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MEASURING MASS CONCENTRATIONS AND ESTIMATING
DENSITY CONTOUR CLUSTERS—AN EXCESS
MASS APPROACH!

By WOLFGANG POLONIK

Universitat Heidelberg

By using empirical process theory, the so-called excess mass approach
is studied. It can be applied to various statistical problems, especially in
higher dimensions, such as testing for multimodality, estimating density
contour clusters, estimating nonlinear functionals of a density, density
estimation, regression problems and spectral analysis. We mainly consider
the problems of testing for multimodality and estimating density contour
clusters, but the other problems also are discussed. The excess mass (over
C) is defined as a supremum of a certain functional defined on C, where C
is a class of subsets of the d-dimensional Euclidean space. Comparing
excess masses over different classes C yields information about the modal-
ity of the underlying probability measure F. This can be used to construct
tests for multimodality. If F has a density f, the maximizing sets of the
excess mass are level sets or density contour clusters of f, provided they
lie in C. The excess mass and the density contour clusters can be esti-
mated from the data. Asymptotic properties of these estimators and of the
test statistics are studied for general classes C, including the classes of
balls, ellipsoids and convex sets.

1. Introduction. The excess mass approach which will be studied in this
paper by means of empirical process theory was first considered indepen-
dently by Miiller and Sawitzki (1987) and Hartigan (1987). It can be applied
to various statistical problems, especially in higher dimensions, such as
testing for multimodality, estimating density contour clusters, estimating
nonlinear functionals of a density, density estimation, regression analysis
and spectral analysis. In this paper we mainly concentrate on testing for
multimodality and estimating density contour clusters, but applications of
the excess mass approach to the other problems are also discussed.

Let F be a distribution on R? with Lebesgue density f. Miiller and
Sawitzki defined the excess mass functional as A — E()) = F(C()\) —
A Leb(C())), A > 0, where Leb denotes Lebesgue measure and C(A) = Ci(N) =
{x: f(x) = A} is the density contour cluster (of f) at a level A (cf. Figure 1,
which motivates the name excess mass). Note that Hartigan (1975) used the
notion density contour cluster, or A-cluster, for connected components of
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FiG. 1. Unimodal situation.

C(A), whereas here the sets C()) need not be connected.
Let C denote a class of measurable subsets of R? and let H, = F — A Leb.
The excess mass over C at a level A > 0 is defined by

E (A) = sup{H,(C): C € C}.
Every set I'c(A) € C with
Ec(2) = Hy(Tc(Y))

is called a generalized A-cluster in C. Of course, E-(A) = E()A) if C(A) € C. In
this case C()) is a generalized A-cluster. Since E(A) can be rewritten as
E()) = sup{H,(C), C c R¢ measurable}, one has E.()) < E(A). Replacing F
in the definition of E.()) by the empirical measure F, of n i.i.d. observations
X,,..., X, drawn from F leads to empirical versions, E, (1) and T, c(}),
respectively (cf. Section 2).

Differences of excess masses over different classes yield information about
modality [Miiller and Sawitzki (1987) and Hartigan (1987)]. To see this,
assume for the moment that f is a smooth density on the real line with
exactly m modes. In this case the density contour clusters C(A) all lie in [,,,
m € N, the class of unions of at most m intervals. Therefore, E = E; for all
k = m. Hence, if sup, , ((E,(A) — E; ()) is strictly bigger than zero for some
k > m, then f has more than m modes.

This one-dimensional approach is studied in Miiller and Sawitzki. Harti-
gan considered the two-dimensional case. In our terminology he used the
excess mass over the class of closed convex sets in R?, here denoted by %2,
and compared it with the excess mass over those convex sets lying exterior to
I',2(A). In a more parametric setup, Nolan (1991) considered the case C = &9,
the class of all closed ellipsoids in R¢.

In all these papers it is assumed that the underlying distribution has
density contour clusters lying in the class C under consideration. This
assumption, or, for short, the choice of a class C, may be interpreted as the
choice of a nonparametric statistical model: the class of all distributions
dominated by Lebesgue with C(A) € C. In contrast to defining models through
smoothness assumptions it is possible to model certain qualitative aspects,
such as modality, of the underlying distribution through appropriate choices
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of C. As indicated above, the class /,, corresponds to one-dimensional distri-
butions with at most m modes. Below we also give multivariate analogs.

Density contour clusters contain information about location of mass con-
centration. If they lie in C, or, in other words, if the chosen model which
corresponds to the choice of C is correct, then they can be estimated by

[, ¢(A). This could also be done by first estimating the density by a kernel
estimator, say, and then estimating C(A) by the corresponding density con-
tour cluster of the density estimate. This gives a consistent estimator under
appropriate smoothness assumptions. However, this approach does not allow
enclosing prior knowledge about the shape of density contour clusters (such
as convexity). Furthermore, although one never knows in practice that den-
sity contour clusters lie in C, the interpretation of I, ~(1) as sets maximizing
the excess mass still holds and therefore they mlght contain useful informa-
tion even for finite n.

Of course, calculation of T, c(A) for classes C being not too sparse is
time-consuming, especially in hlgher dimensions. In the class €2, Hartigan
gave an algorithm for calculating I, (1) which he claimed to have complex-
ity O(n®). Nolan calculated I, ( ) in the class of ellipsoids in R2. Note that
by definition T, (1) has minimum Lebesgue measure among all sets in C
whlch contain ot less empirical mass than T, (1) itself. In other words,

C()\) is a so-called minimum volume set in C [to the random parameter
a = F (T, <(M)]. Hence, algorithms for calculating minimum volume sets can
be used to calculate I, (). This has been done by Nolan.

Here we do not exp11c1tly specify C. Therefore one has the flexibility to
compare different models. All standard classes, such as the classes of balls,
ellipsoids or convex sets, are included in our study. The results of the present
paper show how the asymptotic behavior of estimators and test statistics
under consideration depend on the richness of C (and on smoothness assump-
tions on f). The asymptotic results can be used as hints on how to choose
appropriate classes for special problems. One will have to balance between
flexibility of the model (which means richness of the classes C under consider-
ation), desirable statistical properties and time needed for calculation.

The paper is organized as follows: E, (-) is studied in Sections 2 and 4.
We show that E, () is consistent for E@( ) and prove asymptotic normality.
For example, in the case where C(A) € C and “f has no flat part,” that is,
F{x: f(x) = A} = 0 V A > 0, the limiting process of n'/2(E, () — Ec(") is a
Brownian bridge with transformed time scale (Theorem 4. 3). The asymptotic
behavior of T, c(A) is studied in Section 3. We show consistency [in L,(F)] as
an estimator of I'.(1) (Theorems 3.2 and 3.5) and in the case where C(\) € C
we also give rates of convergence (Theorems 3.6 -and 3.7). As a special case
(A = 0 and C = #%) we obtain rates of convergence for the convex hull of the
sample as a by-product (Proposition 3.8). In Section 5 we study
sup, o(E, p(A) — E, (1), where C and D are nested classes, as a test
statistic for the hypothes1s that the density contour clusters lie in the smaller
classes C against the alternative that they lie in D \ C. For special choices of
C and D this leads to tests for unimodality, as proposed by Miiller and
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Sawitzki and by Hartigan (see above). Asymptotic distribution of this test
statistic is known only for the special case of an underlying uniform distribu-
tion (Theorem 5.4). However, under the null hypotheses, we derive rates of
convergence for general F (Theorems 5.2 and 5.3) which in some special
situations are known to be the exact rates. Applications of the excess mass
approach to other statistical problems are discussed in Section 6. Section 7
contains the proofs of all results given in this paper.

We close the introduction by giving some related work from the literature.
There exist other nonparametric approaches to measuring mass concentra-
tions and investigating modality of the underlying distribution, which also
are based on the idea of comparing the volume of sets with the mass carried
by them:

In a fundamental paper Chernoff (1964) considered the midpoint x of an
interval with given length / which carries maximal mass along all intervals
with the same length [. If / tends to zero and the distribution is dominated by
Lebesgue measure, then, in regular cases, x converges to the mode of the
density. However, if [ is not too small, the midpoint indicates a location
around which a nonnegligible portion of the mass is concentrated. Considered
as a function of / the maximal mass a = a(l) becomes the well-known
concentration function.

Alternatively, one can consider the inverse problem: fix the mass « and
ask for the interval with minimal length among all intervals carrying (at
least) mass «. Such intervals are called minimal volume intervals or modal
intervals [cf. Lientz (1970), Andrews, Bickel, Hampel, Huber, Rodgers and
Tukey (1972), Robertson and Cryer (1974) and Gribel (1988)].

In these one-dimensional situations it is a “natural” decision to use inter-
vals. However, strictly speaking, the choice of intervals is natural only if the
underlying distribution has a unimodal Lebesgue density, f. For in this case
(under some regularity conditions) the density contour clusters of f are
intervals and maximize the (theoretical) functions in the procedures given
above. This corresponds to the situation “C(A) € C” in the context of excess
masses (see above).

For generalizing the abovementioned procedures to higher dimensions,
there is no “natural” choice of a class of sets, even in the unimodal case. One
might for example use the classes of all balls, ellipsoids or convex sets. Sager
(1979), for example, generalized the method of Robertson and Cryer (1974) by
replacing the class of intervals by the class of convex sets. The problem of
how to choose an appropriate class C (especially in higher dimensions) of
course also exists in the excess mass approach. However, as mentioned
earlier, since the results in the present paper are given for an unspecified
class C, they can be used as hints on how to choose C in a special problem.

2. The empirical excess mass over C. Let X, X,,..., X,,... be iid.
random vectors in R? with distribution F. In order to obtain an estimator of
the excess mass over C, we replace the unknown distribution F by F,, the
empirical distribution of X;,..., X,. This leads to the empirical excess mass
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over C, defined by
E, c()) =sup{F,(C) — ALeb(C): C € C}, A= 0.
Let H, , = F, — ALeb, A = 0. Aset I, (1) € C such that

En,C(A) = Hn,A(Fn,C(A))

is called an empirical generalized A-cluster.

Since the “excess” E, (1) [and also Ec(A)] should be nonnegative we
always assume that & € C. In the following proposition some elementary
properties of E, . are summarized.

PROPOSITION 2.1. Let & € C. Then we have the following:

OOo<E, q:()\)< 1 forall A > 0;
() E, o( \) is monotone decreasing and convex in [0, %);
(iii) A = E, () is piecewise linear with at most n + 1 changes of slope.

For every distribution F, properties (i) and (ii) also hold for E.(-).

Consistency. First note that there exist situations where E, (1)) contains

no information about the underlying distribution [cf. Hartigan (1987)] Define

={X,,..., X,}). Then F,(A) =1 and Leb(A) = 0. Hence, if A C, then

0:()\) = 1 for all A > 0, independent of F. Therefore En ¢ is in general not

a cons1stent estimator of E.. Consistency Lemma 2.2 given below shows that
E, ¢ is consistent if C is a Glivenko—Cantelli class for F.

Let (Q, P) denote the underlying probability space. To avoid measurability
considerations, we define for any function f: Q — R the measurable cover
function f* as the smallest measurable function from ) to R lying every-
where above f [see Dudley (1984)]. Furthermore, let P* denote outer proba-
bility. Given a class C denote

|F, — Fllc = sup{l(F, — F)(C)I: C € C}.

DEFINITION. A Glivenko—Cantelli class (GC-class) for a distribution F, or,
for short, a GC(F)-class, is a class C of measurable sets such that, with
probability 1,

—Flc = as n — o,
|F, —Fl¢ =0

LEMMA 2.2 (Consistency). For any class C we have

suplE, ¢(A) — Ec(A)| <|IF, — Fllc.
A=0

Hence, if C is a GC-class for F, then, with probability 1,

suplE, c(A) — Ec(AN)I* >0 asn — ».
A=0
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It is well known that Vapnik—Cervonenkis (VC) classes are GC-classes for
all F if in addition they satisfy some measurability assumptions. Examples
for such classes are the class of all d-dimensional closed balls %% and the
class of all d-dimensional closed ellipsoids £¢. There also exist interesting
classes which are GC-classes (for certain F) but not VC-classes, as, for
example, the class of all closed convex sets in R?, d > 2, denoted by #°.
These are GC-classes for all distributions F which have a bounded Lebesgue
density [see Eddy and Hartigan (1977) for a characterization of the GC-
property of C¢].

As mentioned in the Introduction, the choice of C is identified with the
choice of a statistical model, which consists of those distributions with
density contour clusters lying in C. In order to model multimodality, we make
the following construction: given a class C of closed subsets of R?, let C,,
k € N, denote the class of sets which can be written as a union of % (possibly
empty) sets in C, and let

m
N, 4(C) = { U (¢ \D;),C;eC,DeC,,j= lm} m,k €N,
j=1
where ﬁj denotes the open kernel of D,. Note that the sets in N,, ,(C) are
closed by definition and that C,, C Nm,k(JC) V m, k > 1. The classes N,, (&%)
seem to be appropriate to model, for example, an underlying mixture of
normal distributions (cf. Figures 2 and 3).

The classes N, ,(C) are special cases of GC-classes which we call k-con-
structible [ Alexander (1984) used this terminology]: a class C in a measurable
space (Z,.%) is called k-constructible from a GC-class D if there exists a
function ¢ from D* to &, constructed from the set operations U, N and °,
such that C c ¢(D*). For example, the class C\C = {C\D: C,D € C} is
2-constructible from C. More generally, the classes N,, ,(C) are m(k + 1)-
constructible from C.

If C is a VC-class, then classes which are k-constructible from C also are
VC-classes, that is, the VC-property of C carries over to the classes N, ,(C).

l,///// %5
D

V55447 7//

7
‘ ;;:,7/////4% A

Fic. 2. Bimodal situation: at the level p the density contour cluster is a union of two disjoint
sets. At the level A it is a connected, nonconvex set.
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Fic. 3. A density contour cluster which can be written as a union of the sets A, B, C and D: the
sets A, B and C are convex, and D can be obtained by the convex hull of D minus the union of the
three dark shadowed sets; therefore this density contour cluster belongs to the class Ny (&)

This is well known [Dudley (1978)]. The analogous property also holds for
GC-classes [e.g., see Pollard (1984), Theorem 21 and its proof]. Hence we have
the following corollary.

COROLLARY 2.3. Let C be a GC-class for F. Then for every m,k € N we
have, with probability 1,

sugIEn,Nm‘k(C)( A) —Ey, o MI* >0 asn -
A=

3. The empirical generalized A-clusters. The asymptotic behavior of
the empirical generalized A-clusters I, -(A) is studied in this section. As a
measure of distance we use the pseudometric

dg(C,D) =F(CaD), C,DEeC,

where 2 denotes symmetric difference. Empirical generalized A-clusters exist
for interesting classes C which consist of closed sets, as, for example, for the
classes C =%%, &% or #¢ and for the corresponding classes N,, ,(C) (defined
in Section 2). Therefore we assume in all of that what follows that

C consists of closed sets.
In addition we assume that

(3.1) Leb{C(X) \ C(A)} =0 forall A >0,
and only consider
I'(A) =C(A)

the closure of the density contour cluster. Because of (3.1) one can still think
of T(A) as the density contour cluster; (3.1) is trivially satisfied for all upper
semicontinuous densities, but of course many other densities also have this
property.
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In the sequel the following assumptions are assumed to hold unless stated
otherwise:

GENERAL ASSUMPTIONS.

(A1) For all A > O there exists a generalized and an empirical generalized
A-cluster.

(A2) The underlying distribution F on R¢ has a Lebesgue density f such
that sup{(f(x)} = M < « and (3.1) holds.

(A3) All classes C under consideration are GC(F)-classes and consist of
closed sets. Furthermore we assume that & € C.

As already mentioned, the existence of a set ['-(A) is guaranteed if I'(A) €
C, but this assumption is not necessary. For every distribution G which has a
strictly positive Lebesgue density and every fixed A > 0, the function C —
H,(C) is upper semicontinuous on (C, d;) (Lemma 7.1). Hence, if the space
(C,dg) is compact, then a generalized A-cluster I'c(A) exists. The latter
situation holds, for example, for C = %%, £¢ or #°.

Consistency. First we consider the case where T'(A) is not necessarily
assumed to lie in C, or in other words, we consider a situation where the
corresponding model (see above) need not be correct.

Note that the sets I':(A) and I, (1) need not be unique. The nonunique-
ness of I, (1) is not crucial, and the results given below hold for every choice
of T, ¢(A). This will not be mentioned further in the formulation of the
results.

THEOREM 3.2. Let A C[0,»). Suppose that the following two conditions
hold:

(i) For a distribution G with strictly positive Lebesgue density, the space
(C, dg) is quasicompact.

(ii) For every A € A, the generalized A-cluster T'¢(A) is unique up to
F-nullsets.

Then we have with probability 1 that

supdy(Te(A),T, c(A)* >0 asn > .
AEA

REMARK. For the class of all closed convex sets with nonempty interior in
R?, the consistency of the empirical generalized A-cluster (in the Hausdorff
metric) was shown by Hartigan (1987) for fixed A. Miller and Sawitzki
(1991a) proved uniform consistency in the one-dimensional case with C = [,,
where they assumed in addition I'(A) € C. Nolan (1991) considered the case
C = &? in a more parametric setup.

There exist interesting situations where the generalized A-clusters are not
unique. Assume, for example, that f is a (smooth) bimodal univariate den-
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sity, symmetric around zero, where a mode is defined to be a local maximum
of f. Then, for some A large enough, the density contours cluster is a union of
two nonempty intervals, I, and I,, say. If we choose C as the class of all
intervals, then I, and I, both are generalized A-clusters.

THEOREM 3.3. Let A > 0. Let #:()) = {I € C: H(T') = Ec(A)} be the class
of all generalized A-clusters. Suppose that assumption (i) of Theorem 3.2
holds. Then we have with probability 1,

inf {dgp([, c¢(A),T)}* >0 — o,
Lot {da(T, (), 1)) > 0 asn

In the sequel we shall assume that I'(A) € C. In contrast to the more
general case considered above, this additional assumption allows us to derive
explicit upper bounds for dz(I'(A), T, (1)), which are the key for deriving
consistency results and rates of convergence in the case I'(A) € C.

PROPOSITION 3.4. Let A > 0. If T'(A) € C, then, for every n > 0,
de(T(A), T, (X)) < Flx: If(x) = Al < )
(3.22) + o M[(F, - F)(T, (X))
~(F, - F)(T(W)].
Furthermore, for A = 0 we have

(3:2b)  dp(T(0),T,,c(0)) < (F, - F)(T,,c(0)) - (F, — F)(I'(0)).

The proof of the next theorem follows immediately from (3.2a) together
with (A3).

THEOREM 3.5. Let A be a closed subset of the real line such that T'(A) € C
for all A € A, and suppose that .

(3.3) supF{x:|f(x) = Al <n} -0 asn—0.
A€A

Then we have, with probability 1, that
supdp(Tc(A), T, c(A)* >0 asn — .
AEA

REMARK. Condition (3.3) says that “F has no flat part in A,” that is,
F{x: f(x) = A} = 0for all A € A. Another equivalent formulation of (3.3) is to
say that A — I'(A) is continuous in A for the dp-pseudometric. This follows
from F{x: |f(x) — Al <m} =F(T(A — n) — FT(A + 7)) — F{x: f(x) =) —
n}.

Rates of convergence. Our two main results on rates of convergence are
Theorems 3.6 and 3.7. The first deals with VC-classes C. In the second we also
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allow richer classes, where the richness is measured in terms of metric
entropy with inclusion of C with respect to F, which is defined as follows: let

N(e,C,F) =inflm eN: 3 C,,...,C,, measurable,
such that for every C € C there exist i,j € {1,..., m}
with C; € C € C; and F(C; \ C)) < &}.

Then log N;(&,C, F) is called metric entropy with inclusion of C with respect
to F.

In the proofs of the theorems given below we shall use results of Alexander
(1984) about the behavior of the empirical process. For that reason we shall
also use some of his terminology. Alexander studies empirical processes
indexed by VC-classes which need to satisfy a certain measurability condi-
tion. The corresponding VC-classes are called n-deviation measurable. Here
we do not define n-deviation measurability, because all standard VC-classes
which we are interested in (the classes of balls, ellipsoids and finite unions
and differences of them) satisfy this measurability condition. A class C is
called (v, m)-constructible VC-class if C is m-constructible (as defined in
Section 2) from a VC-class D whose index is smaller than or equal to v. The
index of a VC-class is defined as the smallest integer v, such that D
“shatters” no set which consists of v points, and D “shatters” a finite set C iff
every B c C is of the form C N D for some D € D.

THEOREM 3.6. Let A C[0,») be closed and let C be an n-deviation mea-
surable (v, m)-constructible VC-class. Suppose that there exist constants vy, c
> 0 such that, for all n > 0 small enough,

(34) supF{x: |f(x) — Al < n} <em.
AEA

If T(A) € CV A € A, then there exists a constant K = K(M, c, vy, C) such that

—y/2+7)
) -0 asn — ox,

P*| supdz(T'(A), T, c(A >K(
supdp(I(1), T, c(1)) > K| oo

ExaMpPLES. Consider a fixed level A > 0. For levels A where |lgrad f(x)| is
bounded away from zero in a neighborhood of {x: f(x) = A} we have y = 1.
Let f be a smooth unimodal density. Then, for d = 1, the density contour
clusters are intervals. Hence we choose C =/;. For d > 2 we assume the
density contour clusters to be balls or ellipsoids, that is, we take C =.%% or
&9, For these situations we obtain from Theorem 3.6 that

dp(T(A),T, c(A) = Op.(n~3(log n)"?).

Levels A where y < 1 are called critical levels. If, for example, f has a unique
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maximum A, at the mode x, and behaves like a parabola in a neighborhood
of x,, then it can be shown that

O(n'/?), ford =1,
O(n), for d > 2.
Hence, if f has no additional critical levels A # A, then we have, for
A=[8,0), 0<8<Ay, that y=3 for d =1 and y=1 for d > 1. If we

consider the same VC-classes as above, that is, C = [, for d = 1 and C =.%¢
or £% for d > 2, then

(35) Flx: If(x) = Al <) = {

Op.(n~'/%(log n)1/5), ford =1,
A>3 Op.(n~'3(log n)’*), ford > 2.

If we want to include § = 0, then additional conditions on the tail behavior of
f are necessary to control sup, , (F{x: |f(x) — Al < n}asn— 0.

THEOREM 3.7. Let C be such that there exist constants A, r > 0 with
(3.6) logN,(e,C,F) <Ae" Ye>0.

Suppose that there exists a closed subset A of [0,=) such that T(A) € C, for
all A € A, and that (3.4) holds. Then there exist positive constants L(r) =
L(r, A, M) such that, with probability tending to 1 as n —

L(r)n—v/(2+l(+r)v), r<l,
supdp(T(A),T, c(A)* < {L(r)n""/20*Dlog(n), r=1,
red L(r)yn—y/0+Dr+D r>1.

ExamPLE. Let C = @2 and assume that the sets I'(A), A € A, all lie in a
compact set K. Then we have r = % [Dudley (1984)]. Hence, we obtain from
Theorem 3.7 for regular situations where y = 1 (see above) that
dp(T(A), T, ¢(N) = Op.(n"?/7). Hartigan (1987) conjectured that for such
cases the rate is Op.(n"2/7(log n)*/") in the Hausdorff-distance. If such a
compact set K does not exist (e.g., for a distribution with unbounded support
and 0 € A), then one in addition needs conditions on the tail behavior of F' to
ensure that r = 1. A sufficient condition is that there exist constants 0 <
m,¢,k < such that f(x)|x||” <c for ||x|| > k. This is shown in Polonik
(1992).

Estimating the support of a density and the case of an underlying uniform
distribution. Estimating density contour clusters of a uniform distribution
U (for A not equal to the maximum of the density) means estimating the
support of U. Since in this situation the quantity F{x: |f(x) — A| < n} which
appears in (3.2a) is zero for n small enough, we formally have the same basic
inequality as in the case of estimating the support of an arbitrary distribu-
tion F [cf. (3.2b)]. Therefore we summarize the results concerning both these
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cases in Proposition 3.8. The assertion of Proposition 3.8 formally follows
from Theorems 3.6 and 3.7, respectively, by taking y = .

As mentioned earlier, the support of £, supp{f}, is a generalized O-cluster if
it lies in C. For C = €9, d > 2, the convex hull of the sample X;,..., X,
denoted by conv,, is an empirical generalized 0-cluster.

PROPOSITION 8.8.  The following results hold with probability tending to 1
asn — o,

() Let C be an n-deviation measurable (v, m)-constructible VC-class and
suppose that supp{f} € C. Then there exists a constant C = C(v, m) such that

dp(supp{f},T, c(0))* < Cn~1log(n).

(ii) Let the class C satisfy (3.6) with r, A > 0 and suppose that supp(f} €
C. Then there exist constants C(r) = C(r, A) such that

C(1)n '%log(n), r=1,

C(r)yn~-1/a+n, r+1.
Hence, if C = %% d > 2, m,k € N and supp(f} is compact, then we have

C(1)n~"'21og(n), d =3,

dp(supp{ f},conv,)* < C(d ; 1 )n“z/(d“), de3.

dF(Supp{f}’Fn,C(O))* < {

(iii) Let U be a uniform distribution on a bounded set S, and denote
M = 1/Leb(S). If S € C, then the rates given above also hold for
sup, < y— 5 dy(T(N), T, c(M)*, 8 > 0 arditrary.

REMARKS.

(i) Ignoring the log term for d = 3 the rates of part (iii) are minimax rates
for estimating the support of a uniform distribution [Mammen and Tsybakov
(1995)].

(ii) For an underlying uniform distribution with compact convex support
in R% which has a smooth boundary, it is known that n-2/@+D ig the exact
L,-rate of the random quantity d,.,(supp(f},conv,). For d = 2 this is a
well-known result of Rényi and Sulanke (1964) [cf. Schneider (1988) for a
survey of results in this context]. However, also in the case of an unbounded
convex support, Proposition 3.6(ii) gives rates of convergence of the convex
hull of the sample. We only need to control the metric entropy with bracket-
ing of the corresponding class C. In the example given after Theorem 3.6 we
already mentioned that, for C = €2, condition (3.6) holds with r = 1 /2 if a
weak condition on the tail behavior is satisfied. Hence, in this case Proposi-
tion 3.8(ii) gives d(supp{f},conv,) = Op.(n"2/3).

4. The empirical excess mass, revisited. Consistency results and rates
of convergence of empirical generalized A-clusters (derived in the previous
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sections) will now be used to study the asymptotic behavior of the standard-
ized empirical excess mass, which is defined as

Z, c(N) = n*(E, c(M) — Ec()).

If we (formally) ignore the estimation of I':(A) and consider E, (W)=
H, \(Tz(A), then the difference E, (1) — E¢()) simply equals the difference
(F, — FXT.()), which is of the order Op(n~'/2). It will turn out that the
random fluctuation which comes in through the estimation of I'c(A) is asymp-
totically negligible, so that n'/2? is the appropriate normalizing factor. Even
in the case where the generalized A-clusters I'c(A) are not unique, Z, (A)
can be approximated by F, — F evaluated at the generalized A-clusters.
However, in contrast to the “case of uniqueness,” the generalized A-clusters
have to be chosen randomly in .Z:(\) = {I' € C: H,(T') = Ec())} the class of
all generalized A-clusters (for A fixed).

We say that the set-indexed empirical process v, is stochastically equicon-
tinuous in the limit if

lim limsupP*( sup |y,(C) — v, (D)l > 17) =0 foralln>0.
-0 poo d(C, D)< 8

THEOREM 4.1. Assume that the following two conditions hold:

(i) There exists a distribution G which has a strictly positive Lebesgue
density such that the space (C, dg) is quasicompact.

(ii) The empirical process v, indexed by C is stochastically equicontinuous
in the limit.

Let A = 0 be fixed. Then there exists a random sequence {Ic(A,n), n € N} C
M(N) such that

|Z, c(A) — n/2(F, — F)(Te(A, n))| = 0p.(1) asn - =.
COROLLARY 4.2. Assume that conditions (i) and (ii) of Theorem 4.1 hold.
Then we have, for every A > 0 such that #:()) is finite, that
Z, c(A) =0p:(1) asn — .
The rate is exact if F(I') > 0 for all T e#:(M).

If the generalized A-clusters are uniquely determined (up to F-nullsets),
then we can prove stronger results. Let 2(A) denote the space of all
real-valued functions on A which are continuous from the right and have left
limits, equipped with the Skorohod topology.

THEOREM 4.3. Let A C[0,%) be compact. Assume that the generalized
A-clusters are unique up to F-nullsets and that the following conditions hold:
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@) sup,c , dp(Te(N), T, (A)* — 0 with probability 1 as n — © and (ii) v,
indexed by C is stochastically equicontinuous in the limit. Then

suplZ, ¢(A) — B, c(A)| =0p:(1) asn — x,

AEA
where B, (\) = n'/2(F, — FXT (). If in addition (iii) A — T¢()) is continu-
ous in A for dp and (1v) Te(A) CTe(w) for p < A, then

B, ¢(A) = B(agp(A)) in distribution asn —

in 2(A), where B denotes a standard Brownian bridge and ag(A) = F(I'c(A)).

REMARKS.

(1) If the sets I'c(A) were not nested, the limiting process would not simply
be a Brownian bridge with transformed time axis, but the covariance would

(ii) Assumptions (iii) and (iv) are, for example, fulfilled if T(A) € CV A >0
and if F has no flat part, that is, (3.3) holds.

Suppose that the assumptions of Theorem 4.3 are satisfied with A = A, =
[0, Ao], Ay = M and C = #2. Then we have for every ¢ > 0 that, as n — o,

sup |B(t)l < ¢

(4.1) P| sup 'Zn Ny (€2 )\)I < a] - P
0<t<l1

AEA,

This leads to confidence bands for E(A). If A, has to be chosen smaller than
M, as, for example, in the case of the uniform distribution, or if A has to be
bounded away from zero, then the right-hand side in (4.1) is asymptotically
larger than the left-hand side [cf. Miiller and Sawitzki (1987) for the one-
dimensional case].

5. Tests based on differences of excess masses. In this section the
following testing problem is studied: let C and D be two classes of measurable
subsets of R? with C c D, and let A be a subset of [0,©). We consider the
hypothesis that the generalized A-clusters in D already lie in the smaller
class C, that is, the problem is testing

H,:Tp(A) cC forall A€ A

versus
H,:Ty(A) cD N C forsome A €A,

where we assume I'p(A) to be unique up to F-nullsets for all A € A. Let
A,(C,D,N) =E, (M) — E, (). As a test statistic for the above testing prob-
lem we consider

T,(C,D,A) = supA,(C,D, A).
AEA

This test statistic is a generalization of the test statistics proposed by Miiller
and Sawitzki (1987) and Hartigan (1987), respectively, for testing the hypoth-
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esis of multimodality; A,(C,D, A) is nonnegative for each A > 0, and large
values of this statistic (for some A) suggest a violation of the hypotheses H,
(see the Introduction).

If we consider the univariate case and choose C = [, and D = [,, then the
above testing problem can be regarded as looking for unimodality versus
bimodality (cf. Introduction). For the analogous problem in two dimensions an
appropriate choice is C = #? and D = Nj ,(C?) (cf. Figure 2). Tests for the
hypothesis of “£ modes,” & > 2, against the alternative of “m modes,” & < m,
can be constructed analogously. Choosing C as the class of all balls and D as
the class of all ellipsoids gives a test which may be interpreted as a test for
homoscedasticity.

In the important special case where the (closures of the) density contour
clusters are assumed to lie in D, the testing problem reduces to

H,:T(A) €C forall A€ A
versus
H,:T(A) €D\ C forsomeA € A.

Define A(C, D, A) = Ep(A) — Ec(A) and T(C, D, A) = sup, . , AC, D, A).

PROPOSITION 5.1.  For every choice of C and D we have

(5.1) suplA,(C,D, A) — A(C,D, M) < IF, — Fllp + IF, — Flic.
A=0

Hence, if D is a GC-class for F, then for any A C [0,®), with probability 1,
|T,(C, D,A) —T(C,D,A)* >0 asn — .
If in addition H, holds, then it follows that, with probability 1,
T,(C,D,A)* >0 asn — .

Inequality (5.1) immediately follows from Lemma 2.2. If E(A) — Ec(A) > 0
for some A € A, then it follows from Proposition 5.1 that the power of a test
based on T,(C,D, A) converges to 1 as n tends to infinity. This is the case if
F(Tp(MAT¢(A) > 0 for some A € A. In general the condition F(I'(AM)AT:(A)
> 0 does not follow from I'p(A) # I'c(A); however, in many standard situa-
tions this is the case.

Rates of convergence. The asymptotic distribution of the proposed test
statistic is known only for the case of an underlying uniform distribution (cf.
Theorem 5.4). However, rates of convergence for the test statistic can be given
which give qualitative insight into the behavior of the test statistic under
various testing problems, that is, under various classes C and D and sets A.
In géneral only upper bounds for the rates of convergence of the test statistics
are given. At least in some univariate situations these rates are known to be
close (up to a log term) to the exact rates.
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THEOREM 5.2. Let D be an n-deviation measurable (v, m)-constructible
VC-class.

(@) If sup,c zdp(Tp(N), T, 5(AN* = 0 as n - «, then, under H,,
T,(C,D,A) = 0p.(n71?) asn — o,
(i) If (3.4) holds with v > 0, then we have under H, that

ExamPLES. The case A = [0, ) is interesting here, because the supremum
of the density f clearly is unknown. If f is a smooth unimodal density which
behaves like a parabola near the mode, then we have y = 1 [cf. (3.5)]. Hence,
it follows that

T,(C,D, A) = Op.(n"/5(log n)*’®).

This rate has already been derived by Miiller and Sawitzki (1991a) with the
help of the “Hungarian embedding.” In higher dimensions, d > 2, we have in
such regular unimodal cases (where the densities behave like a parabola near
the mode) that y = 1 [cf. (3.5)]. Hence, we have in this case that

T,(C,D, A) = Op.(n"%3(log n)*?).
Note that this rate is faster than the rate for the one-dimensional case. This
is because the exponent vy is different for d = 1 and d > 2 [cf. (3.5)].
THEOREM 5.3. Let C satisfy (3.6) with r > 0. For y > 0 let
n—(1+v)/(2+(1+r)7)’ r<i,
a,(r) =a,(r,y) = {n"2log(n), r=1,
n_l/(’“), r>1.

(@) If sup,c \dp(Tp(D), T, n(A)* = 0 as n — , then, under H, as n — =,

OP*(n_l/z), r< 1,

T"(C’D’A)= Op-(ay(r)), r=1.

(i) Suppose that (3.4) holds with vy > 0. Then we have under H, that, as

n —> x,

Tn(C’D’A) = OP*(an(r’ 7))

'~ EXAMPLE. Again we consider the case A = [0,). We assume that f has
no flat parts, is unimodal and behaves like a parabola near the mode, so that
for d > 2 we have y = 1 [cf. (8.5)]. Furthermore we assume that the density
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contour clusters are convex, that is, we choose C = %9, d > 2, so that
r =(d — 1)/2. It follows from Theorem 5.3 that

OP*(n_4/7), d = 2,
T,(C,D,A) = { Op.(n~'%log(n)), d =3,
Op(n V€@ D) g4,

The next theorem shows [together with (5.1)] that for an underlying
uniform distribution n~'/? is the exact rate for the proposed test statistic
under H, if in addition D is a Donsker class (with the exception of some
degenerate cases, as e.g., D = [J}). A class D is called a Donsker class for F if
the following two conditions (a) and (b) hold: (a) There exists a D-indexed
Brownian bridge By, corresponding to F [or in other words, an F-bridge over
D; cf., e.g, Pollard (1984)]; (b) the D-indexed empirical process v, can be
approximated by versions B, ;, of By, in the sense that |l», — B, pllp = 0 in
outer probability. Note that the D-indexed empirical process is stochastically
equicontinuous in the limit if D is a Donsker class. For a Donsker class [ let

Zp(A) = ;‘;%(BD(D) — ALeb(D)).

THEOREM 5.4. Let F be a uniform distribution on a bounded set C, C R,
and let D, == {D N C,, D € D}. Suppose that D is a Donsker class for F. Then
there exist versions of B, p such that, for every interval A C [0,) with
1/Leb(C,) € intA and every class C C D, we have

n'/2T,(C,D,A) — sup (Zp(A) — Ze(A))
—0 <AL ®
REMARK. Let J = [(log Ny(n?%,D, F)'/% dn. The finiteness of J is suffi-
cient for the Donsker property [Dudley (1984)].

=0p«(1) asn — .

It seems to be a difficult problem to determine the asymptotic distribution
of T,(C,D, A) for nonuniform distributions. Even for the simplest one-dimen-
sional case (C = I, and D = [,), there exists no solution for this problem until
now. However, in order to construct critical values one could try the following
strategy. If D is a Donsker class (with r < 1), then it follows from Theorems
5.3 and 5.4 that under H, the test statistic is asymptotically larger under the
uniform distribution than under distributions which have no flat parts. In
this situation one could therefore use critical values under a uniform distri-
bution (obtained by Monte Carlo simulation), so that significance of the test
could be controlled, at least for large n. In the one-dimensional case simula-
tion studies of Miiller and Sawitzki (1987) show that this strategy works well
for n > 10. In higher dimensions such simulation studies have not been done
until now.

6. Other applications of the excess mass approach. In this section
we briefly indicate how the excess mass approach can be applied to other
statistical problems.
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Estimating nonlinear functionals of a density. Linear functionals of the
excess mass can be used to construct estimates of nonlinear functionals of the
density. Here we consider the estimation of [f*(x)dx, k € N, k > 2. The key
observation for the construction of our estimators for such functionals is the
identity

(6.1) E(k - l)fOMAk“zE()\) dA = [*(x) dx,

where (as above) M = sup f(x). Since E(A) = F(C(A)) — ALeb(C())) and
Leb(C(M) = [ ¢, (x) dx, equation (6.1) follows by Fubini’s theorem and
elementary reformulations [Polonik (1992)]. Hence, an estimator for [ f*(x) dx
can be obtained by plugging into the left-hand side of (6.1) the empirical
excess mass and a consistent estimator for M. Let

T,(k,C) = k(k = 1) ["™ \*"2E, ¢(1) da,
0

where A, .., is the largest level where the slope of E, o(A) changes [cf.
Proposition 2.1(ii))]. If T'(A) € C for all A > 0, then A, .. is a consistent
estimator for M. This follows from the fact that E.(A\) = E(A) = 0, for A > M,
together with Lemma 2.2. It is not difficult to see that, under the assumptions
of Theorem 4.3 as n — o,

nl/z(Tn(k,C) - ffk(x) dx)

= k(k = 1) ["M"2B(ap(1)) dA in distribution.
0

Density estimation. If all the density contour clusters of f can be esti-
mated, then of course one can define a density estimate at a point x by
summing up all level A such that x lies in the corresponding estimates of the
level sets. In the one-dimensional situation this estimator has been called
silhouette by Miiller and Sawitzki (1987). They proposed it as a data-analytic
tool. It has been studied as a density estimator in Polonik (1993) in the
general situation. It is perhaps interesting to note that this estimator can be
considered as a generalization of the Grenander estimator of a monotone
density [Polonik (1993)].

The regression problem. Consider the following standard regression model
Y, = r(x,) + & where r: R* —> R is the regression function and &; are i.i.d.
errors. Suppose that r is integrable such that R(C) = [, r(x)dx < «, C € C.
Consider
(6.2) Uc(A) = sup{R(C) — ALeb(C):CC}, O0<a<R.
The corresponding empirical version is

(6.3) U, ¢(A) =inf{R,(C) — ALeb(C),C€C}, 0<a<R,
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where R,(C) = n"'L; , <Y;- Minimizing sets in (6.2) are level sets of r if
these level sets lie in C. There are practical problems where one is interested
in estimating level sets of a regression function, for example, estimating a
specific concentration contour of CS-137 [Messer (1993)]. Instead of »,, the
process

ei(©) =2 T %,-R(O)

i:x,€C

appears. Under smoothness assumptions on r one has

e @) =2 T %= T r(x))+o(
irx;€C i:x,€C
=n"12 Y & +o0(1).

it x,€C

Set-indexed partial-sum processes of the form n'/?Y,, s have been stud-
ied in the literature for regular designs [e.g., Bass and Pyke (1984) and
Alexander and Pyke (1986); see Goldie and Greenwood (1986) for the case of
not necessarily i.i.d. errors]. These results can be used to obtain results of the
same type as given in the previous sections.

Spectral analysis. In spectral analysis one has a regression-like situation
with approximately independent “observations” if one considers the peri-
odogram ordinates as observations Y; and the spectral density as regression
function. Instead of the process e,, the empirical spectral process appears.
See Dahlhaus (1988) for results on weak convergence of the empirical spec-
tral process.

7. Proofs.
Proofs of Section 2.

PrOOF OF PROPOSITION 2.1. Since & € C, (i) follows directly from the
definition of the excess mass. The excess mass E, (1) is a supremum over
affine linear functions of A, which either are constant or have a negative
slope. Hence E, (-) is monotone decreasing and convex in [0, ). Assertion
(iii) follows from the fact that the affine linear functions A — F, (C) —
ALeb(C), C € C, over which the supremum in the definition of E, o is
extended have at most n + 1 different intercepts. O

PROOF OF CONSISTENCY LEMMA 2.2. Using H, , = H, + (F, — F), we get
E,,c(A) — Ec(A)] = supHA,A(C) - SUPHA(C)
CceC

< Supl )\(C) ).(C)I = “Fn — Fllc. a
ceC
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Proofs of Section 3. In order to prove Theorem 3.2 we need two lemmas
(Lemmas 7.1 and 7.2), which we will prove first.

LeEMMA 7.1 (Properties of H,).

() sup, . {IH\(T, (X)) — H(T(MD)|* > 0 with probability 1 as n — .
(ii) For every distribution G which has a strictly positive Lebesgue density,
the function C — H,(C), C € (C, dg) is upper semicontinuous.

ProOF. (i) From the definition of T, (1) it follows H, (T, c(A) >
H, \(I'c(Q). Together with H, , = H, + F, — F this leads to

0 < Hy(Te(V) = Hy(T,,c(V)
< (F, = F)(L,,c(V) = (F, = F)(Tc(Y),

and since C is a GC-class for F [general assumption (Al)] the assertion
follows.

(ii) First note that F is dominated by G [this follows from (A2)]. Therefore
it remains to show that A — Leb(A) is lower semicontinuous for d;. In order
to see this, let {K,} be a sequence of compact sets in R? with K, 1 R%. Then,
clearly,

(7.1)

Leb(A) = supLeb(ANK,),
neN
and because G has a strictly positive Lebesgue density the functions A —
Leb(A N K,) are continuous for d;. Hence, as a supremum over continuous
functions, the function A — Leb(A) is lower semicontinuous. O

LeEMMA 7.2. Let A C [0, ). Suppose that conditions (i) and (ii) of Theorem
3.2 are satisfied. Then A — I'c()) is uniformly continuous in A for the
dg-pseudometric.

Proor. Without loss of generality we assume A to be compact, because for
any A > M we have Leb(I'c(1)) = F(I':(A)) = 0. [This follows from the fact
that E.(A) = 0 for A > max{f(x)}.]

Let {A,, n € N} be a sequence in A with A, > Ay, A, € A. Because of the
compactness of C we may assume that {I':(A,)} converges to a set D, € C in
the d;-pseudometric.

First assume A, € int A, the interior of A. Since A, > A, we have for a
given &> 0 that A; — &£ < A, < A, + ¢ for large enough n. Remember that
H\(T¢(A) = E¢()) and that Ec()) is monotonically decreasing (Proposition
2.1). Therefore we get, by using the upper semicontinuity of H, (Lemma 7.1),
that

H, . .(Tc(Xo + ¢€)) < limsupH, (Tc(A,))
n

< limsup H, _,(Tc(A,)) < H, _.(D,).
n
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Letting £ —» 0 we obtain H, (Tc(A,)) < H,(D,), and the assertion follows
from the assumed uniqueness of the maximum.

If A; € A \ A, where A denotes the closure of A, then omit the & on the
obvious side in the above inequalities. O

PROOF OF THEOREMS 3.2 AND 3.3. The proof follows the proof of Proposi-
tion 2 of Miiller and Sawitzki (1991b). First we prove the special case that A
consists of a single point A. In this case the proof is very short and shows the
main idea.

We may assume that a given realization of the random sequence {T, c(V),
n € N} converges to a set D, € C in the d;-pseudometric. Hence it follows
from Lemma 7.1(G) and (ii) that, with probability 1,

H,(T¢(A)) = limsupH,(T, c(1))* < H\(D,),

and from the assumed uniqueness of the maximum the assertion follows.
Now we consider the general case where A C [0,%) is an arbitrary closed
set. We need to show that for every sequence {A, € A} we have
dp(Te(A,), T, (A,)) — 0 with outer probability 1 as n — «. It can be as-
sumed that A, = Ay ,Ay € A U {3}.
Since the function A — I':(A) is continuous for the dy-pseudometric
(Lemma 7.2), it is enough to show that, with probability 1,

F(T, c(A,)ATc(Xg))* > 0 asn — .

For A, <  the proof is much the same as the proof of the continuity of
A = T()). The only difference is that here, in addition, the random quantity
H\(T, ¢(A) comes in. However, H,(T,, (1)) can uniformly be approximated by
the nonrandom quantity H,(Tc(1)) with outer probability 1 [Lemma 7.1G)].

We may assume that (T, c(A,), n € N} converges to a set D, € C in the
d;-pseudometric. For a given & > 0 we have A, — &£ < A, < A, + ¢ for large
enough n. Hence, by Lemma 7.1(i) and (ii), we get

H, . (Tc(Ay + £)) < limsupH, (Tc(A,))
n
= limsup H, (T, c(A,))
n

= lim SupHx\O-—s(Fn,C(An)) = HAO—S(DO)’
n

with outer probability 1. Letting £ — 0, we obtain H, (Tc(Ao)) < H, (D), and
as above the assertion follows from the assumed uniqueness of the maximum.
The case A, = = follows from the fact that f is bounded and that I':(A) = &
for A bigger than the maximum of f.
The proof of Theorem 3.3 is the same as the proof of Theorem 3.2 given for
the case A = {A}. O
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PRrOOF OF PROPOSITION 3.4. First note that

H(T(W) —H(C) = [ (f(x) =X dx = [ (f(x) =) d
(7.2) - (f(x) =Nyde= [ (f(x) = 2) de

r()NC
= If(x) — Aldx.
r(MAC

Inequality (3.2b) follows directly from identity (7.2). Now we prove (3.2a). To
shorten the notation, let D, o(A) =T, (MATc(A), so that F(D, (1) =
dp(T, (), Te(A). We write F(D, () as a sum of two terms:

F(Dn,C()‘)) =F(Dn,C(/\) N {x: If(x) - Al < "7})
+ F(D, o(A) N {x:If(x) = Al = m}).

The first term on the right-hand side is dominated by F{x: |[f(x) — A| < n}. As
for the second term, (7.1) says that

H\(T'(X) — H(T,,c(X) < (F, = F)(T, c(X) — (F, —F)(I'(})).
Thus, because of f < M, (3.2a) follows from
H(T(V) = By(T,c(N) = [ If(%) = Ml

n,C

> nLeb(D, c(A) N {x:If(x) — Al > n}). O

PrROOFS OF THEOREMS 3.6 AND 3.7. Let {§,} and {n,} be sequences of
positive real numbers, and define

B, ={3C, D € Csuch that d;(C, D) > §, and
d¢(C, D) < cny + 7' M[(F, - F)(D) — (F, - F)(C)]}.
Then it easily follows from (3.2a) that for all sequences {§,} and {7,} we have
P*| sup dp(T, c(A), (X)) > 8,| < P*(B,).
A€A

Hence, we shall look for the “smallest” sequence {§,} such that P*(B,) — 0.
We have

P*(B,)
en? + m'M[(F, — F)(D) — (F, — F)(C
<P sup (emy + m; 'M[( )(D) —( )(O)]) o1
dp(C, D)> 5, dy(C,D)
M[(F, — F)(D) - (F, — F)(C 1
<P sup [(F, - F)(D) —( )(O)] 1
dp(C, D)> s, M,dp(C, D) 2
+ p Sl 1)
sup  |———|> =
dp(c,D)>5,| 4r(C, D) | 2

=1+ 1II
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If we choose 1, = 81/7/2c, then II equals zero, and it remains to determine
{5,} such that (with this choice of 1,) I tends to zero as n — «. Note that
ky
{dp(C,D) > 8,} = U (2%, <dp(C,D) < 2**%},
k=0
where &, is chosen as the smallest integer such that 2*»*'§, > 1. Hence it
follows that

kn 2ksA+7)/v
1< Y P sup I(F,-F)D) - (F, -~ F)(C)l >

k=0 dp(C,D)<2k+%, 4Mc
an 2k+1n1/28(1+y)/y

< p* sup |y, (A)l > .
k=0 Ae(C\D), , 16 Mc
kﬂ

= E pn,k’
k=0

where we define (C\ C), , ={C\ D, C,D € C, F(C\ D) < 2**'5,}. Now we
seek conditions to ensure that the last sum converges to zero (as n — «). The
probabilities p, , are exactly of the form which is considered in Alexander
(1984). For VC-classes # he derives exponential inequalities of the form

P*( sup |v,( A)| > N) <16exp(—(1 - &)¥(N,n, a)),
Ae®

where a = sup, . {F(AX1 — F(A)} and ¥ has to lie in a certain class of
functions, including W(N, n, a) = ¥y(N, n, a) = N2/2a(1 + N/3n'%),
which corresponds to “Bernstein’s inequality” (which holds for a single A).
Now we fix & =(C\ C), ;, ¢ = 3 and ¥ = ¥,. For any k£ and n we have

2k*15, > sup F(A) > sup {F(A)(1-F(A)}.

Ae(C\O), Ae(C\O),

Therefore we take a = 2**15,, and by definition of p, , the quantity N
corresponds to 2%+ 1n!/251* /Y /16 Mc.

Now we split the proof. First we consider the situation of Theorem 3.6. It is
easy to see that with 8, = (n/log n)?"/@*?) conditions (2.20), (2.22) and (2.23)
of Alexander are fulfilled. Hence, Theorem 2.8 of Alexander (1984) gives the
following bound for p,, ,:

Do < 16exp{—2kn 827/ 7/162c?M?(1 + 8)/7 /48 Mc)},

. n

such that for large enough n,

kﬂ kn

Y P < 16 Y exp{—2* log n/216%c*M?},

k=0 k=1
which converges to zero as n — «. This proves Theorem 3.6. To finish the
proof of Theorem 3.7, we use Corollary 2.4 of Alexander (1984). It is easy to
check that if we choose §, as the asserted rates of Theorem 3.7, then
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condition (2.7) of Alexander is fulfilled. The rest of the proof is the same as
above in the situation of Theorem 3.6. O

PrOOF OF PROPOSITION 3.8. The idea of the proof is exactly the same as for
the proofs of Theorems 3.6 and 3.7 given above. The only difference is that
here we use inequality (3.2b) instead of (3.2a). Note that for the uniform
distribution sup, . ,_s Flx: |f(x) — Al < n} =0 for n < §. Hence (3.2a) re-
duces to (8.2b) with an additional multiplicative constant Mn~!. Choose
1 = 1, and for a sequence {5,} of positive real numbers we define

B, ={3C,D € Csuch that d;(C, D) > §, and
dp(C, D) < Mng*[(F, — F)(D) — (F, - F)(C)]},

where formally 7, = 1 for the case of support estimation [parts (i) and Gi)].
With this definition of B, the proof works as the proofs of Theorems 3.6 and
3.7. One has to show that

ky,
Yy P*( sup |y,(A)l > 2k“n1/28n170/8M) -0 asn o
k=0 Ae(C\O),

if we choose 8, as the rates asserted in Proposition 3.8. Here again one can
use results of Alexander (1984) in exactly the same way as in the proofs of
Theorems 3.6 and 3.7. O o

Proofs of Section 4.

PrROOF OF THEOREM 4.1. Remember that for every A > 0 we have
En,C(/\)'= Hn,A(Fn,C(A)) = Fn(rn,C(/\)) - ALeb(Fn,C(/\))'

From Theorem 3.3 we obtain that for every choice of the empirical general-
ized A-clusters I, c(A) there exists a sequence {I'c(A, n), n € N} c Mc())
such that d(I, ¢(), (A, n))* — 0 with probability 1.

Since every set I'c(A, n) is a generalized A-cluster, it follows, with

En,C(/\) =H, ,(Tc(A,n)) = F,(Te(A,n)) — ALeb(Tc(A,n)),
that
n'/?(E, ¢(1) — Ec(X)) = n'/*(F, — F)(Tc(A, n)).
It remains to show that [n/%(E, (1) — E, (D)) = 0p.(1) as n — . We have
0< En,C(A) - En,C(/\)
= H\(T, () — Hi(Tc(A, n)) + (F, — F)(T, (X)) — (F, — F)(Tc(A, n))
;S (Fn - F)(Fn,C(/\)) - (Fn - F)(FC(A’n))

Since dp(T, ¢(A), ['c(A, n))* — 0 with probability 1, the assertion follows from
the equicontinuity of the empirical process indexed by C. O
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_ ProoF oF THEOREM 4.3. As in the proof of Theorem 4.1 it follows, with
E, c(N) = H, ,(I'c()), that
|Zn,C(/\) - Bn,C(A)l = |n1/2(En,C(/\) _E‘-n,C(/\))I
< (F, = F)(T, c(V) = (F, = F)(Tc(Y).

The first assertion follows from the stochastic equicontinuity of v,.

The process B, () is a random element in Z(A) because the sets I'(A) are
closed. The convergence of the finite-dimensional distributions follows imme-
diately from the multidimensional central limit theorem. The tightness fol-
lows from the continuity of A — I':(A) together with the asymptotic stochastic
equicontinuity of v, indexed by C. O

Proofs of Section 5.

PROOF OF THEOREMS 5.2 AND 5.3. First we prove that under H, we have
(7.8) E,p(A) —E, c(N) < (F, = F)(T, p(N) + (F, = F)(Tp())-

Since under H, every set I'y(A) is a generalized A-cluster for C and D, we
have

E, p(A) — H\(Tp(2)) = H(T, p(A)) — Hy(Tp(N)) + (F, — F)(T, 0(A)
< (F, = F)(T, 0(M))
and
En,c()\) - H).(FD( N) = Hn,A(Fn,C(/\)) - HA(FD()‘))
> H, ,(I'p(1)) — H(Tp(A) = (F, — F)(Tp(1)),

and (7.3) follows. Because of (7.3) we have, for any real numbers 8, and §,,
that

{n1/2 supA,(C,D, ») > Bn} N {sude(F(/\),Fn’C(/\)) < Sn}
AEA AEA

c{ sup In()>28,),
Ae(C\O),
where (C\ ©), ={C\ D, C, D € C, F(C\ D) <3§,}. Choose 8, as the rates
given in Theorems 3.6 and 3.7, respectively. Then, as in the proofs of
Theorems 3.6 and 3.7 the assertions of Theorems 5.2 and 5.3 follow by
Theorem 2.8 and Corollary 2.4, respectively, of Alexander (1984). O

PROOF OF THEOREM 5.4. Without loss of generality we assume Leb(C,) = 1,
so that F(D) = Leb(D) for all D € D,. We have, for any class C, that

n'’2E, (X)) = gzg(vn(C) — n'/2(A = 1)Leb(C)).
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Define Z, () = sup c ¢(Bc(C) — n'/2(A — 1)Leb(C)). Then we have

sup|n'/?(E, p,(A) = Z, 0 M)l < sup |u,(D) — By (D),
AEA DeD,

and it follows that
n/2T,(C, Dy, A) = sup (Z, 5,(N) = Z, c(V))|
AEA

n'/? SUP(En,DO(A) - En,c()‘)) — sup (Zn,[Do( A) — Zn,c()‘))l
AEA AEA

< sup |y,(D) — By (D)l + suply,(C) — Be(C)l.

DeD, CeC

The assertion now follows, by a continuity argument, from the identity

f‘;ﬁ (Zn,IDO(A) - Zn,C(A)) = Asuf (ZDO()‘) - ZC(A))7

where A, =[nY2(), — 1), n'2(A; — D] and A =[A,, A,]. O
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