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AN EXACT CONFIDENCE REGION IN
MULTIVARIATE CALIBRATION

BY THOMAS MATHEW! AND SUBRAMANYAM KASALA

University of Maryland, Baltimore County and
University of North Carolina at Wilmington

In the multivariate calibration problem using a multivariate linear
model, an exact confidence region is constructed. It is shown that the region
is always nonempty and is invariant under nonsingular transformations.

1. Introduction. In this article, we consider the multivariate calibration
problem using the multivariate linear model, and we construct an exact confi-
dence region. Our setup is as follows. Let Y be a p x N random matrix whose
columns are independent p-variate normally distributed vectors with

(1.1) E(Y)=BX and Cov(vec(Y))=Iy®Z,

where B is a p X m matrix of unknown parameters, X is an m x N known
matrix of rank m and ¥ is a p x p unknown positive definite matrix. In (1.1),
vec (Y) denotes the pN x 1 vector obtained by stacking the columns of Y one
below the other. Let y be another p x 1 normally distributed random vector,
distributed independently of Y, satisfying

(1.2) E(y)=B6 and Cov(y)=%,

where 0 is an m x 1 unknown parameter vector. The problem we shall address
is the construction of an exact region for §. We shall assume that p > m.
This condition is clearly necessary for the identifiability of # [see the end of
Section 1.4 in Brown (1982)]. In some applications, the model will contain an
intercept. This model, however, can be reduced to one without an intercept;
see Remark 2.2 in the next section.

In applications, the linear model (1.1) is known as the calibration curve.
Examples where (1.1) and (1.2) are applicable are given in Brown (1982) and
in the recent book by Martens and Naes (1989). In the set up (1.1) and (1.2),
an exact confidence region for § has been constructed by Brown (1982). Wood
(1982, 1986) and Oman (1988) have pointed out some drawbacks for Brown’s
confidence region, one of them being that the region can be empty. Oman
(1988) has constructed a confidence region that is always nonempty and is
applicable to finite samples [for asymptotic results, we refer to Fujikoshi and
Nishi (1984), Davis and Hayakawa (1987) and Brown and Sundberg (1987)].
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Furthermore, Oman’s confidence region has the added advantage of being ap-
plicable to situations where 6 depends nonlinearly on a smaller set of unknown
parameters, say £, and the problem is to obtain a confidence region for £. An
application of this type is given in Oman and Wax (1984). However, as Oman
(1988) has pointed out, his confidence region is not invariant under the action
of the group of p x p nonsingular matrices actingon Y and y as Y — AY and
y — Ay, where A is a p X p nonsingular matrix. This invariance is clearly
a natural requirement since inference problems concerning # are invariant
under the above group action.

In the next section, we construct a confidence region for 8 that is exact and
has the above invariance property. The problem is first reduced to a suitable
canonical form similar to the canonical form for the MANOVA problem. We
have also shown that our exact confidence region given in the next section
is always nonempty. Unfortunately, our confidence region need not always be
an ellipsoid, and it appears quite difficult to obtain a condition under which
it will be an ellipsoid, sharing the same drawback with the region of Brown
(1982). However, when m = 1, so that 0 in (1.2) is a scalar, we have derived
a sufficient condition under which our confidence region will be an interval.
We have also computed the confidence region based on simulated data, for the
case m = 1, and the region turned out to be an interval in many cases.

2. The confidence region. For convenience, we shall work with the fol-
lowing canonical form of the problem. Let Z be an (N —m) x N matrix satisfying
XZ' =0 and ZZ' =Iy_,,. Then

(2.1) P=(X'(XX)"Y%: 2
is an N x N orthogonal matrix and
(2.2) E(YP) = (B(XX')/2:0) and Cov(vec(YP)) =Iy®X.
Furthermore, defining
Yi=YX'(XX')"V2,  Y,=YZ, S=Y.Y,

(2.3)
B1=B(IO(')1/2 and 6, = (XX’)‘1/20,
we have
E (Y,)=B,, Cov(vec(Y1)) =I,®%,
0s (Y)=Bi,  Cov(ves(t)

E(y)=B101, and S~ WP(E,N— m),

where we assume N — m > p; (2.4) is the canonical form that we shall work
with. Note that Y7, S and y are independently distributed. Clearly, it is enough
to construct a confidence region for 6, in (2.4). A confidence region for 6 can
then be obtained using the transformation in (2.3). In terms of the random
variables in (2.4), Brown’s (1982) confidence region is based on the statistic

(2.5) - mp“’ +1) (1+6,6,) (y - Y16,)'S~Y(y — Y161),
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which follows a central F-distribution with (p, N—m—p+1) degrees of freedom.
A 100(1 — @)% confidence region for 6, (and hence for 8) can be easily obtained
using the statistic given in (2.5).

Brown’s confidence region can be empty since the minimum value of the ex-
pression in (2.5), with respect to 6;, depends on y and Y; and can be arbitrarily
large. Our approach to obtain a nonempty confidence region is to modify (2.5)
and come up with a statistic of the form

(2.6) (1+6,6,) Yy - Y16,)'SU(U'S~U) 'S (y - Y16y),

where U is a p x m random quantity (allowed to depend on 6, as well) dis-
tributed independently of (y — Y16;), so that the minimum value of (2.6) with
respect to 6, is zero. This latter property will guarantee that our region is al-
ways nonempty, as will be proved later in this section. Toward obtaining U in
(2.6), we note that the random quantity (1+86}6,)~Y/%(y — Y16,), which appears
in (2.5) and (2.6), can be written as (Y;: y)hy,, where hy, = (1+68}6,)~Y2(—6;: 1Y
is an (m + 1) x 1 vector satisfying hy hy, = 1. We shall now construct an
(m + 1) x (m + 1) orthogonal matrix Qo,, depending on 6y, with hy, as its last
column, and then choose U as the matrix consisting of the first m columns of

(Y1: y)Qs,. Qo, is given by

(I =61\ ((I+6,0))7%/2 0
2.7 Qs, = (9/1 1 ) < 0 (1+6"101)_1/2

and

2.8) (Y1:¥)Qs, = (Y1 +y0) (I +6:6,)~Y2: (y — Y161)(1 +616,)~ 1/2),
Let
Yi=(Y1+y8;) (I +06:6;)71/2,

(2.9)

y*=(y - Y16,) (1 +6}6,) "2
Then
(2.10) E(Y{)=B(I+6,6))/* and E(y*)=

and since Qy, is orthogonal, Y} and y* are independently distributed (for any
given 6;). Our choice of U in (2.6) is U = Y;. We shall now construct an F-ratio
whose numerator is (2.6) with U = Y;. For this, consider the p x p random
orthogonal matrix Y, given by

/(2.11) Yo = (Y3 (YY) Y2 Y3),

where Y; is a p X (p — m) matrix of rank (p — m) satisfying Y;'Y) =0 and
Y;'Y; = I,_m (recall our assumption p > m). Since Y is a function of only
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Y},Y) is distributed independently of S and y*. Consequently, conditionally
given Yy, we have

u=Y)y* ~N(0,Y)XYy), -
(2.12)
W=Y]SY, ~ W, (Y}SYo,N — m),

and furthermore, u and W are independently distributed (conditionally given
Yo). To derive a confidence region for 8;, we shall first derive the distribution
of T* given by

. (N—m-p+1)y”S7'Y;(YyS-1Y;)-lyyS-ly*

2.13 T
213) m 1+y~Y;(Y3'SY;)-1Y} 'y

We note that y*'S~1Y}(Y}'S~1Y})-1Yy'S~ly*, which appears in the numer-
ator of (2.13), is the expression in (2.6) with U = Y. We shall show that
conditionally given Y7 [i.e., conditionally given Y; in (2.11)], T* has a central
F-distribution with (m,N —m —p + 1) degrees of freedom, which is also its un-
conditional distribution. Toward this, using the orthogonality of Yj, we note
that Y}'Y, = ((Y;'Y})'/2: 0). Hence,

y*/S—lYI (YI'S_IYf)_lY’f'S_ly*
= yYoY(ST1Y, Y Y; (YY) Y2
214 x [(Y1¥5) =AY VoY ST IYo Yo Y (Yi'Yy) 2]
x (Y1'Y7)V2Y Y, VS~ 1Y, Yy

=uW-! <(I)) [(I: 0)W-1! ((I))]_l (I: 0)Wlu,

where u and W are given by (2.12). In order to simplify (2.14) further, let us
partition u and W as

_(w _(WuWi
(2.15) u= (u2) and W= (W21W22) R

where u; and u; are, respectively, m x 1 and (p —m) x 1 vectors and Wy, Wy
and Wy, are, respectively, m x m,m x (p —m) and (p — m) x (p — m) matrices.
After expressing W1 using the formula for the inverse of a partitioned matrix
[see Rao (1974), page 33] and doing straightforward algebraic computations,
(2.14) simplifies to

y*ls—IYik (YI'S_IYf)_lYf/S_ly*

2.16)
= (w1 = WiaWoz'u) Wiy (w1 — WieWy'wa),
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where Wi2 = Wy — WisW,' Wy, From (2.15), (2.12) and (2.11), we have
u; = Y;'y* and Wa = Y3'SY;. Hence, using (2.16), T* given in (2.13) can
be expressed as 4
(217 T*= (N —m~p+1) (w1 - WieW'ao)' Wi, (y — WisWiluy)

. m 1+u'2W2'21u2 .

A statistic similar to (2.17) appears in Section 4.4.1 in Srivastava and Khatri
[(1979), page 117] and Section 6.8 in Giri [(1977), page 131], where it is shown
that such a statistic has a central F-distribution with (m, N — m — p+1)
degrees of freedom. Thus, from (2.12) and (2.17), we see that conditionally
given Yy, T* follows the central F-distribution with (m,N —m — p+1) degrees
of freedom, which is also its unconditional distribution. We now prove the
following theorem.

THEOREM. Consider the models (1.1) and (1.2) and assume that p>mand
N —m > p. Define the following:

yo = [1+6'(XX")19] /2y — YX'(XX")~16);
Ylg = [YX’ + ye’];
S=Y[I-X'(xx')"'X]Y’;

QS_IYlo (Y{GS‘IYIG)‘IY{OS‘lyg

_y
T(B) - 1+ ygS—lyo

Then the region

N-m-p+1 1 -1
0:T(0) < (1
{ ()_[ ¥ m Fa(m,N—m—p+1)} }

is a@ 100(1 — )% confidence region for 6, where Fo(m,N — m — p+1)is the
100(1—a)th percentile of the central F distribution with (m,N—m —p+1) degrees
of freedom. Furthermore, the region is nonempty and is invariant under the
transformation Y — AY and y — Ay, where A is any p x p nonsingular matrix.

PROOF. We note that Y} and y* given in (2.9) satisfy
Y'=y¢ and Y} = Yw(}O{’)‘l/2[I+ ()0{’)-1/290'()0(')-1/2]-1/2,

where Yi4 and y, are given in the statement of the theorem. Furthermore,
T'(9) remains unchanged if we use Y} instead of Y;,. Since T* given in (2.13)
follows the central F-distribution with (m,N —m — p + 1) degrees of freedom,
the expression for the confidence region follows if we can show that

1 N-m-p+1) 1

o)~ * m T+




CALIBRATION CONFIDENCE REGION 99

or, equivalently,

(N-m-p+1) T(6)
m 1-T(8)

=T,

This follows by using the expression for 7* in (2.13) and noting that
S~ - STy (YySTlYy)TlYYS T = Y3 (Y5'SY;) 7Yy

[see Rao (1974), page 77]. Since T'(f) is invariant under the transformation
mentioned in the theorem, so is the confidence region. Thus, it only remains
to show that the region is nonempty.

For this, it is enough to show that there exists § for which T'(9) = 0, or,
equivalently, there exists 6, for which T* = 0 [0, is defined in (2.3)]. From the
expression for 7* in (2.13), it is clear that T* = 0 if and only if

Yi'sTly* =0,
where Y} and y* are given in (2.9). We thus have to show that there exists
0, satisfying
(2.18) (Y1 +y6,)S Yy - Y16,) =0.

It is enough to prove this with S = I (since we can consider S~1/2y and S—1/2Y;
in the place of y and Y;). After simplifying the left-hand side of (2.18) with
S =1, we thus have to establish the existence of 6, satisfying

(2.19) 1y — {Y1Y1 - (¥'y)1}61 + (y'Y161)6: = 0.

Consider the singular value decomposition

(2.20) Y,=E (ﬁ) P,

where E and F are, respectively, p X p and m x m orthogonal matrices, A is
an m x m diagonal matrix with positive diagonal elements and 0 represents
a (p — m) x m matrix of zeros. Write

A = diag(él, ces ,6m),
(2.21) F'or=n=(n1,...,7m)",
Ey=g=(g,8) = (811, ---,81m-821, - - - »82p-m)) -

Since y'y = g'g, (2.19) is to
(2.22) Ag — {A? - (gg)I}n - (g14n)n = 0.

Thus, in order to show the existence of #; satisfying (2.19), we have to show
the existence of 7 satisfying (2.22). Let

(2.23) h(n) = g1An.
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Then (2.22) is equivalent to
(2'24) 6igli - (612 - glg)"h - h(n)nl = Q’ i= 1, 2’ cee,m,
or, equivalently,

6igi .
(2.25) n=g———0r, i=12 ...,m.

© 62 —gg+h(n)
Using (2.25), h(n) in (2.23) can be written as
ho) = ghdn = Y sigum = 3 S8k
n)=gAn= bigun=) 8L ___
i=1 e i=1 6i2_g'g+h("7)

Thus, if we can show the existence of h(n) satisfying

2.26) h(n) = i __ el
~ & —-gg+h(n)

then, for such an A(n),7; given by (2.25) satisfies (2.24) and (2.26), and this
will prove the existence of 5 satisfying (2.22). To show the existence of h(n)
satisfying (2.26), we have to show that the equation

5i2 g%i

2.27) X = -t
“— 62 -g'g+x

has a solution x. Let

m 6.23?.

2.28 =) =k

(2.28) f(x) gég_g,g”

To establish the existence of x satisfying f(x) = 0, we consider three different
cases: (i) If f(0) = 0, the required value of x is x = 0. (ii) If £(0) > 0, choose x;
positive and large enough so that f(x;) < 0 [the existence of such an x; should
be clear from expression (2.28)]. Hence f(x) must vanish inside (0,x7). (ii) If
f(0) < 0, choose x, negative and large enough so that f(x3) > 0. Hence fx)
must vanish inside (x;, 0). This completes the proof of the theorem. O

REMARK 2.1. In terms of the canonical representation (2.3), the group ac-
tion mentioned in the theorem is Y; — AYj, y — Ay and S — ASA’. Conse-
quently, the action on Y} and y* in (2.9) is Y} — AY} and y* — Ay*. It should
be noted that the matrix Y, and, in particular, the matrix Y} in (2.11) are
not invariant under the above group action. However, T* in (2.13) is invariant
since the quantity 7'(9) in the theorem is invariant, and

(N-m-p+1) T(9)
m 1-T(6)

as noted in the proof of the theorem.

=T,
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Unfortunately, the shape of the confidence region given in the theorem is
far from clear, since 7'(@) is a rather complicated function of §. However, in
the special case when p = m,Yy4 is a p x p matrix and T(6) simplifies to
T(0) = y5S~ys/(1 + y;,S~ly,). In this case, the confidence region is based on
¥4S~1ys [which has a central F-distribution with (@,N — 2p + 1) degrees of
freedom] and is the confidence region given in Brown (1982). When p=m,
Brown (1982) has also given a condition under which his confidence region
will be an ellipsoid. This condition depends on the data and need not always
be satisfied. Consequently, the confidence region that we have constructed
need not be an ellipsoid, in general. Furthermore, it appears quite difficult to
obtain a condition under which it is an ellipsoid. However, in the univariate
case, that is, when m = 1, a sufficient condition can be obtained so that the
confidence region for 6 (a scalar when m = 1) is an interval [see Brown and
Sundberg (1987) and Lieftinck-Koeijers (1988) for applications where m = 1
and p > 1]. We shall now derive this condition. Let

_[1s @ =m=p+1) L ]
(229)  ca(m)= [1 + m Fo(m,N-m-p+1)

With m = 1, the confidence region for 6 given in the theorem is {8:T(9) <
¢o(1)}. When m = 1, note that X’ is a column vector, say X’ = x, and Y{,,S‘le
is a scalar. T(6) can then be simplified by direct algebraic computations and
it can be verified that 7(0) < c,(1) is equivalent to

-1

(2.30) f(6) <o,

where

(2.31) £(6) = asb* + 2a36° + a26? + 2410 + ay,
with

a4 = (x’x) -2 (xlylS—ly)2
—co(1)(x'x)y'S7ty[1 + (x'x) 'x'Y'S"'Yx],

o= () TSy [{ ()T 'S ¥x _y's-iy)
x {1 -ca(1)} —ca(1)],
az = [{(x'x)"'¥'Y'S~'Yx — y'S~ly}? - 2(x'x) L (¥'Y'S " ly)?]

@32)  —ca(1)[ySly(1+yS-ly)
+(x'x)7x'Y’S71Yx{1 + (¥x) " '¥'Y'S~1Yx}

- 4(x'x)"1(x'Y’S " ly)?],
a1 =x'Y'S7ly[{y'S~ly — (x'x) 'x'Y'S7Vx}{1 — ca(1)} — ca(1)]
= —(x'x)as,

ao = (x'Y'S7ly)? — ¢ (1)x'Y’S~1Yx(1 + y'S~ly).



102 T. MATHEW AND S. KASALA
Note that

(2.33) {6: T(8) <ca(1)} = {6: F(6) < 0},

which is an interval if f(§) is a convex function of §, or, equivalently, d2f()/d6?
> 0, for all 4. From (2.31), it is clear that d%f(#)/d6? is quadratic in § and is
nonnegative for all @ if and only if

(2.34) ay >0, a;>0 and 2asas —3a2>0.

Once the data is available to us, a4, a3 and ag can be easily computed and the
conditions in (2.34) can be easily verified.

We shall now report some confidence regions based on simulated data in
the univariate case, that is, m = 1. The purpose of the simulation is to show
that the conditions in (2.34) can hold and, hence, the confidence region ob-
tained using the theorem can be an interval. In the simulation, the quantities
p,N and a were chosen to have values p = 2,N = 12 and o = 0.05. Then,
F,im,N —m —p+1) = Fy05(1,10) = 4.96 and c,(m) = cq05(1) = 0.33 [from
(2.29)]. Furthermore, in the notation used in (2.32), we chose a model with
x'x = 1. (Note that since m =1 and N = 12,x is a 12 x 1 vector.) Hence, for the
simulation, one can consider the independent bivariate normal random vec-
tors y; = Yx and y, having the distributions N(b,X) and N(b#§, ), respectively,
and the Wishart matrix S ~ W3(Z, 11), where b is a 2 x 1 unknown parameter
vector and ¥ is an unknown 2 x 2 positive definite matrix. Since x'x = 1, the
components of x lie in the interval [-1,1] and we shall consider only values
of 6 in this interval for the simulation. ¥ = I was used in the simulation along
with the following arbitrarily chosen values of b and 6: b = (10,1) and (5, 1)
and 6 = —0.5,0.1,0.2,0.4 and 0.8. A simulated value of S was obtained from
the preceding Wishart distribution with ¥ = I and simulated values of y; and
y were obtained from the appropriate normal distributions for each value of b
and @ with ¥ = I. In Table 1, we give the confidence region for #, along with the
value of the coefficients (a4, as,as,a1,ap) in (2.32), computed using the simu-
lated data. The values of these coefficients are reported so that one can verify
if the conditions in (2.34) are satisfied by these coefficients. The confidence
regions we have computed turned out to be intervals in all the cases except
for the parameter values b = (10,1) and 6 = —0.5 and 0.8. One can also verify
that except for the cases corresponding to these parameter values, (2.34) holds
in all the other cases. In the two cases where the confidence regions were not
intervals, the regions turned out to be unions of disjoint line segments, with
one of the line segments containing the true value of the parameter.

REMARK 2.2. In some applications, one has to consider models where an
intercept is present. Brown (1982) and Brown and Sundberg (1987) consider
models having an intercept. In this case, instead of (1.1) and (1.2), the model
to be used is

(2.35) E(Y)=oly+BX, Cov(vec(Y))=Iy®%
(2.36) E(y)=a+B9, Cov(y) =%,
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where a is the p x 1 intercept vector, Ly is an N x 1 vector of 1’s, and the other
quantities in (2.35) and (2.36) are as in (1.1) and (1.2). Multivariate normality
is once again assumed. We shall now show.that the above models can be
reduced to models the type (1.1) and (1.2), that is, models without an intercept.
Toward this, let Z be an N x (N — 1) matrix such that R = (1/VN)ly,2) is
an N x N orthogonal matrix. Since R is orthogonal, the columns of YR are
independent, having the common covariance matrix X, where Y is as given in
(2.35). Considering the model for YR and using the definition of R, it follows
from (2.35) that

1 1
2. E|(—=Yly)|=V — d E(YZ)=BXZ,
(2.37) ( i N) Na+ mBXlN and E(YZ)=BXZ

where we have used the fact that 1;,Z = 0. From (2.36) and (2.37), we get

E (y-4Yly)=B (6 — $X1ly) and

(2.38)
Cov(y— aYly)=(1+#) =
Define
Yo=YZ Xo=XZ = 1+ 1 - lYl
0=14, 0 =44, Yo = N/\Y W
and

(2.39) o = 1/(1 + zlv) (9 - %XIN) .

From (2.37), (2.38) and (2.39), we get

E (Yo)=BXO, COV(Y()) =IN_1 ® 2,

(2.40)
E (yo)=Bfy, Cov(yo)=X,

and Y, and y, are independent. Hence (2.35) and (2.36) reduce to models of
the type of (1.1) and (1.2) without an intercept. Once we obtain a confidence
region for 6, in (2.40), a confidence region for ¢ can be obtained using the
transformation in (2.39).

3. Concluding remarks. In the multivariate calibration problem, con-
fidence regions that are currently available for the finite sample case have
serious drawbacks. Apart from the fact that the shapes of these regions, in
general, are unknown, the regions can be empty, or noninvariant. The confi-
- dence region derived in this article, being nonempty and invariant, overcomes
some of these drawbacks. It appears that a confidence region satisfying these
natural requirements was not available prior to our work. In the univariate
case, we have derived a condition under which our region will be an interval.
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However, the shape of our region, in general, is unknown. Being nonempty
and invariant, our region should certainly be of use in hypothesis testing,
that is, to verify if 0 in (1.2) has a prespecified value. An ellipsoidal confidence
region that is also nonempty and invariant is currently available only in the
asymptotic case. Derivation of such a region in the finite sample case is still
an open problem.
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