variance estimation by jackknife is based on the variability among a num-
ber of replicate statistics computed from overlapping subsamples of the total
sample. Let

ng Mg Tg;

1 n
G;eg )(x) = E E E wriil (yhij < x)+ n i 1 E E weiil(yg; < x),
h#gi=1 j=1 8 i £l j=1
(gh) (gh) (gl (’-\}igl)
&) _ s &) _
g = Gy (00), F,° = F

T =T(FE). 1=1...,n58=1,...,L

The jackknife estimator of the asymptotic variance of T}, = T(f'k) is

Nk

L
(3.10) 5723 Lofen =D opo 2,

n
h=1 h i=1

where f;, = n, /Ny, if the first-stage sampling is without replacement and fj, = 0if
the first-stage sampling is with replacement. When the statistic T} is a function
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of several L-statistics, its jackknife estimator of the asymptotic variance is still
given by (3.10) with Tk(’”) being defined as the statistic based on the subsample
obtained by removing the ith cluster of the Ath stratum.

We now establish the consistency of the jackknife variance estimator 6% in

(8.10). First, consider the case where T}, = T(f'k).

THEOREM 3 (Trimmed L-statistics). Suppose that assumptions (A1)—(A4)
and the following hold:

(AB) There are two sequence of sets {N1;,} and {Ny,} such that, for each k,

{n, h = 1,...,L} =Ny UNg,

supmax{n, € Ni3} < oo and klim min{n, € Ng;} = oco.
k — 00
Then the jackknife estimator 52 in (3.10) is consistent for o? in (3.3), that is,
3,3 / af — pl.
REMARK. Assumption (A5) is satisfied in the following two common situa-
tions in surveys: (i) all the n;, are small (bounded by a constant); (ii) all the nj

are large. Assumption (A5) allows a mixture of some small n,’s and some large
nh’s.

PROOF OF THEOREM 3. Let a; denote the function apj(x) = wpyl(yh; < x).
Then

o) _ G Gr (1 1\ 1, g
P _F, = G ‘_k=G(hl)((_hi)—5;)+_(G§zhl)—Gk)

7™ " g q! 9k
. 1 1 np 1 o -
_ G(hl)( — __) —_ | = Qapii — apii |-
k qgu) qr) ar(np — 1)\ ny ;; ! ,Xﬂ: !

Let up; be defined in (8.9), @, = n;; IZfiluhi and %) = [ ¢(x,Fk)ng‘i)(x). Then

. s 11
Tk = Ty, -)+§(’"’<———.- - —)
b= D e a

- / Q) [F4(x) — Fy)] da,

where

. Y(EM @) - p(Fu)
Q;ehl)(x) = ﬁéhi)(x) _ ﬁk(x)
0, otherwise,

~J(Fy), ifFM(x) # Fy),
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and (t) = [ J(s)ds. It follows from (3.10) that

(3.11) G2 = ayp, + gy + agy, + 2(cross-product terms),
where
(1 — fa)np = Wi — uh)
(3.12) _Z v ;‘
La- fhxnh ~ D5 ( 11 )2
(8.13) = - g ,
(1 —fi)ng — 1) & ) 2
(3.14) ag, = Z e Z (rik)
h=1 i=1
and
(3.15) P = / QU () [P (x) — Fy(w)] dx
To establish the result, it suffices to show that
(3.16) n(ay —of) —p 0,
38.17) nag, —p 0 and nag, —, 0,

since under (3.16) and (3.17), the cross-product terms are of the order o,(n™%).

Proor or (3.16). Let
Z Var(Zuh,> and o2, = Z Var(Zuh,>
np € Ny, np € N,
Then o? = 02, + 03, and
n(l—fun
E[ Z T_h——hZ(u . —1y) } =no’,.
np € Ny,

Under assumptions (A1) and (A5), there is a constant ¢ > 0 such that

1+6
1+6 Q- fh)nh 146 2(1+6)
n'* ZE P—] Z(u ; — p)? <en'* Z ZEu 0 0.
np € Nyg np €Ny, i=1
Hepce
1 n
(3.18) 3 %Z(uh,—uh) —nod, = 0.

ny € Ny
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Let pp = Euy,;. Since

1-— 2
E Z n(nh fh;nh (pn — a};)2}

np € Ny,

S DI 0L TR

np—1
ny € Nap, h

n
= mm{nh € Nzk} 1 Z Var<zuht) 0

ny € Ny, =1

[by assumptions (A1)-(A5)] and

E[ g =

h € Nox
Z Var(Zuh,> 0,
mm{nh € Nzk} 1nh€N2k —
we have
n(l — fi)np < _ n(1 n
Z ———""n fhl h Z(uhi — uh)2 = Z ” fh h Z( /J:h)2
np € N, h i=1 np € Nog h
n(1 —fh)nﬁ i — 2
S P S — @)
ny € Ny Mh = 1 i=
ny
= Y n@ =)D wn — ) +0p(1).
np € Ny, i=1
Since
ny
E| Y n(-£fi)) @ —m)?| =nop, +o(1)
np € Ny, i=1
and
ny
nl+é Z Z(l _fh)1+6E‘uhi _ /J,h|2(1+6) -0,
np € Ny, i=1
we have
(3.19) 3 &_f"—)’i’i Z(u wi — Tp)> —noj, — 0.
np € N, h i=1

Since g7 —, 1, (3.16) follows from (3.12), (3.18) and (3.19). O
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ProoF oOF (3.17). Let
L ny 2
1-fi)np-1) 1 1
G=) — I OS]
; nh ; P

Then ¢, is the jackknife estimator of the asymptotic variance of q;l. Thus
n¢e = Op(1). Since z" are weighted averages, it can be shown that maxy_ ;
g®) —z| -, 0; but EZ = 0 and Z — EZ —, 0. Hence, from (3.13),

nog < n}nlax(z("i’)znc,, = 0,(1).
yi
Note that maxy, ; |F hi) Fy|lco — 0. Hence, similar to the proof of Theorem 1,

087 < [ 1@t e [ (P - Buw) ax

Co

and
Cﬁ . 2
max / (@) dx —p 0.
sl Co "

From (8.14) and (3.15),

c ) L 3 B
nan < (max [ (@) s L= =

n
h=1 h

| " ) - Fyw) dx
i=1 "%

L np N 2
< 0p(1) lnck +ny %@1@ qiz (wa) } = 0p(1),

h=1 k=1 \j=1
since, by (A1),
L n Ny 2 L np ny
2325 (S < i) 3375 ks = 0,0)
h=1i=1 \j-1 4 h=1i=1j=1

This proves (3.17). The proof of Theorem 3 now is complete. O

THEOREM 4 (Untrimmed L-statistics). The conclusion of Theorem 3 holds
also for untrimmed L-statistics if assumptions (A3) and (A4) are replaced by
(A3') and (A4’), respectively.

Proor. Note that (3.11)—(3.15) still hold and we need to show (3.16) and
(8.17). Using (A4’) and a proof similar to that of Theorem 3, we can show (3.16)
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and the first assertion of (3.17). It remains to show the second assertion of
(3.17). From the Lipschitz continuity of J,

2
(r}e"“))2 < c?,{ / [f',ihi)(x) - ji\'k(x)]2 dx} )

Note that max; ; |1/q('”) 1/qz| = 0,(1) and max; ; l/q('”) = O,(1). Then

L n(l =), —1) & [ 0 1 132 )
> n, Z{/ [Gi()] (q(m) q—k) dx}

h=1 i=1 e

1 1\%(/° R
can(Gh &) ([ o] w

= op(l)Op(l)Op(l) = 0p(1),

and by (A1) and (A4),
L 3 _ ny 2 0 . 2
§o 2L s — 1) (%) { / [Gz’“kx)—Gk(x)]zdx}
k=1 Tth i=1 Tk -
Nhi
<0, 3 [/ Zahv(")dx}
h=1i=1

2
sop(n-l)[ / Gk(x)dx} = 0,(n ).

From F{" — F, = (G# — Gy) /a8 + Gy (1/q> — 1/q4), we have

np

L o _ 2
> el DS [ e R} 0

h=1 i=1

Similarly,

np

L =i 7 ’
S el D [T e - Fuwl s} o

h=1 i=1

This proves (3.17) and completes the proof. O

When the statistic of interest is a function of several smooth L-statistics,
the consistency of its jackknife variance estimator can be easily established
by using the results in Theorems 3 and 4 and the argument used in the proof
of Theorem 3.4 of Krewski and Rao (1981), who proved the consistency of the
jackknife variance estimator for a function of several sample means. Therefore,
our results can be applied to Examples 1-4 for variance estimation.
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4. Results for sample quantiles. For nonsmooth L-statistics, we focus
on the sample pth quantile with a given p € (0,1). The case of functions of
several sample quantiles can be treated by using the §-method.

Let 6, = F,*(p) be the population pth quantile, and let 6, = F~(p) be the
sample pth quantile. Francisco and Fuller (1991) established a Bahadur-type
representation for 6, in complex survey problems. A similar result was ob-
tained in Shao and Wu (1992) for the case of one-stage stratified simple random
smapling. Francisco and Fuller (1991) also proposed an estimator [see (4.15)] of
the asymptotoic variance of 6, and proved its consistency under their conditions
1-7. However, some of these conditions (conditions 5-7) are unnecessary. In this
section we derive an estimator of the asymptotic variance of 6, and establish
its consistency under weaker conditions.

Suppose that assumption (A1) and the following assumptions hold.

(A6) The sequence {6} is bounded.
(A7) There is a sequence of functions {f(-)} such that

1) lim Fp, (6 + 6) — Fr(6g)
k— o0 g

- ﬁi(ek)jl = 0’

for any sequence {¢;} of the order O(n~/2) and

0< irk}fﬁi(Gk) < sup fz(6z) < 0.
k

Then, by using a proof similar to those in Francisco and Fuller (1991) and
Shao and Wu (1992), we can show that

Fu(6;) — Fu(6p)

7. - -1/2
(4.2) 9k 9k + ﬁe(ak) +op(n )
Furthermore, it can be shown that
~_ ~_ c
4.3) nl/? [Fk l(pk) —-F, l(p)] = Fk@ +0,(1),

where p;, =p +cn~1/2 and c is a constant, under the following assumption:

F; Y (py) - F; ' (p) 1
Pr—P f1(6)

(A8) klililo [ ] =0Oand lim |fe (F; 1(p)) — f(6s)] = 0.

Assumptions (A7) and (A8) are essentially the same as Condition 4 in Fran-
cisco and Fuller (1991). Condition (4.1) is a type of smoothness condition re-
quiring that F}, is nearly differentiable at 6, when k is large, although F}, is not
differentiable for each fixed k. When the units in the finite populations P} are
samples from continuous and differentiable superpopulations, (4.1) is satisfied.



962 J.SHAO

As a direct consequence of (4.2),

4.4 % =% _, N, 1),

where

(4.5) o2 = O
[/.60)]

is the asymptotic variance of §k,

(4.6)  vx(Gs) = F(6;) Var(gs) — 2F4(6) Cov|gs, Gy(6:)] + Var [Gy(6)]

is the asymptotic variance of f‘k(ok), and lim inf, nv,(6,) > 0 is assumed.

To estimate o7 in (4.5), however, is much more difficult (or requires much
stronger conditions) than to estimate the asymptotic variance of a smooth L-
statistic. Unlike the case of smooth L-statistics, the jackknife variance esti-
mator may not work for sample quantiles. More complicated data-resampling
methods such as the delete-d jackknife [Shao and Wu (1989)], the balanced
repeated replication [McCarthy (1969) and Shao and Wu ( 1992)] and the boot-
strap [Efron (1979)] need to be considered. The estimator of o7 considered here
is of the form

4.7 52 = 06002,
where
(4.8) iy =nY2[F;Yp +n Y2 —F; Y (p —n~12)] /2

is a consistent estimator of 1/£;(6;) by (4.3),

F(x)var(oo) — 2F,(x)cov(x) + var(x)

Up(x) = & 2 , 2
Far(n) = ; L fuln Z { W)~ iamx)] ,
o) = Z a- f"’”" Z [ i) — = Zahz(x)} [ah,(oo) -1 zahl(OO)
h=1
and aj(x) = % any(@) = % wigl (yag < 2.

Note that, for each fixed x, Var(x) and cov(x) are unbiased and consistent esti-
mators of Var[Gy(x)] and Covlg;, Gi(x)], respectively. Naturally, it is expected
that 3,(6;) is consistent for v;(6;) in (4. 6); but vk(ek) is not an estimator since
0y, is unknown. We have to replace 6;, by Ok and use D), = 05(f;) as an estimator
of v;(6,). The estimator v, was also used by Francisco and Fuller (1991). The
following result shows the consistency of U}, and 57.
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THEOREM 5. Assume (Al), (A6) and the following:
(A9) For any x € ©,

lim lim [Fy(c+1) - Fy(0)] =

t—
where © is the set of limit points of the sequence {6;}. Then
4.9) n{og — vg(6)] —p 0
If (A7) and (A8) also hold, then 5% in (4.7) is consistent for o2 in (4.5), that is,
(4.10) 62/a2 —p 1.
REMARK. Similar to (4.1), assumption (A9) requires that F}, is nearly con-
tinuous at each x € © when % is large; (A9) holds if {F} } has a continuous limit.

If 6, = 0 for all &, then (A9) is implied by (4.1).

PROOF OF THEOREM 5. Since (4.10) follows from (4.3), (4.7) and (4.9), we
only need to show (4.9). Using a subsequence argument, we can assume that
there is a 6 € © such that

6, — 6 and 5,6-—>0 a.s.

Define
Tie(x) = Z - P— fh)nh Z a};(®),
h=1
Tor(x) = Z 1= fh [Zahz(x)}
h=1
SR “nh L Zahxx)ah,(oo)
=
~ 1- fh
Tan(x) = Z [Zam(x)} [Zahl(oo)]
h 1
and

Tix(x) = ETy(x), I=1,...,4.

Let R be the collection of all rational numbers. Under (A1), n[7y4(x) — T1£(x)]
— 0 a.s., for any x € Ry. Hence, almost surely,

(4.11) n|[fi(x) — Tr(x)] - 0 forall x € Ry.



964 J.SHAO

For fixed sequences {7x(x)} and {0k} satlsfymg (4.11) and 8, — 6 — 0, select
e>0suchthatdte € Rpand 6 —¢ < 0k < @ + ¢ for large k. Since Ty;(x) is
nondecreasing in x, 71;(0 — ) < le(ek) <76 +¢) and

710 —€) - T12(0 — €) + T11(0 — &) — T11(6)
< T1x(6) — T12(6)
< 7/:1k(0 +€)— ’le(0 +€)+ le(0 + &) — (6.

Letting £ — oo, we have
klim n[re@ — &) — Ta(0)] < I?Ei‘gfn [ﬁk(gk) — ()]
(4.12) < lim supn [7i4(8x) — T14(6)]

k — 00

< klim nr(@+e) — m1:(0)].
From the definition of m;(x) and (A1),
n |16 + &) — T1(6)]
L na1 fan
=gy — R Z [@4i(6 + €) — 0:(0)] [0 + €) + @i(6)]

i=1
L np np

<4n max nmwhyEZZthUI(o <ynj <O+ €)
JENpi,i <Np,h <L holicl jo1

= O(DE[G4(0 + &) — G4(8)] = O(D)[Fy(8 + &) — Fx(6)].

Hence by (A9), lim, _, ¢ limy, _, o n[714(6 + €) — T12(8)] = 0. This result still holds
if ¢ is replaced by —e. Letting ¢ — 0 in (4.12), we have lim; _, o nFu@) —
712(62)] = 0. This (and the subsequence argument) proves that

n[7u(8r) — T(6)) —p O
Similarly, we can show that, for / = 2,3 and 4,
n[7(@s) — ()] —p 0 and Fu(Br) — Fi(61) —p
Hence (4.9) follows from
U = [f';%@)@(oo) — 2,60 [Far (B) — 7ux(B)] + Tk (Bp) — 7A'2k(5k)] / i
and
v(0y) = F2(6y) Var(qs) — 2F3(0%) [7ar(0r) — 74(68)] + T (6k) — T21(Op)-

This completes the proof. O
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From results (4.4) and (4.10), an approximate (1 — 2¢) confidence interval for
0k is
Cli = [0k — 2aBh, Oh +2ab%),

where z, is the (1 — a) quantile of the standard normal distribution (or the
t-distribution with n — 1 degrees of freedom). Another confidence interval is
Woodruff’s (1952) interval obtained by inverting the sample distribution func-

tion. Let s;, = [v4(6))] 172 1f s were known, then by (4.3), an approximate (1—2a)
confidence interval for 5k is

CI}; = [Fy (b — 2ast), Fy (b +2a50)].
The “confidence interval” CI; is better than CI; since it avoids the estimation

of 1/f,(6). Since s;, is unknown, it has to be replaced by s; = (1;)/2, and the
resulting confidence interval is Woodruff’s interval:

CIY = [F;X(p — 248, Fy X (p +2a80)]-

Asymptotic validity of CI}V was first shown by Francisco and Fuller (1991), but
they assumed some unnecessary conditions [Conditions 5-7 in Francisco and
Fuller (1991)]. We now prove the same result with the conditions in Theorem 5.

THEOREM 6. Suppose that assumptions (Al) and (A6)-(A9) hold. Then
(4.13) P eCly} - 1-2a.

ProoF. From (4.9),5;/s; —p 1. Let € > 0 be arbitrarily given. Then
(4.14) P{(1-e)s, <5 <(1+e)s,} — 1.

Because (4.14), we may assume (1 — €)s;, <5 < (1 +¢)sg, in the following proof.
Note that

P{Ok c [F (p 2q(1 — e)sk) (p +2,(1— e)sk)] }
< P{Ok € CIZV}

< P{Ok € [f'k'l(p —2za(1+6)sy), f'k‘l(p +2z,(1+ s)sk)] }
and, by (4.3),
P{Gk € [Ak—l(p —zo(1 £ 8)s), f'k—l(p +2,(1+ 6)sk)] }

=P{oy <F;}(p+2al 2 0)s) | —P{0h < F'(p —2all £ )ss) }
{ O +2a(1 £ s/ [fuOp)n?] + 0 (n—1/2)}

- P8k < B~ 2a(1 £ Oou/ [u6In7] 4 0,072}
- 2‘D(za(1 + 6)) — 1,
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where @ is the standard normal distribution function. Hence
2@@41—@)-1§%g2ﬂq@ecwq
< Ii:nsupP{Gk ecry}

< 20(z4(1+6) —

The result follows since ¢ is arbitrary. O

The variance estimator proposed by Francisco and Fuller (1991) is

(4.15) G2 = Dpuz,
where
(4.16) u, = (2za§k)‘1 [Fk_l(p +248,) — Fk—l(p - Zagk)] .

This estimator is motivated by Woodruff’s interval CI w Comparmg (4.8) with
(4.16), and using (4.3), we can show that 52 /57 —
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