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MAXIMUM SMOOTHED LIKELIHOOD DENSITY
ESTIMATION FOR INVERSE PROBLEMS

By P. P. B. EGGERMONT AND V. N. LARICCIA

University of Delaware

We consider the problem of estimating a pdf f from samples
X,,X,,..., X, of a random variable with pdf Zf, where % is a compact
integral operator. We employ a maximum smoothed likelihood formalism
inspired by a nonlinearly smoothed version of the EMS algorithm of
Silverman, Jones, Wilson and Nychka. We show that this nonlinearly
smoothed algorithm is itself an EM algorithm, which helps explain the
strong convergence properties of the algorithm. For the case of (standard)
density estimation, that is, the case where % is the identity, the method
yields the standard kernel density estimators. The maximum smoothed
likelihood density estimation technique is a regularization technique. We
prove an inequality which implies the stability and convergence of the
regularization method for the large sample asymptotic problem. Under
minimal assumptions it also implies the a.s. convergence of the finite
sample density estimate via a uniform version of the strong law of large
numbers. Under extra regularity conditions we get a.s. convergence rates
via a uniform version of the law of the iterated logarithm (under stronger
conditions than usual).

1. Introduction. We consider the problem of estimating the probability
density function f* of the random variable Y with values in Q c R¢, from
the samples X;, i = 1,2,...,n, of the random variable X with values in
3, < R9, with probability density function g, which is related to f* via a
(linear) integral equation .Zf*(x) = g(x), x € 3, or

(1.1) [N () dy =g(x), xe3.

It is assumed that ) and 3 are bounded sets. For inverse problems related to
Fredholm integral equations of the first kind this is usually the case. We
further assume that % is continuous and positive on 3 X ) and satisfies the
normalization condition

(1.2) fzk(x,y)dx= 1 forall y € Q.

Examples of problems of this type include the deconvolution problem [see
Mendelsohn and Rice (1982) and Carroll and Hall (1988)] and stereology [see
Silverman, Jones, Wilson and Nychka (1990) and Wilson (1989)]. See also
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Vardi and Lee (1993). There is a close similarity with regression-type prob-
lems in positron emission tomography [see Vardi, Shepp and Kaufman
(1985)].

The problem of maximum likelihood estimation may be formulated as

1
(1.3)  minimize 1,(f) =g — ;'_leog([‘%f](Xi)) + fﬂf( y) dy,

subject to f > 0. The added term [, f(y) dy guarantees that the optimal f is
indeed a probability density function [cf. Silverman (1982)]. We consider the
following algorithm for the solution of this minimization problem, with
fi(y) =1/1Q, for y € Q,
12 k(X,y)
(1.4) fori(¥) =FH(9) = X o
pet i ni [‘%fp](Xi)

This is actually an EM algorithm, as shown by Vardi, Shepp and Kaufman
(1985). Consequently, the algorithm (1.4) has very strong monotonicity prop-
erties, to wit,

(15) ln(fp)_ln(fp+1)2D(fp+1|fp)20? le,

(16) D(folfp) = D(folfps1) = L(f,) = 1.(fo) 20, p=1,

provided the problem (1.3) has a solution f, € L'(Q)). Here the Kullback-
Leibler informational divergence between the nonnegative functions
f, ¢ € L) is defined as D(fle) = [q f(y)Nog(f(y)/e(¥) + o(y) — f(y) dy
[see Kemperman (1967)]. The trouble with all this is that (1.3) need not have
an absolutely continuous solution. In fact, (1.3) is an ill-posed problem.
Standard methods of dealing with this are maximum penalized likelihood
methods [see Silverman (1982), Green (1990) and Cox and O’Sullivan (1990)].
We consider a variation of the smoothed EM approach suggested by Silver-
man, Jones, Wilson and Nychka (1990). It is interesting to note that this has
a natural connection with the roughness penalty approach to the usual case
of density estimation advocated by Good and Gaskins (1971).

The smoothed EM approach of Silverman, Jones, Wilson and Nychka
(1990) deals with the ill-posedness of (1.3) by adding a smoothing step to the
algorithm (1.4). Let s,(x, y) be a smoothing kernel on Q X Q, with s,(z, y) =
(¥, 2), and define the smoothing operator S by

p=2,ye€.

(1.7) SH(y) = [su(y,2)f(2) dz, ¥y €,
for all £ € L}(Q). Typically, we will have
(1.8) sp(x,y) =h_dA(h_1(x—y)),

for (x, y) away from the boundary of Q X Q, and corrections near the
boundary. Here A is any pdf on R¢ with compact support and with A(x) =
A(—x) for all x € R?. Note that in the limit as 2 — 0 no smoothing is applied
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at all. Now Silverman, Jones, Wilson and Nychka (1990) replace the algo-
rithm (1.4) by the EMS algorithm

(1.9)  foi1(y) =S{f( )n ig [.%fp](Xi)

}(y), p=1l,yeq.
Qualitatively, this algorithm works quite well (after discretization) but is
hard to understand from a quantitative point of view. Although some results
are known [see Kay (1992) and Latham and Anderssen (1993)], we prefer to
apply the nonlinearly smoothed version of Eggermont (1992), that is, define
the nonlinear smoothing operator.#” by

(1.10) [ H1(y) = exp([S{log f}](¥)), vyeEQ,
and modify the algorithm (1.9) by adding the nonlinear smoothing step:

A1) £, () = S{[#F,] () !y k(X )

) y) = Ny e
prd PN S [, (X))

We refer to this algorithm as the NEMS algorithm. This algorithm has the

remarkable property that it minimizes the modified negative log-likelihood

problem

(»), p=1lyeq.

1 n
(112)  minimize L,(f) = — — Y log(La I X,) + [Q f(y)dy,
i=1

subject to f > 0, which actually has a continuous solution f”. Moreover, the
NEMS algorithm has properties similar to the original EM algorithm (1.4),
namely, for p > 1,

(113) Ly(f,) = La(fp+1) = D(fp1ilfy) 2 0,
(114)  D(f"If,) = D(S7'f IS fpu1) = Lo(f,) — Lo(f") 2 0.

These inequalities guarantee that the f, generated by algorithm (1.11)
converge to the solution f" in the C(Q)-norm. The proofs of these two
inequalities, as well as the proof of the existence of a unique, continuous
solution f" of (1.12), are identical to those given for the large sample
asymptotic problem in Eggermont (1992) and are therefore omitted. Inequali-
ties (1.13) and (1.14) suggest that (1.11) is itself an EM algorithm. This is
indeed the case (see Section 3).

Besides the convergence of the NEMS algorithm (1.11) to the solution f”
of the minimization problem (1.12), there is also the convergence of f* to f*
as n — o, The main thrust of this paper is in showing this convergence under
minimal regularity conditions, as well as in providing rates of convergence
under strong(er) regularity conditions. It seems obvious that convergence can
only occur if A — 0, that is, if the smoothing operator S (and .#) tends to the
identity operator as n — «. The easiest way to quantify all this is first to
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consider the convergence of f" to fg, the solution of the limiting form of
(1.12) with infinite sample size for a fixed smoothing operator S,

(1.15) minimize LJf) =3¢ — Lg(@log([%f)](x)) dx + fﬂf(y) dy,

subject to £ = 0, and then the convergence of fg to f* as o — 0. There is a
crucial inequality which makes all this possible, quite analogous to, for
example, the analysis of maximum entropy regularization [Eggermont (1993)].
The inequality describes the behavior of the functional L (f) in the mini-
mization problem (1.15) around its minimum,

Lf) - L(fs) = { [l )~ o))

2
+ csllf = fsllzray,

for all pdfs f, where cg is a nonnegative constant and [rgl(x) =
[2*(g /¥ fs)(x). We can prove that cg > 3|Q| inf s,(x, y), which is why we
require that () is bounded and that s, is bounded away from 0. However, we
do not think these assumptions are necessary. We use inequality (1.16) in two
ways. On the one hand, if in (1.16) we take f = f*, the true density, then
under mild conditions it is possible to show that fg — f* in L'(Q) as A — 0.
Under suitable regularity conditions, we also get convergence rates. On the
other hand, if in (1.16) we take f = f", then we get that

117 cllfr - fs”%l(a) <L(f") — L{fs) < L,(f", fs) — LLf", fs),

where

(1.16)

(L18)  L(F, ) = Lu(F) ~ L) = ~ 3 log o)
. n b ¢ = n - n ¢ = Og ot VN b

et n/o (X))
and likewise for L(f, ¢). Thus all that is required to establish a.s. rates for
the convergence f" — f* is showing that, under suitable regularity condi-
tions,

|Ln(f’ QD) _Loo(f’ QD)' _ loglogn 1/2
(1.19) f’S;IGPg F —olea = ﬂ((—-n ) ) a.s.,
where
(120) @ { D) Fisapdt, [#1(y) dy =),

in which 7 is a fixed positive number. Combining the above results we then
get a.s. convergence rates of f* to f* as A — 0 in a way commensurate with
n o . An alternative approach to convergence rates would be that of Cox
and O’Sullivan (1990).

We finish the Introduction by noting that problem (1.12) is interesting even
for the case that .7 is the identity operator, that is, for the usual case of
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density estimation. In this case one verifies that the solution to (1.12) is given
by

]_ n
(1.21) f"(y) = ;._leh(Xi,y), y € Q,

which is a well-known density estimator. In particular, we get kernel-type
density estimators this way, as well as their interpretation as maximum
smoothed likelihood density estimators [see Eggermont and LaRiccia (1995)].

2. Summary of assumptions and results. In this section we state the
precise conditions and results of this paper. We will comment on the sharp-
ness of these conditions as the occasion arises.

About the kernel £ we assume that it is positive, integrable and satisfies

(2.1) JR(x,y)dxc =1 forall y €Q,
p
(2.2) K =g Inf{k(x,y): (x,y) €3 X Q} >0,
(2.3) w(F,h) =4 esssup |k(x+h,y) —k(x,y)| >0 as|h|—0.
x€3,yeQ

The third condition implies that .# is a compact mapping from L) into
C(3) and also as a mapping from LYQ) into L'(3). We refer to these
conditions on k as the minimal conditions. In order to get good rates (2.3)
must be strengthened to

(2.4) k € C™d(3 X ),

that is, if d > 2, then % is d times continuously differentiable. In particular,
then

(2.5) 1D, kllesx) =aer  SUP 1D, k(x,y)l <,
(x,y)EIXQ
where 9, = 9, d; - Jy, in which J; denotes differentiation with respect to

x;. If there is no confusion possible, we will just write & for 2,.

For our smoothing kernels we choose convolution kernels with boundary
corrections. To simplify the presentation, assume that () is the unit cube in
R<. We define our smoothers as

2 d
(26) sh(x,y)=ﬁ+(1_h2)i=].—-[1th(xi’yi)? (x>y)€QXQ',

where x = (x;, X9,...,%4), ¥ = (¥1, ¥2,---, ¥g) and, for v and v real num-
bers,
0’ |u - Ul > h’
_1 _
2T t,(u,v) = (2h), h<u+v<2-handlu—-v[<h,

AL, O<u+v<h
or2—-—h<u+v<2and|u —vl<h.
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So, t,(u,v) = 1/2h when |u — v| < h, except in the (0, 0) and (1, 1) corners of
[0,1] X [0, 1], where it equals 1/A on two little triangles. If ¢, is deemed to be
not smooth enough, then the corresponding smoothing operator T} defined by
(1.7) can be replaced by some fixed power (T},)? of T),. The essential feature of
these smoothers is that, for some probability density function A with com-
pact support in R¢ and symmetric about x = 0, we have

2

(28) sh(x,y) =(1—h2)h_dA(h_1(x—y)) + ﬁ’

for (x, y) away from the boundary of Q X ), and with corrections near the
boundary. We believe that any reasonable smoother of this kind will work
(see Section 7). It is helpful to introduce the functional

(2.9) As(f) =27 [ (F(3) = [#F1(5)} dy.
We will show that, for all f with log f € C3(Q),
1. |VF?

(210)  AL(F) =t FmAs() = g [~ + [ (f—u)log(g).

Here u(y) = 1/]Q| for all y € Q, and Vf denotes the gradient of f. We note
that the first term on the right-hand side is the roughness penalty functional
of Good and Gaskins (1971).

Before stating our results we introduce the abbreviations

loglog n

1/2
(2.11) LL(n)=( ) . o(n) = o(Z (LL(n))"?).

n
THEOREM 2.1. Under the minimal conditions (2.1)—(2.3) on k we have that
IL,(f, ¢) — L, ¢)l
(212) &, =g SUP (f, ) (f, )
f, 0¥ |Wf_/VQD||L1(Q)
where % is defined in (1.20), and
(2‘13) ”fn - fs”L‘(Q) < h_2a)(n) -0 a.s,
provided y/w(n) /h — 0. Here S may depend on n.

< const-w(n) a.s.,

THEOREM 2.2. If k satisfies conditions (2.1)—(2.3) and (2.5), then
(2.14) &, < const - [|F, kllczxa)- LL(n) a.s.
If, in addition, f* satisfies the smoothness assumption A_(f*) < =, then
(2.15) 1" = fsllzay < const- (h~2-LL(n) + (LL(n))"?) a.s.,

where the constants do not depend on n nor h.

In Theorem 2.2 we made the minimal smoothness assumption on f*
(2.16) A(f*) <oo.
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A tacit assumption here is that the solution to the equation Zf = g is unique.

THEOREM 2.3. If k satisfies assumptions (2.1)-(2.3) and [* satisfies (2.16),
then

lfs — F*llzray = 0 for h — 0.

In order to get convergence rates, we strengthen the smoothness condition
(2.16) and assume that the following hold:

(2.17) f*log f* € C3(Q), d,f*=0 ondQ;
(2.18) there exists a A, € L”(3) such that A ( f*) =Z*A,.

Here d,f is the normal derivative of f on the boundary 9} of (). These
conditions can be relaxed somewhat, at the expense of slower convergence in
the theorems below. We will not explore this further. The assumption on the
natural boundary conditions (2.17) reminds one of similar conditions in spline
smoothing and regression.

THEOREM 2.4. Under the assumptions of Theorem 2.3, if k satisfies (2.4)
and f* satisfies (2.17) and (2.18), then

lfs = F*llzia) < const - A.

The above results allow us to prove convergence of f" to f*.

THEOREM 2.5. (a) Under the minimal assumptions on k and f*, we have
”fn - f*“Ll(Q) -0 a.s.,

provided w(n)/h — 0 and h — 0.
(b) If in addition k satisfies condition (2.4), then

loglog n )1/6
n ’

1F* = )l sy < const - (
provided h =~ (loglog n/n)"/¢.

ProoF. The basic ingredient is the triangle inequality
™ = ey < 1F™ = Fsllay + 1 fs = F* oy

Part (a) now follows from Theorem 2.1, (2.12) and Theorem 2.3. For part (b)
we have, from Theorem 2.2, (2.15), Theorem 2.4 and the triangle inequality,
that

IF™ = F*llzay < const - (hg?-LL(n) + (LL(n))"* + R).

If we now take 2 = (LL(n))'/? the required estimate emerges. O
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REMARK 2.6. If we had been able to strengthen (2.12) to

Ln(f’ ‘P) _Lw(f’ QD)

(2.19) loglog n \/?
< const - |Z{Af — Ao}z - (ﬂ—) a.s.,

for all f, ¢ € #, then we would have been able to replace the estimate in
Theorem 2.5(b) by

loglog n )1/4
—_— a.s.,

(2.20) 1F" = ¥l < const - ( .

provided % = (loglog n/n)Y*. We believe that (2.20) would be the best result
possible and that the correct order is at least #(n~1/%*%), for & > 0, but
otherwise arbitrary. However, proving this is another matter.

In Sections 4-6 the results of this section are proved. The properties of the
smoothing operators which are necessary for the analysis are collected in
Section 7.

3. The EM algorithm. Here we show that the NEMS algorithm (1.11) is
an EM algorithm for a modified maximum likelihood problem with missing
data, which reduces to problem (1.12) when the samples satisfy certain
conditions. According to Vardi, Shepp and Kaufman (1985), inequalities (1.13)
and (1.14) then follow from Csiszar and Tusnady (1984).

If we are to apply, in the style of Vardi, Shepp and Kaufman (1985), an EM
algorithm to the problem (1.12), then it seems imperative that 2(x, y).7f*1(y)
be a pdf for some random variable (X, Y ). However, it is not. (Note that the
arithmetic-geometric mean inequality says that [#f1(y) <[SfI(y) for all
pdfs f, so that [,[#f1(y)dy < 1, with equality only if f is the uniform
distribution on ().) However, this problem can be circumvented by replacing
the random variable Y with a random variable B taking values in Q U e,
where e is an exceptional event with probability 1 — [.#f*, and likewise
replacing X by a new random variable A. More formally, we introduce a
random variable (A, B) taking values in (2 U £) X (Q U e), where ¢ ¢ 3, and
e & () are exceptional events, with pdf given by

k(a,b)[7f*](b), (a,b) €3 X Q,
31 h(a,b) = {d(f¥), (a,b) = (s,¢),
0, otherwise.

Here d(f) =1 — [,[#fy) dy. Direct calculation shows that the marginal
distribution of A satisfies

[2#7*1(a), a€X,

hA(a;f*) = d(f*), a=e.
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Now assume that we have a random sample (A;, B,), i = 1,2,..., n, but that
the B; are missing. The maximum likelihood estimate of f* is then the
solution to

S| =

n
(3.2) minimize —— ) log(h,(A;;f)) + fnf(y) dy,
i=1
subject to f> 0. Note that when A, € % for all { then this problem is
equivalent to (1.12). In order to derive the EM algorithm for the new problem,
we need to consider the negative log-likelihood for the complete data set. It is
given by

1 1 I
A(f)=—— ¥ logk(A;,B) - — ¥ log[#f1(B;) — —logld(f)],
noses noses n
where I denotes the number of samples (A;, B;) which equal (¢, e). The EM
algorithm now requires us to compute E[A(f)|A,,..., A,; f?], where f? is
our current guess for f. Since log 2(A;, B;) does not depend on f we may drop
it from the calculations, and compute

1
Q/If?) = B[~ % logl#71(B)) ~ ~logd()

AEe3

Ay,... A, fP

1
--= Y. E[log[#F](B)IA,,..., A,; f?]
A;es

_wE[nAl,...,An;f”]

n—1 !
- _—n—fﬂlog[/l/f](b)t//”(b) db — —logld(f)],

where

prpy 1 k(A;, b)[7f71(b)
)= ;Aizez [27fP1(A)

This completes the E step of the EM algorithm. For the M step we need to
maximize Q(f|f?) over all pdf's f. Note that in general the answer will
depend on I. However, the interest lies in the case I = 0 only, so that we
need to minimize

(83)  — [ur(b)loglar1(b) db = ~ [ [Syr](b)log f(b) db.

Here we used that log.#(f) = S{log f}. Following the argument from Egger-
mont and LaRiccia (1995), we obtain that the solution is given by f = S¢/?, so
that fP*1 = Sy P. This is precisely the iterative step of the NEMS algorithm
(1.11). Thus the NEMS algorithm is indeed an EM algorithm.
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4. The inequality. In this section we prove inequality (1.16). From
Kemperman (1967) we know that

9 2 4 u
(u—v) < §u+§v (ulog;—-l—u—v),

for all u,v € R. Thus with u =2Z#f and v = 2Z#fs, and multiplying both
sides by rg = g/Z¥#fs we get from the Cauchy—Schwarz inequality that

(fz ["s](x)l[z/(/’/f_/fs)](x)ldx)
<[ 3LorI® + gLwh](x) ds
“\/s3 x 3 si(x

8774
{ [aoon T + [l (07120 = L2r7el ) |
Since [#f1(x) < [Sf1(x) (see Lemma 7.1), it follows that
2 4
[31#71(x) + 5L 0fs)(x) dx < 2.

As for the remaining factor, first note that

74
I g(x)log% dx = L(f) = L fs),

as well as the fact that

LLrs )l @) (x) = (051 () d = /ﬂ( L 1)Fs<y> ay,

with Fg =#(fs)#*rg. Since fg is a fixed point of the NEMS iteration (1.11),
it follows that SFg = f5. Consequently,

/[ ( ”(y)Fs(y) dy = [——[SFS](x) dx—[f(x) dx =1,
and so

[Lrs)() (2 )(2) - [ (x)) dx = [ {,y{i) _S(_f_)}F |

s ° s ol \fs fs]®
Since #(¢) < {SyY/¥}? (see Lemma 7.1), we obtain, with ¢ = ‘/ng ,

[S(,»i)]u) - [ﬂ(fi)](x) = [8(¢M)](2) = ([Sel(x))".
s s
Summarizing, we have shown that
H[VIT@ L) - () s
(4.1) <L(f) — LA fs)
= [ {[S(e?)] (%) = ([Se1(%))*}Fs() dx.
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We now prove that, for all ¢,

“2) [ {S(e*) — (Se)}Fs = 1*[ fs()(e(3) = 1) dy,
for a suitable A, and with A% = |Qlinf s,(x, y). We then show how, in combi-

nation with (4.1), this implies our inequality (1.16).
From the Lagrange identity

[S(e)](x) = ([Sel())" = [ sa(x, 9)su(%, 2)(9(¥) = (2))" dydz
we obtain that the left-hand side of (4.2) equals
(43) [ (o() = o(2){ [ F(2)Su(x, 9)au(,2) dx) dyd.

Since s,(x, z) > h?/|Q|, the expression in curly brackets is bounded below by

h2 h2
@/QFS(x)sh(x,y) dx = l_Q_IfS(y).

It follows that the expression in (4.3) dominates the expression

2
1o

which in turn dominates

SsN(e(2) = 0(2))* dydz,

h? )
o1 ) min [ fs()(e(y) = o(2))" dydz

h? )
> 1qp Jmin [ £s()(e() — w)* dydz

R [ fs(3)(e(¥) = 1)* dy
Q

with A = [, ¢(y)fs(y) dy. This establishes inequality (4.2).
We now use (4.2) with ¢ = ,/f/fs and A = [4y/ffs to obtain that

JLA[8(e(x) = ([S€1(2))°)Fs(x) dx = VF = W/Fs

Since f and fg are both pdfs, and interpreting Afg as the orthogonal
projection of f onto the line through 0 and fy, it is easy to see that

HVF = Vs i <VF = Vs i <IVF = VFs

and from Cauchy—-Schwarz that

2
%”f_ fs”%}(g) S"\/—f— - \/?;"LZ(Q)'
The inequality now follows, with the constant 3/Q|inf s,(x, y). This is (1.16).

2
Q)"

2
L*(Q)’
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5. Almost sure convergence of L (f") — L (fg). In this section Theo-
rems 2.1 and 2.2 are considered. For brevity, only Theorem 2.2 is proven.

We start out with a lemma which implies that the Z#f" and Z#fs are
bounded away from 0. In particular, then the summands or integrands in
L.(f"), LLf™) and so on are continuous, uniformly in » and A.

LEMMA 5.1. There exists a positive constant n such that, for all n and h,
fﬂ/lff”(y) dy>mn a.s. and fd/lffs(y) dy > 7.

Proor. Note that L,(f") < L,(f*), which is bounded a.s. by a constant,
say log a. It follows that IT! ;[Z7f")X,) > a™", whence it follows that
max,[Z/f"(X,) = a”'. Since % L'(Q) —» C(3) is bounded, its norm, de-
noted by |l.Zll1 «, is finite. Then the inequalities [Z7f" X)) < 2/ f"llcs) <
211, L7 f "l 1) imply the first statement. The second statement follows
similarly from the inequality L (fg) < L(f*). O

COROLLARY 5.2. There exists a positive constant m such that, for all n
and h,
[27f"1(x) =k m a.s. and [FNHfs](x) =k .

PrOOF. Both statements follow from [Z/fN(x) = [qk(x, y/f(y)dy >
k[q #f(y) dy, by assumption (2.2) on k. O

PROOF OF THEOREM 2.2. We assume the minimal conditions (2.1)-(2.3) on
k, as well as the extra condition (2.5). The first step is to write L,(f, ¢) —
L(f, ¢) as

(5.1) L(f.¢) —L{f o) = fz ¥(x)[dG,(x) — dG(x)],

where G,(x) is the empirical distribution function, G(x) is the df of the
random variable X and

(5.2) Y(x) = log {—%/1/%:;}2—3

Upon integration by parts (5.1) leads to
L,(f,) = L, @) = (=1)* [29(x)(Gu(x) = G(x)) dx,
where 9 is defined in (2.5). The inequality

(5-3) |Ln( fs 4’) - Lw( fs <P)| =< !!9¢I!Ll<z)!IGn(x) - G(x)”L‘”(E)

follows. Together with assumption (2.5) and the fact that Z#¢p and Z/f are
bounded and bounded away from zero, it is now easy to show that

19¢ sy < const(| 2 Ap — A sy + IF A — A} Lis))

(5.4)
< const - W — ALy ).



INVERSE PROBLEMS 211

The estimate (2.14) now follows from the well-known estimate

loglog n \ /2
G, — Glirzs) = @’((———’—1——) a.s.;

see Shorack and Wellner (1986).
To prove (2.15) we use (2.14). Since f* minimizes L,(f), it follows that
L.(fs, ™ = 0. Hence

Lf") = Lu(fs) = —LAfs, ") < L.(fs, f*) — L fs, f")-
and from (2.14) we obtain the inequality
(5.5) Lf") — L fs) < const - /" —A#fsllnay- LL(n) a.s.

We also need the following property of the smoothing operators (see Lemma
7.3):

W —Afsllay < WHAF™ = A sy
+ 201" = fsllay + 2MA2,

where M is finite when the minimal smoothness condition (2.16) on f* holds.
Since g =%Zf* is bounded below and Z#fg is bounded, uniformly in % (see
Corollary 5.2), it follows that rg = g/Z/fs is bounded below and there is a
constant such that

(5.7) " —AfsllLia)y < const- (E + e + h?),

where e = ||f* — fsllLyq), and

(58) E = [Vrs|a(fm) =)

Now estimating the right-hand side of (1.16) using (5.5)-(5.7), we derive the
inequality

(5.6)

3E% + $h%? < const- (E + e + h?) - LL(n).

Moving the E- and e-terms to the left-hand side and completing the squares
gives, for suitable constants c,

1(E - ¢ LL(n))" + %(he — c- R 'LL(n))*
< e(h™?(LL(n))* + R2LL(n)).

Now ignore the first term on the left-hand side. The result is inequality
(2.15). O

With the help of Theorem 2.2 one can give a short proof of Theorem 2.1.
The basic idea is to approximate .Z by an operator which satisfies the
smoothness condition (2.5) and then apply Theorem 2.2, and show that the
error due to the approximation is small. We omit the details.

6. Convergence of the regularization method. In this section Theo-
rems 2.3 and 2.4 are proved.
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PrOOF OF THEOREM 2.3. We are interested in the convergence of fg to the
solution f* of Zf =g as h — 0. For the moment let f* be an arbitrary pdf
with Zf* = g and f*,log f* € C3(Q). Our starting point is inequality (1.16).
Let E and e denote the unknown quantities

1 g
6.1 E=— — *) —
(6.2) e =|fs —la-
Then inequality (1.16) may be written as
(6.3) E? + §h%e* < L(f*) — L.(fs)-

We need to rewrite this as follows. The right-hand side may be written as

m‘ * m‘ *
Jgoe S = [[(& ~f")og o + [t —0f
(6.4) e
- [ ryion S + ot — .

The expression on the second line is negative, since the integrand is nonposi-
tive. Since Z maps pdfs into pdfs, the second term may be written as
rHA () — Ag(fs)), with Ag given by (2.9). The elementary inequality [log ¢|
< 2|t — 1|/ ¥t now gives

(6.5) log —— d !‘%Vf hcdd ML
’ TNf* = \/ *rfs’
so that
FNfs F(f* =A%)
6.6 g —fH - <4E _
(6.6) f ( Jlog =22 AT |y

with E as in (6.1). Since k(x, y) is bounded away from 0, the denominator
VEf* yZVf* is bounded away from 0, so from Lemma 7.3 it follows that the
expression in (6.6) is bounded by const - 42 - E. Inequality (6.3) may then be
written as
(6.7) E? + gh%” < const - h2E + h*{Ag(F*) — As(fs))-
Upon ignoring the e? term on the left-hand side and the Ag(fs) term on the
right-hand side, we obtain

E? < const - h2E + const - h?,
which implies that E < const- k. Then ignoring the left-hand side of (6.7)
yields
(6.8) As(fs) < Ag(f*) +const-h <M <o,

where the last bound follows from assumptions (2.10) and (2.19). In Lemma
7.5 we show that (6.8) implies the asymptotic compactness of #fg for A — 0,
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that is, there exists a sequence {h,}, tending to 0, a corresponding sequence
of smoothers {S,}, and an f, € L'(Q) such that for ¢, =.#;(fs ) we have
I, — follzia) = 0, and

A(fo) < liﬂiélf/\s(fs) = 1ir’fls(1)1pl\s(fs)
6.9 N
(69 < Tim Ag(/) = AL(/*).

Since #(fs — ¢,) = 0in C(2), [see (7.11)], and E — 0 we have .Zf, = g. By
uniqueness f, = f*. So in (6.9) we have equality everywhere. From (6.7) and
the aforementioned estimate £ < ¢ - h, then

Ihf* _fs”%‘(n) < const:h + As(f*) — Ag(fs),
and so, by (6.9),

(610)  Lmlf* — fillia < lim Ag(F7) — As(fs) = 0.
We have thus proven the convergence of the regularization method. O

PRrROOF OF THEOREM 2.4. It is obvious that in order to get rates we need to
be more specific about the term A (f*) — Ag(fg). Since f* satisfies condi-
tions (2.17) and (2.18), the Gateaux derivatives Ag(f*) and A (f*) are well
behaved [see (7.4)] and so, by convexity of Ag,

As(F*) = As(fs) < [ [Xs(FIN(F(3) = fs() dy

< [T ) () d
+ const - -1 f* — fsllLiay-

Now applying assumption (2.18) results in the estimate

LI () ~ Fo( ) dy
= [ L7 0)(N(F(9) ~ fs(2)) dy

= [Ro(®) (T (%) — ()
<Al Z(F* = fs)llisy-
Combining the above with inequality (7.13) we obtain that
Ag(f*) — Ag(fs) < const: (E + h® + he).
Substituting this into inequality (6.7) results in
E? + 3h%” < const-h? - (E + h% + he).

It follows that e < const - A, by the familiar reasoning. O
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Assumptions (2.17) and (2.18) appear to be strange, but under mild extra
conditions if the rates of Theorem 2.4 hold, then (2.17) and (2.18) must also
hold. Compare the similar situation in maximum entropy regularization
[Eggermont (1993)].

7. On the smoothing operator. In this section we review the proper-
ties of the smoothing operators S and .7, The first lemma is well known and
deals with the arithmetic-geometric mean inequality. The remaining results
are proved for the smoothing kernels (2.6) and (2.7), but hold in much greater
generality, as the proofs make clear.

LEMMA 7.1. For all nonnegative f € L'(Q),
[7F1(x) < ([S{F72)] (%))’ <[Sf1(x), ae.xeQ,
[SF1(x) — 2([SF2](x))" + [#F](x) 20, ae. xeQ.

Proor. Fix a nonnegative f<€ L}(Q) and x € Q. The function A(r) =
Sf"XxN'", for r > 0, and MO0) = [#f)(x) is increasing and log-convex [cf,
Hardy, Littlewood and Pdlya (1952), Section 6.12]. In particular, A(0) <
M3) < M1). This is the content of the first statement. The fact that A(r) is
log-convex and increasing implies that A(r) is convex, and so A(1) — 2A(3) +
MO) > 0. This is the second statement. O

We now restrict attention to the case where Q) is the unit cube in R¢, and
the smoothing kernels (2.6) and (2.7).

LEMMA 7.2. (Approximation properties).

(7.1) If = Sfl=a) =@(h), feC?*(Q),

(7.2) If = Sflimay =@(R?), feC¥Q),

(78)  AAf) = EmAs(f) = 5[ VAP + [ (f = wylog(f/u),
(7.4) Ko(f) = Ks(f) = &(h).

In (7.3), u is the uniform distribution on Q. In (1.3) and (7.4), we need f,
logf € C*(Q), and that §,f = 0 on Q.

Proor. It suffices to consider the one-dimensional case ) = [0,1]. Let T
be the smoothing operator with smoothing kernel ¢,(x, y). It is easily verified
that, for f € C3(Q),

Tf(x) — f(x) :
1R (x) + (h%), h<x<1-h,
75 1R(1 — x/R)2f'(x) + @(R?), 0<x<h,

—3h(1 - (1 —2)/R)’f(x) +@(h?), 1-h<x<l.
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This shows that Tf — f = @(h), uniformly on Q. This is (7.1). Integrating (7.5)
yields (7.2), since Tf — f = @(h?), except on intervals of length A, where it is
@(h). The modifications for the operator S are trivial.

To prove (7.3) and (7.4), we write

f=Arf=f(1 - exp[T{log f} — log f])

= —f(T{log f} —log f) + &(f(T{log f} — log f)*),
uniformly on [0, 1], where we used (7.1). Note that upon integration
(7.7) fnf(T{log f} —log f)? < const - h®.
Applying (7.5) to Tf — f as well as to T{log f} — log f, we see that
(7.8) Tf — f — f(T{log f) — log f) = sh*f" — h*f(log f)" + &(h?),

for h<x<1—h,and =@(h?) for 0 <x <h and 1 —h <x < 1. We now
have

(7.6)

Ar(f) = h™2 ['Tf = = f(T{log f} ~log f) + (),
where we used (7.6) and (7.7). It follows now from (7.8) that

(19) Ar(F) =3[~ fQog £y + e (n) =3 ['|VFY[ + ().

This is the first part of (7.3). The modification necessary for the operator S
are fairly straightforward and are omitted.

To show (7.4), we first note that the boundary conditions d,f = 0 on dQ}
reduce to f'(x) = 0 for x = 0 and x = 1. Then (7.5) can be extended to
(7.10)  Tf(x) — f(x) = sh®f"(x) + @(h®) uniformly on [0, 1].

It is fairly obvious that A,(f) has a linear Gateaux derivative, which is given
by
7, - T T{Tf -,
po(py 1 Dl [T T f)
f f f

Note that (7.6) together with (7.10) implies that

hR=2(Tf =Ayf) = 5(f" —f(og [)") +&(h),
provided log f € C3(Q). It follows that A 2T(Tf —#;f) satisfies the same
estimate. Likewise, since f — T%f = (7 + T) (f — Tf), we get

KA A f—T%*) = —3f" +o(h).

Putting the above together yields

1f 1(f
Ar(f) = A 5(7 - (logf)”) +o(h)
P 1/
=€|7 —:—3-7— +ﬁ(h)
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The right-hand side, minus the #(A) term, is the Gateaux derivative of
A(f) (for f' = 0 at 0 and 1). This is (7.4). The modifications necessary for the
operator S are omitted. O

LEMMA 7.3. Suppose that f* satisfies the minimal smoothness assumption
(2.16) and that % satisfies (2.4). Let fg denote the solution of (1.15). Then
(7.11) 1 f* = A=y < c- k2, NH(fs —Hfs)ll=s) < ¢ - B2
(7.12)  f = Afsllay < WU —AfH sy + 20 F = fslliay + 2 Mh?,
(7.13) 12 fs — ) < WU fs — A ) + e(B? + Al fs = ),

where M = sup,, Ap(fg) < ». Inequality (7.12) holds for all nonnegative f €
LYQ).

PrOOF OF (7.11). We recall that .#: L1(Q)) —» C(3) is bounded, so its norm
l#Zl1, is finite. We write Z(f* —#f*) =2 (f* — Sf*) +Z(Sf* —/f*) and
note that

Z(# — ) F*llcesy < 1711, «I(F = S) F*lliay < ¢ - A2,
since f* € C3(Q) [see assumption (2.20), and (7.2)]. We also note that Sf* —
AF* >0, so
IZ(SF* —A#f*)es) < K21, ISF* —AF* Ly ay
<c-h%-Ag(f*) <c-h
The estimate (7.11) for f* follows. The proof for fg is similar.

ProoF oOF (7.12). Let Q*={y € Q: #f(y) =2/fs(y)} and Q™= O\ Q™.
Then

0< jﬂ+{/1ff—/1/fs} = fm{/sz— Sf) + fmS(f— fs) + jm{st — ).

The first integral is negative since the integrand is negative by Lemma 7.1.
For the same reason the integrand of the last integral is positive. It follows
that

0< fQ+{/Vf — s}
(7.14) < IS(f = fs)llzray + A*As(fs)

< |If — fsllza) + MR2.
Likewise,

0< j;)_{/’/fs — A1}

(7.15) [fs =A1} + [ 1A =s)

= [Flts — 1) + [ A ~H5)
3 Q

< l\z{fs —AfH ) + I = Fslla) + M2,
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where in the last step we used (7.14). The inequality now follows from (7.14)
and (7.15).
The proof of (7.13) follows similarly. O

In the following we let H(Q), resp. H2(Q)), denote the Sobolev space of all
square integrable functions on ) with square integrable first-order, resp.
second-order, derivatives. We note that closed, bounded subsets of H(Q),
resp. H2(Q), are compact in L?(Q)) [see Adams (1975)].

LEMMA 7.4. Let & be the operator with domain

(7.16) 2(%) ={feH2(Q):(9nf=Oon 09}
and defined by
(7.17) Zf = —Af, feo2(2),

where A = 92 + -+ + 3?2 is the Laplacian. Then the operators h~2(.# — T?) —
TT are semi-positive-definite.

ProoF. We prove this for the one-dimensional case Q = [0, 1]. The exten-
sion to cubes in R? is straightforward.

We note that the eigenfunctions of T' are known. If we let u,(x) = cos(7nx),
then Tu, = A, u,, where A, = sin(wnh)/(nh). This is most elegantly seen

as follows. Let f € L?(0,1). Extend f to an even function f, on [—1,1] and
then to a periodic function on the line with period 2. Then we may write

1 xvn

(718)  Tf(2) = Tfu(*) =5y | f(¥)dy, x<[0,1],
x—h

which is the (2-periodic) convolution of f, with a box function. It follows that
the eigenfunctions of 7, are precisely cos(wnx) and sin(wnx). The even
eigenfunctions are inherited by 7', whence the result follows. The eigenvalues
are then easily calculated from (7.18). Note that cos(wnx), n =0,1,..., is a
basis for L2(0, 1), so we do indeed have all the eigenfunctions.

Now consider the linear operator .# defined by .Zu, = u,u,, for n > 0,
with u, still to be determined. The eigenfunctions of the operator & =
h=2(# — T?) — T.#T are again the u,, and the eigenvalues are v, = A~2(1 —
A2) — A2 i, , which we may write as

, (mnh)’ — (sin(wnh))®

= N|(7n
s A () ein® (m k)

n |

It is easily verified that

x% — (sin x)*

v

—————— > forallx €R,
(x sin x)* 3

and so », > A2(3(7n)? — w,). Thus, taking w, = 3(7n)® makes v, > 0 imd

makes & semi-positive-definite. With this choice .# is defined by .Zf = — 37,
and (@, #4)) = %[, Vo - Vib. Identifying .# with .# proves the lemma. O
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LEMMA 7.5. Let {f,: h > 0} be a bounded subset of L}(Q)) satisfying for all
h>0

As(fy) <M and f, = h>.
Then {#(f,): h > 0} is asymptotically compact, that is, every sequence {h,},

converging to 0, has a subsequence, also denoted by {h,},, for which {#, (f;_ )}
converges strongly in L'(Q)), to some element ¢,. Moreover,

AA() < hﬁlglf/\s( 1)-

Here .4, is the nonlinear smoothing operator corresponding to S A,

Proor. We first prove it for the operators T. We denote the nonlinear
smoothing operator associated with T' by .#;. Lemma 7.1 says that Ty, —
Np(@y) = 2ATe, — {Tpl/?)}?). Then

Ar(en) = 2072 [ To, — (To}/?)
(7.19) =9} 2 f ¢}1/2[(f_ Tz)‘P}l;/z]
Q

2 2 [Tol*][£Tel*] = 3IVT0) lixca),

where V denotes the gradient. Since A;(¢,) < M, it follows that
3T 1 Zxa) < M,

and hence the Tpl/? lie in a closed and bounded, hence weakly compact,
subset of H!(Q). This implies that there is a weakly convergent [in H(Q)]
sequence of Tp}/? with weak limit <p(}/ 2 e HY(Q). 1t follows that this subse-
quence of T}/ : converges strongly in L%(Q), and hence (T¢}/2)? converges
strongly in LI(Q) with limit ¢,. Since |(T;/?)? —Ap(@)llicay < KA (@)
(cf. Lemma 7.1), the strong convergence of #;(¢,) follows as well. Now the
weak convergence in H'(Q) of Tpj/? and the weak lower semicontinuity of
the norm yield that

2 . . 2 . .
3Ves 2 llz2a) < %11}131 infll VT, lz20) < lim infAr(gy).

The left-hand side is precisely A (¢,). This concludes the case for the
operator T'.

Now consider the smoothmg operators S. We let & denote the operator
defined as

so that in operator notation S = (1 — 3T + h2%. We let ./ denote the
nonlinear smoothing operator associated with S. As before,

As(@n) = Ap(ey) +h72 fQ/VT‘Ph —Npy,.
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We abbreviate #p, as ®g and write
h_2 fQ‘/I/TQDh _./,/QDh = h—2 fﬂq)s(exp[(T - S)log qoh] - 1)
> k72 [ &g{(T - S)log ¢}
Q
= fQ%(T{log en} — &{log @1})

= (1=#%)7 [ @s{(1 - #*)Tlog )
+h2&{log ¢} — & log q)h}

=(1-R%)" fQ(I)S[(f— £)S(log ¢4}]
=(1-h%)"" fﬂ(@s — &) S{log ¢;)

= (1 - hz)-1 fn(q)s - l)S{log ‘Ph}
+ h2(1 — k%) 'Ag( @) &S({log @))
= (1=1) " [ () — Dlog S,

+ h2(1 — h?) " Ag(ey)log A2,

where in the last step we used that ¢, > A% To summarize, we have shown
that

1
As(en) = Ar(en) + 1_—hzf0(/’/(¢h) — 1)log 7,

(7.20) \

+ 1_—h2AS((ph)10g h2.

Since (¢ — Dlog ¢ > 0 and A% log A2 — 0, the boundedness of Ag(¢,) implies
that Ap(¢,) is bounded as A — 0, and so by the first part of the proof, a
subsequence of .#;(¢;) converges in L'({)), say, to some f,. Since

Wz (en) —#(en)llia) < hz(AT(q’h) + As(en) + (T = 8) @pllzyay

< const - A2,

A, also converges weakly in L'(Q) to f,. Then it follows from (7.19) that
lim, Ap(fy) < liminf, A;(¢,), and by Fatou’s lemma that

[ (fo = 1)log f, < liminf(1 - r2) [ (S — 1)log S,
Q h—0 Q
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Consequently,
AAfo) = liminfAg(f,) < liminf Ag(p,).

This concludes the treatment of the operators S. O
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