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METHODS FOR THE ANALYSIS OF SAMPLED COHORT
DATA IN THE COX PROPORTIONAL HAZARDS MODEL
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University of Oslo, University of Southern California and University
of Southern California

Methods are provided for regression parameter and cumulative base-
line hazard estimation in the Cox proportional hazards model when the
cohort is sampled according to a predictable sampling probability law. The
key to the methodology is to define counting processes which count joint
failure and sampled risk sets occurrences and to derive the appropriate
intensities for these counting processes, leading to estimation methods
parallel to those for full cohort data. These techniques are illustrated for a
number of sampling designs, including three novel designs: counter-
matching with additional randomly sampled controls; quota sampling of
controls; and nested case-control sampling with number of controls depen-
dent on the failure’s exposure status. General asymptotic theory is devel-
oped for the maximum partial likelihood estimator and cumulative base-
line hazard estimator and is used to derive the asymptotic distributions
for estimators from a large class of designs.

1. Introduction. Epidemiologic cohort studies are considered the most
reliable method for assessing the variation in rates of morbidity and mortal-
ity due to factors present in the population under study. Cohort members are
observed over some time period and either “fail” (develop or die from the
disease of interest) or are “censored” (are alive at the end of the study period,
die of some other cause or are lost to follow-up). Variation in rates are then
modeled from information on exposures, confounders and other potential
predictors of risk, which we generically call covariates, collected on cohort
members. If complete covariate information is obtained for all cohort mem-
bers, a wide range of parametric and semiparametric analytlc techniques are
available [e.g., Breslow and Day (1987)].

Especially useful has been the Cox regression model in which the process
counting failures for subject i is assumed to have intensity process of the
form

(1.1) A (2) = Yi(£) a(t)exp( Bo Zi(2)),

Received January 1993; revised March 1995.

!Supported by Norwegian Research Council for Science and the Humanities.

2Supported by NSF Grant DMS-90-05833.

3Supported by National Cancer Institute Grant CA14089.

AMS 1991 subject classifications. 62D05, 62F12, 62G05, 62M99, 62P10.

Key words and phrases. Case-control study, cohort sampling, counting process, Cox’s regres-
sion model, epidemiology, marked point process, martingale, partial likelihood, survival analysis.

1749

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to QJ
The Annals of Statistics. MIKOJAS

: ®
www.stor.org



1750 @. BORGAN, L. GOLDSTEIN AND B. LANGHOLZ

with @,(¢) a nonnegative baseline intensity or hazard function and B, a
p-dimensional vector of regression parameters [Cox (1972), Andersen and Gill
(1982)]. Here Y;(¢) is an indicator process taking the value 1 if the ith subject
is on study (at risk) at ¢+ — and taking the value 0 otherwise, and Z,(¢) is a
vector of (possibly) time dependent covariates for this individual. The partial
likelihood used for estimation of the regression parameters is given as

exp( B7Z,(t;))
Tie =, exp( BTZ(1;))

(1.2) Z(B) = 1:[{

where the ¢; are the ordered failure times, i; ; is the index of the failure at
time ¢; and %, is the set of all those at risk at t; — , the failure and those on
study at that time. Further, nonparametric estlmators of the cumulative
baseline hazard and related quantities are available [e.g., Andersen, Borgan,
Gill and Keiding (1993), Section VII.2].

Typically, because of the rarity of the disease outcome or the complexity of
the relationships to be explored, cohort studies require very large numbers of
subjects or long periods of follow-up in order to accumulate enough failures to
have sufficient statistical power to give reliable answers to the questions of
interest. This leads to something of a paradox. If a cohort study is large
enough to allow for a meaningful analysis, the cost of collecting high-quality
covariate information on all subjects is prohibitively expensive, if not logisti-
cally impossible. It would also seem unnecessary. Loosely, if the disease of
interest is rare, the contribution of the nonfailures, in terms of the statistical
power of the study, will be negligible compared to that of the failures. Thus
cohort sampling methods which include all the failures and a portion of the
nonfailures are highly desirable. Standard case-control study designs effec-
tively exploit this principle.

The nested case-control design [Thomas (1977)] is of particular interest in
the context of this paper because, with the exception of a sampling-with-
replacement variant [Robins, Gail and Lubin (1986)], it has been the only
cohort sampling method which is analyzed using partial likelihood tech-
niques. In this design, “sampled risk sets” %’ consist of the “case” (failure) at
t; and m — 1 “controls” randomly selected from those at risk at ¢;. The nested
case -control partial likelihood has the same form as that for the full cohort
except that R replaces &%; in (1.2) [Oakes (1981)] and, under suitable
conditions, may be treated hke an ordinary likelihood [Goldstein and Langholz
(1992)]. Recently, Langholz and Borgan (1995) have proposed an extension of
the nested case-control design, called counter-matching, where the control
sampling is performed within sampling strata.

In this paper, we introduce a large class of cohort sampling designs further
generalizing the nested case-control and counter-matching designs. Moreover,
we develop methods for the analysis of these designs which parallel those
available for full cohort data. Estimation of the regression parameters for a
given design is surprisingly simple; it is based on maximizing a partial
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likelihood, defined precisely in Section 3, of the form

exp( B"Zi(1)))w[t;, %)
Tie . exp( BT Z,(t))wi(t;, %) |

Here ij is the sampled risk set at ¢;, and the w(t;, %3-) are weights which
depend on the sampling design. In Section 3, we indicate why (1.3) may be
treated like an ordinary likelihood, while in Section 6 we give formal proofs of
consistency and asymptotic normality of the maximum partial likelihood
estimator 3 obtained by maximizing (1.3). Further, estimation of the cumula-
tive baseline hazard is a simple generalization of the Breslow estimator for
full cohort data. The estimator for nested case-control sampling was given by
Borgan and Langholz (1993). In Section 4, we extend this to our general
sampling designs, while in Section 6 we show that the estimator converges
weakly to a Gaussian process.

The key point to the development of these methods is to use a marked
point process [e.g., Brémaud (1981), Karr (1991)] to model simultaneously the
occurrence of failures and the sampling of controls at each failure time. This
model construction is presented in Section 2 together with related counting
and intensity processes.

Applications of the general methodology to specific sampling designs are
given in Section 5. Along with the full cohort data, nested case-control
sampling and counter-matching, there are three new, and potentially quite
useful, sampling designs: counter-matching with additional randomly sam-
pled controls; quota sampling of controls; and nested case-control sampling
with number of controls dependent on the failure’s exposure status. Case-
cohort sampling [Prentice (1986)] also belongs to this class and is given as an
example where the maximum partial likelihood estimator is clearly ineffi-
cient. In Section 7, we apply the general asymptotic results of Section 6 to
four of the designs presented in Section 5, showing how our conditions are
satisfied and giving the asymptotic variance formulas.

Throughout the paper we will, without further reference, use standard
results from the theory of multivariate counting processes, local square
integrable martingales and stochastic integrals as surveyed, for example, by
Fleming and Harrington [(1991), Chapters 1 and 2] and Andersen, Borgan,
Gill and Keiding [(1993), Sections I1.2-11.4]. We will only consider marked
point processes with a finite mark space, so we do not, however, need results
on marked point processes beyond those surveyed by Arjas [(1989), Sections 2
and 4] and Andersen, Borgan, Gill and Keiding [(1993), Sections I.4 and
I1.7].

(1.3) <2(B) =11

¢

2. A model for sampled cohort data. We fix throughout the paper a
time interval [0, 7] for a given terminal time 7, 0 < 7 < , and assume that
the cohort consists of n individuals. First we specify a model for the marked
point process {(¢;,7,); j = 1} recording the times t; when failures occur and
the individuals i; which fail at these time points, without consideration of the
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sampling of controls. To this end we assume that the marked point process
{(¢;,i); j =1} is defined on a probability space (Q,%,P) and that it is
adapted to the filtration (%) generated by the observed events (failures,
censorings, etc.) in the cohort [Andersen, Borgan, Gill and Keiding (1993),
Section III]. Associated with this marked point process we have the counting
processes N,(¢) = ¥, ,I(t; <t, i; = i) counting the number of observed fail-
ures for individual i in [0, ¢],{ = 1,2,..., n, with intensity processes given by
(1.1). A fundamental assumption throughout the paper is that the indicator
processes Y; and the covariate processes Z; are left-continuous and adapted,;
consequently they are predictable and locally bounded.

Now that a model for the failures has been specified, we turn to describe
how the sampling of controls may be superimposed onto this model. This is
done by sampling at each failure time, according to a distribution ,(r|i) to be
specified below, a set of controls for the failing individual. We let .%; denote
the sampled risk set consisting of these controls together with the individual
i; failing at ¢;. Then

(2.1) {(t,. (i) j = 1}

will be a marked point process with a finite mark space E which may be
specified as follows: Let % be the power set of {1,2, ..., n}, that is, the set of
all subsets of {1,2,..., n}, and let &, = {r: r €, i € r}. Then the mark space
of (2.1) is given as

E={(i,r):ie{1,2,...,n},rexr} ={(i,r):reP,icr}.

The introduction of the sampling into the model will bring in some extra
random variation, so the marked point process (2.1) will not be adapted to the
filtration (%) generated by the available data from the cohort. Thus we now
have to work with the enlarged family of sub-o-algebras (%), <o, ,; of & given
by &, =Z V o{Z;; t; < t}, that is, (%) is generated by the observed events in
the cohort together with the sampled risk sets.

Corresponding to the marked point process (2.1) we now have, for each
(i,r) € E, the counting process

(2.2) N, () = L‘ll(tj <t,(i;, %) = (i,r))

counting the observed number of failures for the ith individual in [0, ¢] with
associated sampled risk set r. Since the mark space E is finite, the marked
point process (2.1) is, in fact, equivalent to the multivariate counting process
(Ni; vy (i,x) € E). We denote the intensity process of N ,, by A; .. From
(2.2) we may recover the counting process N;, registering the observed
failures for the ith individual, by N, = X, 5 N; .y, and a similar relation
holds for the intensity processes A; and A; .
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The fact that we have to augment the original filtration may have the
consequence that the (&;)-intensity processes of the N, may differ from their
(#)-intensity processes (1.1). For instance, in a prevention trial, this will be
the case if individuals selected as controls change their behavior in such a
way that their risk of failure is different from similar individuals who have
not been selected as controls. To rule out such possibilities, we introduce the
concept of independent sampling analogous to the usual assumption of
independent censoring [Andersen, Borgan, Gill and Keiding (1993), Section
I11.2.2]. Formally, we will say that the sampling is independent provided that
the (Z,)-intensity processes of the counting processes N; are the same as their
(%)-intensity processes. Under independent sampling, which will be tacitly
assumed below, the (#)-intensity processes of the N, are given by (1.1). In the
sequel we will consider intensity processes, martingales, and so on with
respect to the filtration (%) and not the “cohort history” (Z).

Then, given ,(rli), the conditional probability of selecting the sampled
risk set r € %, at time ¢ given % _ and the fact that the ith individual fails at
t, the intensity processes A ,, for the counting processes (2.2) is given by
A, e(8) = Ay(8)m,(rli). Thus, by (1.1),

(23) Ai,e(t) = Yi(t) ao(t)exp( B Zy(t))m(xli),

and it follows that a model for cohort sampling is given by specifying, for each
¢t and each i with Y,(¢) = 1, the sampling distributions 7,(|i) over sets r in
;. [For notational convenience we set m,(r|i) = 0 if Y,(¢) = 0.] This specifi-
cation must be based on information available just before time ¢; formally,
considered as processes in ¢, the m,(r|i) are throughout the paper assumed to
be left-continuous and adapted (and hence predictable and locally bounded).
In particular this rules out selection of controls depending on events in the
future, for example, one may not exclude as potential controls for a current
case individuals that subsequently fail [Lubin and Gail (1984)]. We will give
examples of specific sampling designs in Section 5.

For ease of presentation, we have previously assumed that censoring is a
part of the cohort history (%) only, and that no extra censoring is introduced
by the sampling of controls. This may easily be extended, however, along the
lines of Andersen, Borgan, Gill and Keiding [(1993), Section III.2] to include
extra (independent) censoring depending on the previous sampling history.
For example, one may censor individuals after they have been picked as
controls.

3. A partial likelihood and estimation of the regression parame-
ters. For cohort data, inference on B, is based on the partial likelihood
(1.2). Here we will use the general ideas of Arjas [(1989), Section 4] to derive
a similar partial likelihood for the Cox model based on sampled cohort data.
To this end we first introduce the reduced marked point process {(¢;, %));
Jj = 1} derived from (2.1) by disregarding the information about which individ-
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uals fail at the various time points. Corresponding to this marked point
process we have the counting processes N,(t) = L, ,.N; ,(t) counting the
number of times the sampled risk set equals r in [0, ¢]. By (2.3) these have
intensity processes

B Alt) = L Apn(t) = T V() ag(t)exp( BIZ,(1))m(xli).
We then factorize the intensity processes A; ,, not as in (2.3) but as A ,,(¢) =
A ()7, (ilr; By), where
Mow(t) _ Yi(t)exp( BIZi(8))m(xli)
A(t) ZlErYl(t)eXp( /30TZl(t))7rt(r|l)

(3.2) m(ilr; By) =

is the conditional probability of the ith individual failing at ¢, given &,_ and
that there is a failure among individuals in the set r at ¢.

Statistical inference on the regression parameters may therefore be based
on the partial likelihood

Z(8) = [Tm (i %; B)
gt 57 )
ZlengYl(tj)exP( ﬁTZl(tj))ﬂ'tj(ggﬂl)

Y;(w)exp( B"Z;(uw))m,(xli) }AN«,n(u)
LiceYi(u)exp( B7Z(w))m,(xll)

(3.3)

IT TITI

uel0,r] reP ier

obtained by only using the information contained in the conditjonal distribu-
tions of the failing individuals i; given the sampled risk sets %;, and thereby
disregarding the information on B contained in the reduced marked point
process {(¢;, 9? ); j = 1}. This generalizes the partial likelihood of Oakes
(1981) for nested case-control designs with simple random sampling of the
controls (Example 2). Note that in the denominator of (3.3) each individual is
weighted with the probability of selecting the sampled risk set had the
individual been the failure. In partlcular an observed failure is weighted no
differently than the controls.

The estimator 3 obtained by maximizing the partial likelihood (3.3) has
similar properties as a maximum likelihood estimator. At this point we will
only show that (3.3) has “basic likelihood properties,” that is, that the score
vector has expectation zero and that its covariance matrix equals the ex-
pected information matrix (implicitly assuming the necessary regularity con-
ditions to hold) and return to a detailed study in Section 6. The notation and
derivations are similar to those for the full cohort data reviewed by Andersen,
Borgan, Gill and Keiding [(1993), Section VII.2.1].
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We introduce

(84) SO(B,t) = X Yi()Zi(t)®" exp( B"Z;(2))m,(xli), v=0,1,2,
i€r
SP(B,t)
SO(B,t)’
S&(B,t)
SO(B,t)
where, for a vector a, a®® = 1, a®! = a and a®2 = aa’. Note that the two
quantities E_(B,¢) and V.(B,¢) are the expectation and the covariance
matrix, respectively, of the covariate vector Z(¢) if an individual is selected

with probability =,(ilr; B) [cf. (3.2)].
Then the vector of score functions may be written as

(35) E.(B,t) =

(36) Vr( B’t) = _Er(B’t)®2’

@37 U(B) = —log.?us)—[ L T {Zi(u) — B (B, u)) dNy o(w),

0 repicr

while the observed information matrix takes the form

(38)  (B) = ———logz(m = [7 T Ve(B,w) dN,(w).

B 0 rep
By the interpretation of V.( 8, t) as a covariance matrix given just below (3.6),
it follows that .#( B) is positive semidefinite, and hence that the log partial
likelihood is concave.

By standard counting process theory M .(£) = N, (¢) = [A; »(w) du,
(i,r) € E, are orthogonal local square integrable martingales. It follows that
the score, evaluated at the true parameter value B, equal the (vector-valued)
stochastic integral

(3.9) U,(By) = f Y L (Zi(w) — El(Bo,u)) dM; o(u).

O repicr

In particular, the expected score is zero. We let U,( 8,) be defined by (3.9), but
with the integral taken over [0, ¢] instead of [0, 7], and we note that U.( 8,) is
a (vector-valued) local square integrable martingale. The matrix of pre-
dictable covariation processes of this martingale, evaluated at 7, becomes

(810)  (U(BN(7) = [ L Vel Bo, u)SO( By, ) ato(w) du.

0 rep

Moreover, the observed information matrix, evaluated at B,, may be writ-
ten as

(811 (Bo) =(U(B)(7) + [ ' L Ve((Bo,u) dM, (w),
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with M, (¢) = N.(¢) — [{A.(w) du, r € P, being orthogonal local square inte-
grable martingales. Thus the observed information matrix equals the pre-
dictable variation of the score plus a local square integrable martingale. In
particular, by taking expectations, it follows that the expected information
matrix equals the covariance matrix of the score.

4. Estimation of the integrated baseline hazard. ‘We then turn to
the problem of estimating the integrated baseline hazard A,(¢) = [{a,(¢) dt.
To this end we first factorize m,(:|i), for each ¢ and each i with Y;(¢) = 1, as

(4.1) m,(rli) = m(r)w;(¢,r),

where

@2) m(r)=n(t)"" L w(rll) and wy(t,r) = _f’(rli) ;
ler n(t) Xiepm(ril)

with

(43) n(t) = ¥ X m(rll) = Z Y m(xll) = ZYz(t)

re® ler I=1rex

being the number at risk at ¢ — . Note that m,(-) is a sampling distribution
over sets r in % defined for each ¢ for which there is at least one individual
at risk.

We then suggest the estimator

Ayt:8) - ¥ :
o t,<t ZzeéjYz(tj)eXP(éTzz(tj))wz(tj,«j’j)

t dNt(u)
fo rggv Lie Yy (w)exp( B2y () )w,(u,r)

for the integrated baseline hazard. This estimator may be motivated by the
same “method of moments” argument as for the full cohort Nelson—Aalen
estimator [Andersen, Borgan, Gill and Keiding (1993), Section IV.1.1]. To be
specific, let J(z) = I(n(¢) > 0) be the predictable indicator process which
equals 1 if someone is at risk at ¢ — and equals 0 otherwise, and interpret
0/0 as 0 and ,(r) as 0 when J(¢) = 0. Then use (3.1) and (4.1) to find that
(4.4), with B replaced by the true value, By, may be written as

J(u) dN.(u)
Ay(8;By) = f Z o Lie Y (u)exp( Bf Z;(u))w,(u,r)

—[Z%w)mmwwm

0rem

(4.4)

= j:J(u)aO(u) du + W(¢),
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where

5 W[5 J(u) dM,(u)
0pep Lic rY,(u)exp( BoTZl( u))wl( u,r)

is a local square integrable martingale. This shows that Ao(t; Bo) is almost
unbiased for A,(¢) (the small bias only being due to the possibility of having
no one at risk), thereby giving a justification for the proposed estimator (4.4).

Using Theorems 2 and 3 and Proposition 2 of Section 6, one may copy the
arguments of Andersen, Borgan, Gill and Keiding [(1993), Corollary VII.2.4]
to get that Vi (Ay(:; B) — Ay() converges weakly, as n — %, to a mean-zero
Gaussian process. The covariance function of this limiting process may be
estimated uniformly consistently by n & 2(s, ¢), where

(4.6) 52(s,t) = d%(s A t; B) + B(s; B) A(B) 'B(¢; B),
with

(47 eX:B)= X 51\’
0 (e a Yilt)exp( 8741wl 7))

1

o b - g Do Bl F)
b5t {Tie 5 Yi(t)exp( BTZi(t))wi(t;, %))

Moreover, by the arguments in Andersen, Borgan, Gill and Keiding [(1993),
Corollary VII.2.6 and Section VIIL.2.3], one may also derive the asymptotic
distribution of the integrated hazard and the survival function for an individ-
ual with a specified vector of convariates Z, fixed over time.

5. Examples of specific sampling schemes. The methodology we have
presented in the preceding sections provides analytic tools for a very large
class of sampling schemes. We illustrate its flexibility by deriving the partial
likelihood for a few diverse designs. In each situation considered, the some-
times complex ,(r|i) in the partial likelihood (3.3) are not needed for the
actual analysis of the data. Factorization as in (4.1) and cancellation of
common terms lead to considerable reduction yielding simple weights w;(¢,r)
as in (1.3). The same weights will (typically) also be used in the estimator
(4.4) for the integrated baseline hazard and its variance (4.6).

We note that, while the partial likelihood provides a method of valid
estimation of the regression parameters, there is no guarantee that the
estimator B will be efficient relative to “the best” method of analysis. This is
illustrated in Example 7 and further discussed in Section 8. We let |r| denote
the number of elements in the set r.

ExAMPLE 1 (Full cohort). The full cohort partial likelihood is a special case
in which the entire risk set.%(¢) = {i: Y;(¢) = 1} is sampled with probability 1.
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In our notation then, 7,(r|i) = I(x = %(¢)) for all i € %(¢), and the usual Cox
partial likelihood for the full data set is recovered. Noting that (4.1) and (4.2)
are fulfilled with 7,(%#(t)) = w,(¢, #(¢)) = 1, (4.4) reduces to the usual Bres-
low estimator of the integrated baseline hazard function.

ExaMPLE 2 (Nested case-control sampling). The most common type of
cohort sampling technique is nested case-control sampling, in which m — 1
controls are randomly sampled, without replacement from those at risk at the
failure’s failure time. Here we assume that m > 1 is fixed. Letting n(¢) =
rr_,Y(¢) = |2%(¢)| denote the number at risk at time ¢, this sampling scheme
is specified by

) -1

-1
1 ) Iier,rcx(t), Ir|=m),

m(eli) = (n’(?f

which is the same for each i € r and thus drops out of (3.3) leaving the usual
partial likelihood [Oakes (1981)] for nested case-control sampling. Further,
(4.1) and (4.2) are satisfied with

()

,(r) = (”I(nt))_lz(r cH(t),Irl=m) and w,(t,r) =

and, from (4.4) an estimator of the cumulative hazard function is

R . 1
A t,B = 7y ’
0( ) tjgt Zleéj exp( 3Tzl(tj))n(tj)/m

with variance estimator from (4.6) [cf. Borgan and Langholz (1993), equations
(7) and (10)].

ExaMpPLE 3 (Counter-matching). In this extension of nested case-control
sampling [Langholz and Borgan (1995)], control sampling is performed within
sampling strata. In general, let C,(¢) be (%)-predictable sampling strata
indicators with C;(¢) € #, a (small) finite set of indices. Define %(¢) = {i:
Y,(¢) = 1, C,(¢) = I} to be sampling stratum [ with n,(¢) = |%,(¢)|. If a subject
(say, i) fails at time ¢, then m,; controls are randomly sampled without
replacement from %,(¢) except for the failure’s stratum % ,(¢), from which
mec ) — 1 are sampled from the n ,(¢) — 1 nonfailures. The probability of
picking a given set depends on the sampling stratum of the case and is
given by

m(rli) =

I (nl(t))]‘l nem(t)

ieg\ ™ Mce, )

xI(ier,r cR(t),|r NZ(t)|=m; 1l €F).




COHORT SAMPLING METHODS - 1759

These sampling probabilities satisfy (4.1) and (4.2) with

m,(r) = l_!g(n;(zf))]_ I(rc(t), |[r NZ(t)|=m;;l € F)
le

and

nC,.(t)( t)

w;(t,r) =

i(t,r) o

Thus, in the partial likelihood (1.3), the relative risk for a subject from a

given stratum is weighted by the inverse of the proportion of the stratum

sampled. Moreover, the same weights are used in the cumulative baseline
hazard estimator (4.4) and its variance estimator (4.6).

Because .# contains failure, censoring, covariate and sampling histories up
to time ¢, the sampling strata may be defined in some quite diverse ways. As
discussed in Langholz and Borgan (1955), the C,(¢) can be based on factors
specific to subject i, such as absolute exposure level, or relative to the
distribution of exposures, such as grouping based on some empirical quantile
levels of exposure. Another interesting possibility is to base the counter-
matching on the sampling history. As a specific example, which ensures that
each sample risk set adds m, new subjects to the sample, one may sample
m, from the set of those not sampled in any previous risk set (stratum 0) and
m, from those who have been sampled (stratum 1).

ExamMPLE 4 (Quota sampling: negative hypergeometric sampling). Con-
sider processes C;(¢) € ¥ = {0,1} which partition the risk set into “target”
and “nontarget” subjects indicated by C,(f) =1 or 0, respectively. Let
#,() ={i: Y,(t) = 1, C;(¢) = 1} and n(¢) = |%,(¢)l. In this sampling method,
if a subject i fails at time ¢, controls are sampled sequentially until a
predetermined “quota” of m, subjects are selected from %(¢). As before, a
failure in the target group is counted as one of the m,.

The probability of sampling a particular set depends on the size of the set
and C,(¢) for the failure. Specifically, the size of the sampled risk set has a
negative hypergeometric distribution [Schuster and Sype (1987)], while the
probability of choosing a particular r given a fixed size is as in the counter-
matching example. Simplification leads to

1 -G
mdrli) = E—(t)—_(Tt)
( el -~ 2 )

X m[(l er,r C%(t), |l‘ ﬁ.%’l(t)| = ml).
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It is seen that (4.1) and (4.2) are fulfilled with

m, 1
7.‘-t(r) = ( n(t) ) n(t) _|r|+ II(I‘ C’%(t)’Irm‘%l(t)l=ml)’

el — 1
and weights
m; — Ci(t) n(¢)
m, el —1°

These weights would then be included in the partial likelihood (1.3), as well
as in (4.4) and (4.6), to construct estimators of the cumulative baseline hazard
and its variance.

Note that if m; = 1, it is not possible to estimate the regression parame-
ters since all target subjects, that is, those with C,(¢) = 1, are weighted by
zero. This is because if the failure is a target subject, the sampled risk set
consists only of that failure, making estimation impossible. One possible
solution is to (simple) randomly sample one control, without regard to the
target status of the failure, before starting the quota sampling. This would
assure that target failures are almost always matched to a nontarget control
(assuming that the target group is rare) and that there would be one (or
rarely two) target controls for a nontarget failure.

wi(t,r) =

ExaMPLE 5 (Counter-matching with additional randomly sampled controls).
This is a hybrid design in which the controls consist of some which are
counter-matched and others which are a simple random sample. Specifically,
consider first counter-matching 7 individuals (Example 3) with m, from
sampling stratum /, m = ¥, _.m,, and then randomly sampling (Example 2)
m from the remaining n(¢) — m subjects in the risk set. Let 772, be the
number of the randomly sampled controls which happen to be picked from
Z,(t). The probability of picking a particular counter-matched set and partic-
ular randomly sampled set is the product of probabilities of the forms given
in the previous examples. This is then multiplied by the number of such
combinations which would yield a given set r which, after some simplifica-
tion, becomes

n,(t) —m,
|

o i, ) n(t) \]
e = (7] [117 o+ l
nc,(t)(t)

— " I(ier,rcR(¢t),|rn®(t)| =m,+m,;l €¥).
] (8), |r \B(2)| =7, + 3 L € 2)

This yields w;(¢,r) of the same form as for counter-matching with m, + m,
replacing m,.
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ExamPLE 6 (Nested case-control sampling with variable matching ratio).
Instead of fixed m in the nested case-control design of Example 2, consider
using a variable matching ratio, possibly depending upon characteristics of
the case. Specifically, in this class of sampling designs, first the size of the
sampled risk set is (randomly) determined and then a nested case-control
sample of this size is selected. Let m(¢) be the size of the sampled risk set if
there is a failure at time ¢#. We assume that m(¢) is random with a (predict-
able) probability distribution on {1, ..., n(¢)} which may depend on who failed
at that time. We may then specify the sampling probabilities as functions of
the size of r with

n(t) —1

el — 1 )_ I(i er,r cH(t))P(m(t) =Irlli,&_).

m(rli) = (

Becomes the binomial coefficient is common to all i € r, w,(¢,r) involves only
the P(m(¢) = Ir|li,#,_) and m(¢).

ExaMPLE 7 (Case-cohort sampling). Prentice (1986) presents case-cohort
sampling in which a subcohort C is randomly sampled from the full cohort at
t = 0. He shows heuristically that the partial likelihood for this design does
not make use of the non-subcohort failures in the estimation of the regression
parameters and proposes a “pseudolikelihood” approach. In our formulation,
since C € &,

m(rli) = I(r = (C n&(2)) U {i}).

Thus, if i € ¢ fails at t;, then ‘é} =C NZ(¢;) and ﬂt(.@jlé) = 1for all / E‘éj’
but if i & C, &, = (C N#()) U {i} # C n#(t,)) and w(#,|1) = I(l = i) since
this sampled risk set would occur with probability zero if a subcohort member
failed. Thus, if i is a non-subcohort failure, the partial likelihood weights
subcohort members by zero, leaving a contribution of one for that sampled
risk set, confirming Prentice’s conclusion. This is an example where the
partial likelihood (8.3) is clearly inefficient for the design.

We note that in Examples 2-5 the support of the sampling distribution
7w, (r) can be partitioned into “blocks” of sets so that ,(r) is uniform,
conditional on the sampled risk set being chosen from a block of the partition.
In counter-matching, Example 3, a case where the partition has only a single
block, the sampling is uniform over all sets with m, individuals of stratum [.
For quota sampling, Example 4, the sampling becomes uniform when condi-
tioned on the number sampled; here the blocks are composed of sets of
common size. This property becomes very useful in proving asymptotic re-
sults for these schemes under iid assumptions. We give a general formulation
of this partition structure at the end of Section 6 and use it in Section 7 to
study the asymptotic properties of Examples 2-5.
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6. Asymptotic properties of the estimators. In order to discuss
asymptotic behavior, we need to consider a sequence of models of the form
defined in Section 2 with processes N{")), Y, Z{™, w("X(r|i) and so on in the
nth model, n = 1,2,... . For ease of notation we will drop the superscript (),
but the reader should keep in mind that these quantities depend on n
whereas the true parameters B, and «, are the same in all models. Further,
we remind the reader of definitions (3.4)-(3.6) and write U,( 8) and .%( B8) for
(38.7) and (3.8), respectively, when the integral is taken over [0, ¢] instead of
[0, 7]. Finally, we denote the jth component of the vector U,(B8) by U/(B),
and the (j, k)th element of the matrix .%( B) by #7*( B).

Before we specify the conditions needed in a study of the large-sample
properties, let us mention why Andersen—Gill type conditions [Andersen and
Gill (1982) Condition B, Page 1105; Andersen, Borgan, Gill and Keiding
(1993), Condition VII.2.1.a] cannot be applied in the present situation, and
discuss which conditions replace them. As mentioned in Example 1, the
full-cohort situation is the special case of our general setup in which the
entire risk set %(¢) is sampled with probability 1. For this particular situa-
tion, the main condition of Andersen and Gill (1982) is that n='S9),( B, t), for
v=0,1,2, converge uniformly in probability to corresponding limiting func-
tions s(( B, ¢). From this assumption follows the convergence in probability
of n71(U.(By))(7), which is key in proving weak convergence of the score
U.(By), and, hence, also of the maximum partial likelihood estimator 8.

In most situations of interest to us, the size of the sampled risk sets will
not increase with n (e.g., Examples 2-5). Thus we cannot assume uniform
convergence in probability of n~1S()(g,¢) for each r. However, since the
number of possible sampled risk sets increases as n grows, it is quite
reasonable to assume that averages over these sets will converge in probabil-
ity. This is the essential content of Condition 2 which implies convergence in
probability of 1/n times the integrand of (3.10). In addition we need a
boundedness condition (Condition 4) which ensures convergence in probabil-
ity of the corresponding integral, that is, of n~*{U.(B,))(7). In Section 7 we
illustrate how these general conditions are fulfilled for Examples 2—5 under
an iid model.

As just indicated, in the proofs we will have to infer convergence in
probability of certain integrals based on pointwise convergence in probability
of the integrands. For this we will use the following version of the theorem of
dominated convergence [Hjort and Pollard (1993)].

PROPOSITION 1. Suppose Ay(1) < » and let 0 < bU,(s) < D,(s) be left-con-
tinuous random processes on the interval [0, 7]. Suppose D,(s) =, D(s) and
U,(s) —»p U(s) for almost all s, as n — «, and that [(D,(s)ay(s)ds —p
J6D(s)ay(s) ds < . Then [{U,(s)ay(s) ds —p [(U(s)ay(s)ds forall t € [0, 7]

asn — oo,

We are now in a position to formulate our conditions. Here and below the
norm of a vector a = (a;) or a matrix A = {a,;} is llall = sup; |a,| and |A| =
sup; ;la;;l, respectively.
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CONDITION 1. The hazard A (1) < .

ConDITION 2. For (p,y) =(0,2) and (p, y) = (2,0) there exist functions
q(»7 such that, for all ¢ € [0, 7] as n — =,

1
(6.1) Q»7V(By,t) = n Z E.( Bo,t)Q”Sf,y)( Bo»t) —=p q7( By, t).

rexp

ConpITION 3. The p X p matrix X = {ag;,} given by

3 = [OT[q“”Z’( Bost) — g2 O( By, t)] a(t) dit

is positive definite.

CONDITION 4. For any n and each r € % there exists a locally bounded
predictable process X, such that, for all ¢ € [0, 7],

(6.2) |Z;(¢)] < X.(¢) forallier.

Moreover, there exist a b, > 3|l B,ll and a function D such that, with ,(r)
defined by (4.2),

(6.3) D,(t) = g@m(r)exp(ber(t)) ~p D(2),

for all ¢t €[0,7] as n — =, and
(6.4) ['Da(t)ag(t) dt 55 [ D(t)a(t) dt < .
0 0

For the special case of bounded covariates, D,(¢) in Condition 4 may be
chosen as a constant independent of n. Thus (6.3) and (6.4) are trivially
fulfilled in this situation. We have chosen, however, to formulate Condition 4
such that it also covers, for example, normally distributed covariates (cf.
Section 7).

Before we derive the asymptotic properties of the maximum partial likeli-
hood estimator B, we will show how Conditions 1-4 imply convergence in
probability of n~1{U.( 8,))(7) to the matrix 3 defined in Condition 3; we will
also state some other consequences of the conditions which will be useful in
the proofs.

Let %, be an open neighborhood of B, with sup{l|Bl: B €%,} < b,/3.
Then by (3.4), (4.2) and (6.2) we have, for B8 € %,),

B
n(Omye -5 %.(0)
(6.5)

< SP8.) < n(t)m(e) o | ) X0
Moreover, for v = 1, 2,
IS8, )| < X,.(£)"SO( B, ¢),
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and, by (3.5), (3.6) and (6.1),

(6.6) IE.(B,t)] < X.(t),
(6.7) IV.(B,8) ]| < X, (t)
and
1
(68) [@“(Bo, ) < — L Xe(8)"7SO( 8o, 1)
res®

Further, by (6.5), the right-hand side of (6.8) is bounded by a constant times
D,(t), and it follows by Proposition 1 and Conditions 2 and 4 that, for all
te[0,7],

(69)  [[QU(By,u)ap(n) du —p ['q 0By, u)ao(u) du
0 0
as n — o, In particular, by (3.6), (3.10) and Condition 3,
1 .+
6.100 n N U(By))(7) = ;fo 2 Vi( By, w)SO( By, u) ag(u) du —p X.

rep

We now prove that the estimator B for the regression parameters is
consistent.

THEOREM 1. Assume Conditions 1-4. Then the estimator  maximizing
(3.3) is consistent for B,.

ProOF. The proof is similar to the one of Theorem VI.1.1 in Andersen,
Borgan, Gill and Keiding (1993). It is sufficient to show that

(6.11) n~UI( By) —» O,
(6.12) n= I (By) —p O >
as n — =, for all j, k, and that there exists a finite constant K such that

(6.13) lim P(|n"'R*!(B)| < K forall j, k,l and all B €%,) = 1,
n—o©

where the R/*!( B) are the third-order partial derivatives of the logarithm of
(3.3). First, note that (6.11) is an immediate consequence of Lenglart’s in-
equality and (6.10). Second, to prove (6.12), note that by (6.7) the predictable
variation of the second term on the right-hand side of (3.11) is bounded by
[3Ls c 2 X (W)*SO( By, w)ao(w) du. From this (6.12) follows using Lenglart’s
inequality, (6.5), Condition 4, (3.11) and (6.10). Finally, to prove (6.13), first
note that, for any n and all j, %,/ and B € %,,

6 .7
[n'RM(B)| < — [ L X.(u)’ dN,(w).
n-o res?
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Then by Lenglart’s inequality, (3.1) and (3.4) we have, for any C, K > 0,

6 .r

P(—f Y X.(u)® dN,(u) ZK)
N0 pem

(6.14) "

6 7
<%t P(Zfo T ()"0 Borw) a(u) du = C|.

By (6.5) and Condition 4 the second term on the right-hand side tends to zero
as n — » if C is chosen large enough. Thus the right-hand side can be made
arbitrarily small for n and K large enough, and (6.13) is proved. O

We now demonstrate the asymptotic normality of the maximum partial
likelihood estimator.

THEOREM 2. Assume Conditions 1-4 and let B be the estimator maximiz-
ing (3.3). Then

\/E(BA - Bo) =g #(0,%71)

as n — o, where 3, defined in Condition 3 may be estimated consistently by

n‘U’,(é).

PrOOF. The proof is similar to the one of Theorem VI.1.2 in Andersen,
Borgan, Gill and Keiding (1993). The only point which needs attention is the
Lindeberg condition of the martingale central limit theorem when this is used
to show asymptotic normality of the score. To this end, we introduce E{( B, 1)
for the jth component of (3.5). By a Chebychev-type inequality we then have,
for all j and any ¢ > O,

f Y ¥ {Zi(w) - Ei(Bo,w))

0O prepicr

X I{n=1/2|Z,(u) = Ei( By, u)| > £}Ag n(u) du

= 3/2/ > )y |Zu(u) EJ( Bo’u)| Ag, r)(u) du

0 pepicr

i 3
S J; L X080y, w)ag(w) du

where the last inequality follows by (3.1), (8.4), (6.2) and (6.6). However, by
(6.5) and Condition 4 the right-hand side tends to zero in probability as
n — o, and the Lindeberg condition is proved. O

We now turn to a study of the large- -sample properties of the estimator
Ao(t B) of (4. 4) for the baseline hazard, and its variance estimator (4.6) given
in terms of B(¢; B) defined in (4.8). To this end we have to impose the
following extra conditions.
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ConpITION 5. Let n(t) be defined by (4.3). Then n(¢)/n is uniformly
bounded away from zero in probability as n — .

ConDITION 6. There exist functions e and ¢ such that, for all ¢ € [0, 7] as
n — OO’

(6-15) Zg’wt(r)Er( Bo,t) —p e( By,t)
and i
(6.16) n g@ 7,(0)*(SO( By, 1)} —p $( By, t).

We first prove the following proposition.

PROPOSITION 2. Let B(¢; B) be given by (4.8), and assume that Conditions
1-6 hold. Then, for any B* —, B,, we have

sup “ﬁ(t;ﬁ*) - B(t;Bo)” —p 0
telo, ]
as n — o, with

(6.17) B(t; B,) = j:e( Bo, ) ag(u) du,
and e( By, u) defined in (6.15).

Proor. First note that by (3.4), (3.5) and (4.1) we may write
(618)  B(t;p) = [ T m(mEL(B,0){SO(8,w)} " dN,(w).
Then, by (3.1) and (3.4),

sup [B(¢;8*) — B(t; B,) |

te[0,7]
< s[up]”ﬁ(t;ﬁ*) - B(t; B,) |
tel0,r
(6.19) ; .
+ Sup f Z 77-u(r):Er( BO, u){Sf‘O)( BO’ u)} er(u)
tel0,7]111"0 rem
+] 7,(0)E( By, u) — e( By, u) ||o(u) du.

re®?

We will show that each of these three terms converge to zero in probability.
Denote the jth component of B(¢; B) by BY(¢; B). Then, by (6.6), (6.7), (6.18)
and a Taylor series expansion, we have, when B* €.%,,

|Bi(t; B*) — Bi(¢; By)|
<2p18* ~ Boll [ T m(0 X () {SO(f,u)} " dN.(w),
rex®?
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with 8 on the line segment joining B* and B,. Therefore (6.5), Condition 4
and an application of Lenglart’s inequality similar to (6.14) give that the
leading term on the right-hand side of (6.19) tends to zero in probability as

B* =p By
The predictable variation process, evaluated at ¢ = 7, of the stochastic
integral in the second term of (6.19) is bounded by 1/n times a constant
times [§(n/n(t))D,(t)ay(¢) dt. That this term converges to zero in probability
therefore follows by Lenglart’s inequality and Conditions 4 and 5. Finally, the
third term on the right-hand side of (6.19) tends to zero in probability by
dominated convergence (Proposition 1), invoking (6.6) and Conditions 4 and 6.
O

We may then prove the following result about the asymptotic joint distri-
bution of the estimator (4.4) and 8.

THEOREM 3. Assume Conditions 1-6, and let ¢(B,y,t) and B(t; B,) be
defined by (6.16) and (6.17). Then

W() = Vn (Ao(; B) = Ag(")) + Y (B = Bo) B(; Bo)

and Vn (B - Bo) are asymptotically independent, and W converges weakly to
a mean-zero Gaussian martingale with variance function

t
(6.20) w?(t; Bo) = [ #( By, u)ao(w) du,
which may be estimated uniformly consistently by n&%(t; ) [cf. (4.7)].

PrOOF. Except for the last result about uniform consistency of n&2%(¢; B),
the proof is similar to the one of Theorem VII.2.3 in Andersen, Borgan, Gill
and Keiding (1993). For the first part we therefore only need to prove that
Vn W, with W defined by (4 5), converges weakly to a Gaussian martingale
with covariance function w? given by (6.20). However, this follows by the
martingale central limit theorem since

(621)  (FW)()) =n[ ¥ w6 (SO, ) ag(w) du,

0 rep

tends in probability to w?(¢) for all ¢ € [0,7] by dominated convergence
(Proposition 1) invoking (6.5) and Conditions 4, 5 and 6. Moreover, for the
Lindeberg condition a Chebychev-type inequality gives, for any ¢ > 0,

nf L mm’ (SO By, W)} H{yn m, () (SO Bo> )" > & }ag(u) du

7, (0)* (SO By, w)}  ag(u) du,

0 yrep
which converges to zero in probability by (6.5) and Conditions 4 and 5.
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Finally, to show that nd2(¢; ) is a uniformly consistent estimator for
(6.20), note that n&2(-; B,) is the optional variation process of the local
square integrable martingale Vi W. Now, by Rebolledo’s theorem [Andersen,
Borgan, Gill and Keiding (1993), Theorem II.5.1], this optional variation
process tends uniformly in probability to the same limit as the predictable
variation process of the martingale. Thus n®2(:; B,) is a uniformly consistent
estimator for (6.20). That this remains true when B, is replaced by B follows
by (6.5) and Conditions 4 and 5, using an argument similar to the one used to
handle the first term on the right-hand side of (6.19). O

In Examples 2-5 the sampling distribution, conditional on the sampled
risk set being chosen from a “block” of a partition of the support of =,(r), is
uniform. The blocks of the partitions for these examples are specified as all
subsets of the risk set of a particular composition or particular size. Here it is
convenient to verify Conditions 2-6 conditionally in order to get the required
unconditional results.

The general formulation of this “partition framework” is as follows. For a
cohort of size n, let 2(¢) be all subsets of %#(¢) = {i: Y,(¢) = 1} which are
assigned positive probability by ,. Let I be an arbitrary index set which
does not depend on n, and suppose for all ¢ we have a partition of #(¢) as a
disjoint union U ,. ;%(¢). Note that we can always factor the probabilities
a,(r) (which depend on n) as

(622)  m(r) = X v, .(r) and ()= ¥ m(r),

acl res(t)

where 7, ,(r) is 7,(r) conditioned on r € .%(¢), and v, ,(¢) gives the probabil-
ity that a set sampled from the dlstrlbutlon a,(+) falls in &Z(¢). Recalling the
factorization (4.1) and the definitions (3.4), (3.5), (6.1) and (6 3), we introduce

7, a(2lE) = 7 o (P)w;(2,7),

STL(B,t) = LYi(t)Zi(2)"" exp( BTZ,(¢))m, o(rli),

(6.23) i€r
(p ‘y)( BO t) = - Z Er( BO9t)®pS£'?lz)x( Bo’t)
re.?
and
(6.24) D, ,(t) = X 7 (r)exp(byX,(t)).

res®?
Then we have

QU ( By, t) = X v, (£)QL(By,t) and D,(¢) = X v, Vo, n(£) Do ().

ac] acel

Similar expressions are valid for the left-hand sides of (6.15) and (6.16).
By the dominated convergence theorem, invoking inequalities similar to
(6.5)-(6.8), we then get the following.
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PRrOPOSITION 3. Assume (6.2) and Condition 5. Suppose that, as n — ®,
forall a €I and t €[0,7], v, () > v,(2), D, ,(¢) =p D,(t) and D,(t) —p
D(t), where D(¢) = £, < (v, (t)D,(t). Further assume that there exist func-
tions ¢'P"V( By, t), e,( By, t) and ¢,( By, t) such that, for all a,tasn — =, the
following hold:

QY (Bost) —=p a7 (Bo,t);
Z 77-t,at(r):E!'( BO’t) _)IP ea( BO’t)’

res?

n Y (0SB, )} ! = bul Bost).

re®?

Then Conditions 2 and 6 are satisfied with
q'””( By, t) = )y Va(t)qfxp,v)( Bo»t),

acl
e( Bo,t) = Zlva(t)ea(ﬁo,t),
d( Bo,t) = ZIVa(t)¢a( Bo»t)-

Finally,

T= L3, where 3, = [0 0O[q®(fo,t) — a2 B, D)]ar®)dt,
0

acl

so that 3 is positive definite if there exists an a with 3., positive definite.

7. Asymptotic results for specific sampling schemes. In this sec-
tion, we will show that Theorems 1-3 may be invoked for the four sampling
schemes presented in Examples 2-5. We will be working with an iid model
where it is assumed that the at-risk indicators, covariate processes and
classification variables (Y,(¢),Z,(¢),C,(¢)), i =1,2,...,n, are independent
copies of (Y (¢), Z(¢), C(¢)), with Y(-), Z(-) and C(-) adapted and left-continuous
with right-hand limits on [0, 7]. Recall that the classification variables C,(¢),
introduced in Section 5, are elements of a (small) finite set & C R that gives
the “type” of the individuals at time ¢. The assumption that the C,(-) are
independent covers cases where classification is based on the absolute expo-
sure status of the individuals, yet it does not cover classification based on
relative exposure where the “type” of an individual depends on values
observed on other cohort members. Below, we let p(¢) = P(Y(¢) = 1), and for
a set r={i,i,,...,i,} we define C.(¢)=(C;(2),...,C; ()) and Y,(¢) =
ni e rYi(t )

We work in the framework of the partition structure considered in Proposi-
tion 3. We suppose here that, for each ¢ and «, there is an m = m(a) such
that =, ,(r), given in (6.22), is uniform over some collection .7 (¢) of sets of
size m in a regular way that we now describe: Let ¢ = (cy, ..., c,,) denote an
m-vector of functions ¢,, 1 <%k < m, each adapted, left-continuous with
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right-hand limits on [0, 7], taking values in %. For a permutation o, we
define c,(¢) = (c,qy(t), ..., c,(m)(1)). We say that ., a finite collection of such
¢, is symmetric if ¢ € if and only if ¢, €« for all o. Although in our
examples the functions ¢, are constant, the added generality allows, for
example, the study of counter-matching type designs where m;, [ € %, the
number of individuals of type [ in the sampled risk set, is allowed to depend
on &,_. We say that =, ,(r), or alternatively m,(r), is regular uniform if, for
all e €1 and ¢ € [0, 7] there exists m = m(a) such that m;, (1) is uniform
over sets #(t) c {r c #(¢): Ir| = m} such that I(r e Z(t) =
L=y Ye(DE ¢ . I(C(2) = (), with & symmetric, and inf, ¢ (o, Plu €
&Z(t)) > 0, where here and in the following u = {1, 2,.

We now indicate how Examples 2-5 fit into the above partltion framework.
In Examples 2 and 3 the partition consists of a single block of sets of given
size m. In Example 2, @« = m and the sampling distribution is uniform over
(), the (single block) of all subsets of (t) of size m; that is, I(r €
5’ () = L _ Y, In counter-matching, Example 3, I consists of the single
element a = (my, my,...,m;) and the sampling distribution is uniform over
Z(t), the (single block) of all subsets of Z(¢) of size m = L,_,m, with m,
individuals of type I. Here we take & to be the collection of all constant
vectors that have m,; entries of [, for I € #. In quota sampling, Example 4,
we partition sampled risk sets according to size, so a € I = {(ag, @;): @y = m
—my, oy =my, m=1,2,...} and 7, ,(r) is uniform over all such subsets of
size m of Z(t) with m, target individuals; that is, quota sampling reduces to
counter-matching with & = {0, 1} given the size m. In Example 5, the number
of counter-matched subjects 7 and the number of additionally sampled
controls m are fixed, with m = m +  the total number in the sampled risk
set. Let a € I = {(ay,..., a;): M; < a;, LI ;a; = m}. Then, conditional on the
composition of the sampled risk given by «, the sampling distribution is
uniform over .%(¢), all subsets of the risk set with @, individuals of type I;
that is, this scheme reduces to counter-matching given the composition «.

Our main result in this section shows how Theorems 1-3 may be invoked
in the regular uniform case.

THEOREM 4. Assume the above iid model, Condition 1 and 1T < ». Fur-
ther, suppose that w,r) is regular uniform, v, (t) = v,(t) as n - » [cf.
(6.22)] and inf,_,_, ay(t) > 0. Either let M = {m = m(a) 3¢ p,0)#0)
be independent of n and finite and, for each m € M, let [j{E exp(2 bOIIZ(t)II)}'"
ay(t) dt < © or assume the covariate process Z is bounded. Further, suppose
there exists wy(t,r), with w,t,x) > 8 for all i for some &§> 0, and
max;|w;(t,r)/n(t) — w,(t,r)| >p 0 as n - ». Finally, let u={1,2,...,m},
and assume that, for all a € I, the matrix

(1.1) V, = fOTva(t)lE{Cov(za(t)IZa(t))}aO(t) dt is positive definite,

where the distribution of Z,(t) =(Z, (t),Z, ,(2),...,Z, () € RP*™ s
given by

P(Z.(t) € B) = P((Z,(1),Zs(1), .., Z,(t)) € Bl €5,(2)),
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and the distribution of 2a(t) is specified through the conditional law given
Z.(t),

exp( OTZa’j(t))wj(t,u)
icuexp( By Z, (8))w;(t, )"

Then the hypotheses of Proposition 3 and Theorems 1-3 are satisfied, and we
may apply Proposition 3 with

" ( By, t) = P()E(EL( By, ) *"SP( By, ) € 7(1)},
eal Bost) = E(Eo( By, ) € 7(1)} = E{E(2,(1)IZ,(1)))

P(Z.(1) = 2o, (DZ.(1)) = 5

and
$ul Bost) = p(1) 'E{[SO( 8o, 1)] Tl s (1)},
where
SP(Bost) = L Y(OZ(0)"7 exp( BZ(0)@(¢,w)
and l
B gt - S0

‘§$10)( BO’t) ‘

In particular, the asymptotic covariance matrix is given by (6.25) with terms

%= [n0pE] T (2007 - Eu(50.0"]

i€u

(7.2) X exp( Bg'Zi(t))wi(t,u)lu egﬂa(t)}ao(t) dt

= E{fo v (£) p(t)Cov(Z,(2)1Z,(t)) X exp( Bg Zq, (), (¢, w) ag(t) dt}.
leu

The proof of this theorem is given in the Appendix. Note, however, from
(7.2) that 3, is the expectation of the integral of the product of the partition
probability, the at-risk probability, an estimate of the covariance of the
covariate of the failure and an estimate of the average hazard of the cohort,
the estimates based on the sampled risk set.

In Examples 8, 9 and 11, v, ,»,(¢) = 1 for a particular «. Assuming normal
covariates, the moment condition of Theorem 4 for these examples (and for
more general cases where M is finite and does not depend on n) is satisfied
by the following argument. First verify that if Z ~(pu, o?), E{exp(y|Z)}
< 2exp(3y%% + yluD. Then, as X, (¢) < LicllZ;(®l, we have
JHE exp(2b,IZ()ID}"ay(2) dt < o, for any m = 1,2,..., whenever

Z(t) ~#(u(t),c?(t)) with s{t;p] | w(t)| + a2(t) <,
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and A,(7) < . In Example 10 we assume the covariates are bounded.

ExaMpPLE 8 (Nested case-control sampling). The sampling scheme of Ex-
ample 2 is uniform over %, (¢) = {r c%(¢): Ir| = m}. Theorem 4 applies with
w(t,r)/n(t) = w,t,r) =1/m.

ExaMpPLE 9 (Counter-matching). The sampling scheme of Example 3 is
uniform over Z(¢) = {r c#(¢): r N % ()| = m;; I € ). Theorem 4 applies
with w;(¢,1)/n(t) = n¢ (&) /(n(Ome ) =p Pe () /mc sy = Wi, 1), where,
here and in the following two examples, p,(t) = [F"(C(t) = lIY(t) = 1).

ExamPLE 10 (Quota sampling). The sampling scheme of Example 4 condi-
tioned on sampling m = m(a) is uniform over

F(t) = {r c&(t): |r N B (8)]| = my, [r NFy(8)| =m — my},

and
(m—l)( n(t) —m
my = 1\ ny(2) —m, 1
(1) = e (0 = [ s
ny(t)
as n — . Theorem 4 applies with
w;(t,r my, — C;(t
—L(——z =w(t,r) = —ﬁ forr €.7,(t).
n(?) my(m — 1)
ExamMPLE 11 (Counter-matching with additional randomly sampled con-
trols). Let I ={(ay,...,a.): m; < a;, L,y =m + m}). For a € I, the sam-

pling scheme of Example 5 conditioned on r € .7 (¢) = {r c#(¢): Ir N Z,(¢t)| =
a; =m; + m;; | € €} is uniform over .7, (¢) with

ny(t) —m,
£ = I—Il( 7~nl ) N ¢ _( m )I—I LT
(1) = (n(t)_m) () =y, g | LR

m

t

as n — o, Theorem 4 applies with
w;(t,r) _ nci(z)(t) N pC,(t)(t)
= — . p — .
n(t) n(t)(Mc, e + Meys) M@y + Me

forr e ().

8. Discussion. The general framework we have presented makes it
possible to analyze a large class of sampling designs. Counter-matching,
described using these methods in Langholz and Borgan (1995), and the three
completely novel designs given in Examples 4-6 illustrate the potential
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usefulness of the methods. Many techniques available for the analysis of
full-cohort data are accommodated with little change for sampled data. In
this paper, we have given estimation methods for relative risks (using the
partial likelihood) and baseline hazards. Survival probabilities and exten-
sions to multistrata and multistate problems are easily accommodated apply-
ing the approaches given in Andersen, Borgan, Gill and Keiding [(1993),
Sections VIL.1 and VIL.2] in a straightforward way. Estimation of relative
mortality is developed in Borgan and Langholz (1993). Further, the marked
point process framework can be generalized to accommodate other design
problems. For instance, in Langholz and Borgan (1995), a simple generaliza-
tion of the mark space described in Section 2 is used to derive a partial
likelihood when failures are also to be sampled from the cohort.

For cohort data, the estimator for the vector of regression parameters
based on Cox’s partial likelihood and the Breslow estimator for the integrated
baseline hazard are asymptotically efficient [e.g., Andersen, Borgan, Gill and
Keiding (1993), Section VIII.4.3]. As mentioned in Section 5, this will not be
the case in general for the estimators proposed in the present paper. In this
relation the results of Robins, Rotnitzky and Zhao [(1994), Section 8.3] are
worth mentioning. They study the situation with time-independent covariates
when covariate information is missing at random. For this situation they
show how one, in principle, may construct an efficient estimator (given as the
solution of an integral equation) for the vector of regression parameters, and
they claim that their results may be modified to cover the nonrandom
missingness one encounters in nested case-control sampling. It would be
interesting to have these details worked out and to see a comparison of the
performance of our estimator based on the partial likelihood to the optimal
estimator.

As a practical approach in a specific situation, we suggest the following
procedure: (i) develop a “cost function” which captures the goals of the study
and the costs associated with collecting the needed information; (ii) think of
some sensible designs for the problem; and (iii) compare the performance of
the designs to each other, either using large-sample variances or by computer
simulation. The results of Sections 6 and 7 should aid in making large-sample
comparisons. For instance, using the asymptotic variance formula (7.2) with
the weights specified as in Examples 8 and 9, the counter-matching method
of Example 3 was found to have much smaller asymptotic variance than
nested case-control sampling in situations of practical importance [Langholz
and Borgan (1995)]. Of course, neither candidate designs nor the methods of
analysis should be restricted to those described here. However, the simplicity
of the estimators and the strong theoretical basis for these methods of
analysis make such designs desirable.

In earlier work, Goldstein and Langholz (1992) developed the asymptotic
theory for nested case-control sampling based on a different model from that
given here. In their model, just after a change in Y; or N, for some subject i
in the cohort, a set of controls is randomly (and independently) sampled for
each at-risk subject. Then, when a failure occurs, the sampled risk set would
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be already established. The counting processes then just count failure occur-
rences, as in the full-cohort framework of Andersen and Gill (1982), and the
fictitious sampling is predictable under an obvious enlarged filtration. In the
marked point process approach of the present paper, the counting processes
count joint failure and sampled risk set occurrences. The probability laws for
the sampling are predictable but the sampling itself is adapted (but not
predictable) with respect to the filtration (). The observed scores from both
models are identical but the score process (3.9) is exactly a martingale while
that of Goldstein and Langholz is a martingale plus an additional term. This
second term is due to the additional variation generated by the multiplicity of
(fictitiously) sampled risk sets and is asymptotically negligible. The approach
given here not only vastly simplifies proofs, allows for a partial likelihood
interpretation and leads, quite naturally, to the estimator of the cumulative
baseline hazard but also reflects how nested case-control sampling is actually
done.

APPENDIX

Proof of Theorem 4. The proof of Theorem 4 depends on three lemmas.
Recall first that m = m(a) and u ={1,2,..., m}, and define

|Z(®)]

()

fo'(2) = g.(t) = P(u €.7(1)).

Recall also that g_(¢) is assumed to be uniformly bounded away from zero.

(A1) fan(t) = 8a,n(t) =

and

LeEmMA 1. Let m, (r) be regular uniform. Then, as n — o,

n(t)
sup g, .(¢) —&.(¢)| 2p 0 and sup — —p(t)‘—n» 0.
]

tel0, 7 tel0, 7]
Proor. Note that, by the symmetry of <,
m

Yil ..... i,,,I(Ci1 ..... im c) = klj[lYikI(Cik = Ck)

is well defined for any indices i,,i,,...,%,,, not necessarily distinct. For
[r| = m we have that

-1
(2) ZRIC.=¢)-n" T ¥, . IC. . =-¢
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converges to zero almost surely in the supremum norm. Further,

As Yi,,I(Ci,, =¢,) for 1 <i, <n are iid elements in D[0, 7] (after reversing
the time axis), the strong law of large numbers in D[0, 1] of Rao (1963)
implies that this last quantity converges in supremum norm almost surely to
My kY, I(C, = ¢,) = EY,I(C, = ¢). Hence

fon®) = (1) LY. £ 1€, = o)

r

converges in supremum norm almost surely to EY,X.. ,I(C, =¢) = EI(u €
Z(t)) = g,(t). The second claim of the lemma follows by applying Rao’s
theorem to n(¢)/n =n"'L!_ ,Y,(¢) and the observation that, for any a € I,
p(t) = g,(¢) follows from {Y,(¢) = 1} C {u € %(#)}, and hence inf, _ , ,; p(£) >
0. O

LEMMA 2. For r € 2(t), Ir| = m, let F,(r) be a symmetric function, not
depending on n, of the variates for j € r and assume EF?(u) < «. Let

() = (1) LRE@IEes),  H) = ER@In o)
and
a, = (z)—zl{r Ns %O el =ls| = m)].
Then
(A2) E{H,(t) — H(t)}" < a,EF(u)
and
(A3) Y F(r)m, ,(r) —p E{F,(w)u €7,(t)).

res?

If, for G,(r), depending on n, there exists an A, with P(A,) > 1 and
EIG,(x) — F(r)ll, = EIG,() - F(wll, - 0, then

L G (r)m, ,(r) »p E{F,(w)lu €.7(2)}.
re?

Proor. Clearly EH,(¢) = H(¢), and we have (A.2) by expanding the
square, using that r N s = J implies F,(r)I(r € %(¢)) and F,(s)I(s €.%,(¢))
are independent and then applying the Cauchy-Schwarz inequality. Using
now that a, — 0 we have that H,(¢) »p H(¢). Using (A.1) and Lemma 1,
Lo F0m, (0 =f, ()H(t) —p f,(H(t) = HF(wh € %(¢)}, showing
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(A.3). Finally, note

(2) Team-(2) Tr®

res? res

IA?, _)p 0,

while

IE(,’:l)"l L G - (2)

rep

I, < E| F,(u) - G,(u) |IA,,a

1 Y Fy(r)
res?

which tends to zero by assumption. O

LEMMA 8. Let a € I and m = m(a). With X,(¢) = max; ., |Z;(¢)|l, suppose
there exists by > 3| Byl such that [jE{exp(2by,X,()}ay(t)dt < ©. Then, as

n — o,
(A4) fOTDa,n(t)aO(t)dt g fOTD(a)(t)aO(t) dt.

PrOOF. Recalling (6.24), (A.1) and Lemma 2, D, () = f, ,(¢)H,(¢) and
D, (t) = f,(t)H(t) when F,(r) = exp(b,X,(¢)). First,

[ Fen OV H (0 o) e = [0 () ()

< [ V(D) = FuO) (D) ag(®) dt + [T1H,(¢) = HO)If(6) ag(2) d.
Then by the Cauchy-Schwarz inequality,

(fof| fan(t) = F(8) | H,(8) ao(2) dt)

< [ Fan(®) = 1)) ao(t) dt [ HE() (1)

and
2
(fOlHn(t) — H(t)|fu(£) (1) dt)
< fOT(Hn(t) —H(t))zao(t) dtf(:ff(t)ao(t) dt.
As [Jf2(t)ay(t) < = it suffices to show that the following hold:
[ (Fun(®) = £(0)) ao(8) dt =5 0,

"H2(t) ao(t) dt = 0,(1)
J

and

fOT(Hn(t) — H(t))  ay(t) dt —p 0.
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Using (A.2) and [JEF?(w)a,(t) < » we have the third and hence the second
claim. Next, by Lemma 1, with § = inf, g,(¢)/2,

Q, - {|5@(t)| > 5(;}1) forall £ € [0,7]},

P(Q,) = 1. Hence [, ,(t) — f,()I’I, is bounded and converges to zero in
probability, and the dominated convergence theorem completes the proof of
(A4). O

PrOOF OF THEOREM 4. We will first verify Condition 4. Condition 4 is
vacuous if the covariate processes are bounded. Otherwise, for given a €
and m = m(a), let X,.(¢) = max,; ., 1Z,(l < X, . IZ,®)ll; apply Lemma 2
with F,(r) = exp(b,X,(¢)) to show D, ,(¢) > D,,(#); and next invoke Lemma
3 to assert (A.4). When M is finite and does not depend on n, summing over
m € M yields Condition 4. Next, in order to show Condition 2, by Proposition
3 it only remains to verify that Q{”)( B,, ¢) in (6.23) converges in probability
to g{»?( By, t). For this, we apply Lemma 2 (componentwise if necessary)
with

G(r) = Ex(Bo, 1)*" L Yi(+)Z;()*” exp( B(?Zi“))@’
w;(¢,r)

IET
Fy(r) =p()E,( By, t)°"S0( By, )
é
—_— < —.
n(t) 2
Condition 5 is implied by Lemma 1, and Condition 6 by Lemma 2. An
argument as in Goldstein and Langholz [(1992), Lemma 4] shows that (7.1)

implies that 3, , given by (7.2) is positive definite and so Condition 3 follows.
O

and

~ w;(t,r)

A, = {max

l
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