
The Annals of Statistics
1997, Vol. 25, No. 3, 1344]1369

A CHARACTERIZATION OF THE DIRICHLET
DISTRIBUTION THROUGH GLOBAL AND
LOCAL PARAMETER INDEPENDENCE1

BY DAN GEIGER2 AND DAVID HECKERMAN

Technion and Microsoft Research

We provide a new characterization of the Dirichlet distribution. Let
u , 1 F i F k, 1 F j F n, be positive random variables that sum to unity.i j

n � 4ky 1 � 4ny 1Define u s Ý u , u s u , u s u rÝ u and u s u . Wei ? js1 i j I ? i ? is1 j < i i j j i j J < i j < i js1
� 4prove that if u , u , . . . , u are mutually independent andI ? J <1 J < k

� 4 Žu , u , . . . , u are mutually independent where u and u are de-? J I <1 I < n ? J I < j
.fined analogously , and each parameter set has a strictly positive pdf, then

the pdf of u is Dirichlet. This characterization implies that underi j
assumptions made by several previous authors for selecting a Bayesian
network structure out of a set of candidate structures, a Dirichlet prior on
the parameters is inevitable.

1. Introduction. A statistical model that represents a large collection of
discrete random variables imposes severe computational complexity unless
some notion of independence is introduced that decreases the dimensionality
of the model. Graphical models address this problem. A graphical model
represents a collection of random variables by a graph; each node in the
graph represents a random variable, and the lack of an edge between two
nodes represents a conditional independence assertion. Such models have

Ž wbeen extensively studied in the fields of statistics e.g., 17, 34, 18, 15, 31, 6,
x. Ž w x.25 , artificial intelligence and computer science e.g., 20, 21, 10, 23 , opera-

Ž w x. Ž w x.tions research e.g., 28, 29 and philosophy e.g., 32 . For an introduction to
w xgraphical models, see 22, 35 and references therein.

Graphical models are based on directed acyclic graphs, undirected graphs
or a combination thereof. A class of graphical models that is based on directed
acyclic graphs, called Bayesian networks, is the most suitable among current
graphical models to be constructed from expert knowledge rather than from
sampling data. Each node i in a Bayesian network represents a random
variable s and the joint distribution satisfiesi

<p s , . . . , s s p s s , . . . s ,Ž . Ž .Ł1 n i i i1 k
i

where i , . . . , i are nodes from which a directed edge is drawn into node i.1 k
These nodes are called the parents of i. A simple example of a Bayesian
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� < 4network is the well-known Markov chain over s 1 F i F n , which representsi
Ž . Ž < .the distribution p s , . . . , s s Ł p s s . Because the joint distribution is1 n i i iy1

composed of local conditional probability tables between closely related vari-
ables, these tables can often be assessed directly from experts. Consequently
Bayesian networks have become the dominant model in artificial intelligence
for representing knowledge needed for reasoning tasks that require the
explicit representation of uncertainty.

In recent years, researchers have realized that, although Bayesian net-
Žworks can be constructed directly from expert knowledge often using ad-

w x.vanced computerized elicitation techniques 11 , it is advantageous to use
data to update both the parameters and structure of a graphical model. The
latter problem has been addressed by several researchers who have investi-
gated Bayesian methods for model averaging and selection when the models

w xare Bayesian networks 2, 4, 12, 30 . Such a task is often referred to as
learning. These approaches all have the same basic components: a scoring
rule and a search procedure. The scoring rule takes data and a network
structure and returns a score reflecting the goodness-of-fit of the data to the
structure. A search procedure generates networks for evaluation by the
scoring rule. These approaches use the two components to identify a network
structure or set of structures that can be used, for example, to predict future
observations.

� 4Suppose we have a set of discrete random variables s , . . . , s s U, and a1 n
� 4 Ž .data set D s C , . . . , C where each case i is an instance of some or of all1 m

Žthe variables in U. Let B be a Bayesian network structure a directed acyclic
. h Ž .graph and B stand for the hypothesis corresponding to B see Section 3 .

An important quantity for both model averaging and model selection is the
h Ž h < . Ž h. Ž < h.posterior probability of B given D, p B D s cp B p D B , where c is a

normalizing factor.
Ž < h.To compute p D B in closed form, researchers have made several as-

sumptions. One, the prior probability of each structure is positive}that is,
Ž h.p B ) 0 for every B. Two, for each network structure, the parameters

Žassociated with each node are mutually independent global parameter inde-
w x.pendence 31 , and the parameters associated with a node and each instance

Ž w x.of its parents are mutually independent local parameter independence 31 .
Three, if a node has the same parents in two distinct networks structures,
then the prior distribution of the parameters associated with this node are

Ž w x.identical for both structures parameter modularity 12 . Four, each case is
complete}namely, each case is an instance of all the variables represented
by the network. Five, the prior distribution of the parameters associated with
each node and each instance of its parents is Dirichlet. The last two assump-
tions are made so as to create a conjugate sampling situation. Namely, after
data is seen, the distributions of the parameters stay in the same family}the
Dirichlet family.

The contribution of this article is a characterization of the Dirichlet
distribution based on local and global parameter independence, and on the
assumption that the prior distributions of all the parameters are strictly
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positive pdfs. In Section 3, we explore the circumstances under which our
characterization implies that the distribution of the parameters associated
with each node in a Bayesian network must be Dirichlet, in which case the
fifth assumption for learning is redundant. The assumption of parameter
modularity, which is further discussed in Section 3, plays a key role in
learning Bayesian networks, but is not needed for the characterization
theorem. Consequently, the characterization can be described more easily
without reference to graphical models as follows.

Suppose s and t are two discrete random variables having finite domains,
� 4k � 4ns and t , respectively. We wish to infer an unrestricted joint proba-i is1 j js1

Ž . Ž .bility p s, t from a sample of pairs of values s , t of s and t. A Bayesiani j
Ž .approach to this statistical inference problem is to associate with p s , t ai j

Ž . � < 4multinomial parameter u , assign u 1 F i F k, 1 F j F n a prior joint pdfi j i j
� 4and compute the posterior joint pdf of u given the observed set of pairs ofi j

values. There are two alternatives to this approach that can be described as
follows.

n Ž .Let u s Ý u stand for the parameter associated with p s s s , andi ? js1 i j i
Ž < .let u s u rÝ u stand for the parameter asociated with p t s t s s s .j < i i j j i j j i

� 4ky1 � 4ny1Furthermore, let u s u and u s u . We assume thatI ? i ? is1 J < i j < i js1
� 4u , u , . . . , u are mutually independent and that each has a prior pdf.I ? J <1 J < k
According to Bayesian practice, we compute the joint posterior appropriately
}that is, we update the pdf for u according to the counts of s s s in theI ? i
observed pairs, and update the pdf of u according to the counts of t s t inJ < i j
all pairs in which s s s . In a symmetric fashion, let u s Ýk u , u rÝ u ,i ? j is1 i j i < j i i j

� 4ny1 � 4ky1 � 4u s u and u s u . We assume that u , u , . . . , u are mu-? J ? j js1 I < j i < j is1 ? J I <1 I < n
tually independent, and that each set of parameters has a prior pdf. We
compute the posterior pdf for u according to the counts of t s t , and the? J j
posterior pdf of u according to the counts of s s s in all pairs in whichI < j i
t s t .j

To make these techniques operational, one must choose a specific prior pdf
� 4for the multinomial parameters. The standard choice of a pdf for u }typi-i j

cally made for practical reasons}is a Dirichlet distribution. When such a
� 4choice is made, it can be shown that u , u , . . . , u are mutually indepen-I ? J <1 J < k

Ž .dent and each parameter set has a prior Dirichlet pdf, and similarly that
� 4u , u , . . . , u are mutually independent and each parameter set has a? J I <1 I < n
prior Dirichlet pdf.

The result proved in this article is that under these independence assump-
tions and the assumption that each parameter set has a strictly positive pdf,

� 4a prior Dirichlet pdf for u is the only possible choice. We conjecture thati j
the assumption of strict positivity can be dropped without affecting the
conclusion. In Section 2, we discuss our proof technique, which uses the tool
of functional equations. We also review briefly the applicability of this
technique to other characterization problems in statistics. In Section 3, we
discuss an extension of our characterization from two-way tables to n-way
tables, as well as the implications of our characterization for learning
Bayesian networks. Further extensions are described in Section 4. An analo-
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gous result that characterizes the normal-Wishart distribution is outlined
w xin 9 .

2. Background and technical summary. The Dirichlet pdf is defined
as follows. Let f , . . . , f be positive random variables that sum to 1. Then1 l
f , . . . , f have a Dirichlet pdf f if1 ly1

l lG Ý aŽ .is1 i a y1i1 f f , . . . , f s f ,Ž . Ž . Ł1 ly1 ilŁ G aŽ . is1is1 i

ly1 Ž w xwhere f s 1 y Ý f and a are positive hyperparameters See, e.g., 7 ,l is1 i i
w x.36 .

� 4We use the following conventions. Suppose u , 1 F i F k, 1 F j F n, is ai j
set of positive random variables that sum to 1. Let u , u , u , u , u , u , ui ? ? J I ? ? J j < i i < j J < i
and u be defined as in the introduction. Consequently, u u s u u forI < j i ? j < i ? j i < j

� 4every i and j. Let f be the joint pdf of u , f be the pdf of u , and f beU i j I I ? J < i
the pdf of u . Similarly, let f be the pdf of u , and f be the pdf of u .J < i J ? J I < j I < j
Finally, let f be the joint pdf of u , u , . . . , u and f be the joint pdf ofIJ I ? J <1 J < k JI
u , u , . . . , u .? J I <1 I < n

� 4A Dirichlet pdf for u is given byi j

k n
a y1i j2 f u s c u ,� 4Ž . Ž . Ł ŁU i j i j

is1 js1

�Ž . < 4where u s 1 y Ý u , A s i, j 1 F i, j F n, i / k or j / n , c is the nor-k n A i j
malization constant and a are positive constants.i j

We observe that f and f are related through a change of variables.U IJ
� 4k � 4n � 4Because both u and u are defined in terms of u , and becausei ? is1 j < i js1 i j

� 4u s u u , there exists a one-to-one and onto correspondence between ui j i ? j < i i j
� 4 � 4and u j u . The Jacobian J of this transformation is given byi ? j < i k , n

k
ny13 J s uŽ . Łk n i ?

is1

Ž w x.see 12 .
The following lemma provides a known property of the Dirichlet distribu-

w xtion. A slightly different version is stated in 6 , Lemma 7.2.

� 4LEMMA 1. Let u , 1 F i F k, 1 F j F n, where k and n are integers greateri j
than 1, be a set of positive random variables having a Dirichlet distribution.

Ž . Ž .Then, f u is Dirichlet, f u is Dirichlet for every i, 1 F i F k, andI I ? J < i J < i
� 4u , u , . . . , u are mutually independent.I ? J <1 J < k

Ž .PROOF. Set u s u u in 2 , multiply by J , and regroup terms. Ii j i ? j < i k n

The main claim of this article is that, under the assumption of a strictly
� 4positive pdf for u , the converse holds as well. More specifically, we provei j

Ž .the following theorem the proof is given in the Appendix .
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� 4THEOREM 2. Let u , 1 F i F k, 1 F j F n,Ý u s 1, where k and n arei j i j i j
integers greater than 1, be positive random variables having a strictly posi-

Ž� 4. � 4tive pdf f u . If u , u , . . . , u are mutually independent andU i j I ? J <1 J < k
� 4 Ž� 4.u , u , . . . , u are mutually independent, then f u is Dirichlet.? J I <1 I < n U i j

Recall that f can be written both in terms of f and in terms of f by aU IJ JI
Ž .change of variables and using the Jacobian given by 3 . Because both

representations must be equal, and using the independence assumptions
made by Theorem 2 to factor f and f , we get the equality,IJ JI

y1y1n n k k
ky1 ny14 u f u f u s u f u f u .Ž . Ž . Ž .Ž . Ž .Ł Ł Ł Ł? j J ? J I < j I < j i ? I I ? J < i J < iž / ž /js1 js1 is1 is1

This equality, which is a functional equation, summarizes the independence
assumptions stated in Theorem 2.

Methods for solving functional equations such as 4, that is, finding all
functions that satisfy them under different regularity assumptions, are dis-

w xcussed in 1 . We use the following technique. First, we argue that any
Ž . Žw xpositive solution to 4 must be differentiable in any order 1 , Section 4.2.2,

.‘‘Deduction of differentiability from integrability’’ . Then we take repeated
Ž .derivatives of 4 and obtain a differential equation, the solution of which

Ž . Žw xafter appropriate specialization is the general solution of 4 1 , Section 4.2,
.‘‘Reduction to differential equations’’ .

For example, to demonstrate that the only differentiable functions that
Ž . Ž . Ž . Žsatisfy f x q y s f x q f y are linear, one can take a derivative wrt with
. Ž . Ž .respect to x and obtain f 9 x q y s f 9 x . Because the latter equality holds

Ž . Ž . w xfor all y, it follows that f 9 t is constant and thus f t is linear in t 1 . This
functional equation is one of Cauchy’s fundamental equations and it estab-
lishes the memoryless property that characterizes the exponential distribu-

Ž w x. Ž .tion e.g., 19 . In 4 , there are several functions and several free variables,
the number of which depends on n and k. For example, when n s k s 2 and

Ž .by renaming of variable and function names, 4 can be written as follows:

yz y 1 y zŽ .
5 f y g z g w s g x f f ,Ž . Ž . Ž . Ž . Ž .0 1 2 0 1 2ž / ž /x 1 y x

where
x s yz q 1 y y wŽ .

and where y, z and w replace u , u , u , respectively. The? js1 is1 < js1 is1 < js2
solution of this equation is given in the Appendix.

w xJarai 13 has extensively investigated the following type of functional´
equations:

6 f t s h t , y , f y , f g t , y , . . . , f g t , y ,Ž . Ž . Ž . Ž . Ž .Ž . Ž .Ž .0 1 1 n n

where f , f , . . . , f are unknown functions, h, g , . . . , g are known functions0 n 1 n
satisfying some regularity conditions and all variable and function values
may be vectors. Our functional equation, as well as many other functional
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equations, can be written in this form. Jarai showed that every measurable´
Ž w x.solution of this equation must be continuous Theorem 3.3 in 13 . Because

Ž .4 can be written in this form and does satisfy the needed regularity
conditions, we may conclude that any pdf that solves it must be continuous
Ž .because a pdf is Lebesgue integrable and thus measurable .

Jarai has also dealt with functional equations of the type´
n

7 f t s h t , y , f g t , y ,Ž . Ž . Ž .Ž .Ž .Ý i i i
is1

where f and f are the unknown functions. Note that this equation is ai
Ž .special case of 6 . For this type of equation, Jarai proved, under regularity´

Ž .conditions on the known functions g and h which hold in our case , thati i
Žany continuous solution must be indefinitely differentiable Theorems 5.2, 7.2

w x. w xin 13 . Actually some stronger results of this sort are proved in 13 . Thus,
for example, the above theorems imply that any measurable solution of
Ž . Ž . Ž .f x q y s f x q f y must have a first derivative and so we are allowed to

take a derivative of this equation; therefore, all measurable solutions are
linear.

Ž .In solving 4 , we can use the first part of Jarai’s contribution and obtain´
continuity. To apply the second part, we take the logarithm of the equation

Ž .and obtain a functional equation of the form of 7 . We assume that the
solutions are strictly positive and measurable. Because the logarithm of a
positive measurable function is measurable, we can now use Jarai’s theorems´

Ž .and obtain that all positive measurable solutions of 4 have infinitely many
derivatives.

Jarai’s theorems are very useful in statistical applications because they´
‘‘upgrade’’ results proved for smooth pdfs to any pdfs. We shall now demon-
strate their usefulness for another well-known characterization of the Dirich-

w xlet distribution due to Darroch and Ratcliff 5 . Their bivariate theorem
states:

Let X and Y be two continuous, positive random variables
which satisfy the inequality X q Y - s. Assume the pdf of X

Ž . Ž .and Y on 0, s and Xrs y Y and Yrs y X on 0, 1 are all
continuous. Then, if and only if Xrs y Y, Y are independent
and Yrs y X, X are independent, X, Y have a Dirichlet pdf.

This theorem is similar in flavor to Theorem 2 because it also merely
assumes independence assumptions on some transformation of the given
random variables. The difference is the transformation. In Theorem 2, the
transformations arise from the use of a Dirichlet pdf as a prior distribution of
multinomial parameters while the Darroch and Ratcliff bivariate theorem is
derived from conditions of neutrality. Nevertheless, Jarai’s theorems are´
applicable also for the latter problem. As Darroch and Ratcliff do, the joint
pdf of X and Y can be written in two distinct ways. Equating these represen-

Ž .tations, as in 4 , forms a functional equation. This functional equation is of
the type dealt with by Jarai and consequently, the theorem by Darroch and´
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Ratcliff holds even without assuming continuous pdfs. Indeed, among other
w xresults, this was shown, using other techniques, by 8, 14 . Note that if a pdf

is in fact a gpdf, that is, it contains a discrete element, then Lebesgue
integrability is not satisfied and this technique is not applicable as is. In this
case, one may resort to the functional equations defined by the characteristic
functions near the origin. A review of many characterization problems in

w xstatistics can be found in 16, 26, 27 . These texts do not use the elementary
solution method used herein.

Another well-known characterization of the Dirichlet distribution which is
described by several authors is based on W. E. Johnson’s sufficientness

Ž w x .postulate See 37 and references therein . This characterization is based,
loosely speaking, on the assumption that for exchangeable sequences the
expectation of the parameter of the ith category depends only on the counts
of the ith category and the total count. Our assumptions on the other hand,
in particular, global parameter independence, were originally made so as to

w xfacilitate a prior-to-posterior analysis 6 . In this article, we show that these
assumptions, as a by-product, also determine a restrictive class of prior pdfs.
Clearly, any set of assumptions that yields a Dirichlet prior is doomed to be
violated in a general setting because the class of Dirichlet priors is not
expressive enough; for example, all members are unimodal and thus Dirichlet
mixtures are sometimes preferable. This point is raised again in Section 3.

As a word of caution, one must realize that there are functional equations
in statistics that include solutions which do not have a derivative. For

w xexample, in 19 , the functional equation that defines a multivariate exponen-
Ž .tial distribution F X, Y through an extended version of the memoryless

property,

F x q y , x q y s F x , x F y , y ,Ž . Ž . Ž .1 2 1 2

x , x , y ) 0, yields, provided we assume that the marginals are exponential,1 2
a distribution function of the form,

� 4P X ) x , Y ) y s exp yl x y l y y l max x , y ,� 4Ž . 1 2 12

which is not differentiable. By taking the logarithm and a derivative of this
functional equation, we would have obtained the solution,

� 4P X ) x , Y ) y s exp yl x y l yŽ . 1 2

thus losing an important term of the general solution. This situation occurs
wbecause a regularity condition of Jarai is violated the rank of the matrix of´

Ž Ž . . Ž .the first derivatives wrt y, ­ g t, y r­ y , for each g in 6 must equal thei i
Ž .dimensionality of the domain of f ; here, the mapping y ª y, y fails to meeti

xthis condition because the rank is 1 rather than 2 .

3. Implications for learning. We now explain how our characteriza-
tion applies to learning Bayesian networks. We concentrate on Bayesian
networks for two discrete random variables s and t whose joint distribution

Ž .is p s, t . There are three possible Bayesian network structures with two
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nodes: the structure that contains no edge between its two nodes s and t
Ž . Ž . Ž .B , the structure s ª t B and the structure t ª s B . The structure B0 1 2 0
corresponds to the assertion that s and t are independent, whereas the
structures B and B correspond to the assertion that s and t are dependent;1 2

Ž . Ž . Ž < .B represents the factorization p s, t s p s p t s , whereas B represents1 2
Ž . Ž . Ž < .the factorization p s, t s p t p s t .

DEFINITION. Two Bayesian network structures B and B for a set of1 2
discrete random variables U are Markov equivalent if they encode the same
set of independence assertions for U.

For example, network structures in which every pair of nodes are con-
Ž .nected complete network structures are equivalent, because each such a

network structure encodes no independence assertions for U. Another exam-
ple is given in Figure 1. Characterizations of Markov equivalent Bayesian

w xnetworks for discrete random variables are obtained in 3, 33 .
Ž .Given a set of discrete random variables U having a joint pdf p U and a

network structure B, we define hypothesis Bh to be the hypothesis that
precisely the independence assertions entailed by B hold in the joint distribu-

Ž . htion p U . By this definition of B , if network structures B and B are1 2
Markov equivalent, then B h s B h.1 2

Recalling the notation introduced in Section 1, we have that u s Ýn ui ? js1 i j
Ž .denote the multinomial parameters associated with p s s s and u si j < i

Ž < .u rÝ u denote the multinomial parameters associated with p t s t s s s .i j j i j j i
Given B h s B h and that s and t have a joint multinomial distribution, we1 2
obtain

< h < hf u , u , . . . , u B s f u , u , . . . , u B ,Ž . Ž .IJ I ? J <1 J < k 1 IJ I ? J <1 J < k 2

< h < hf u , u , . . . , u B s f u , u , . . . , u BŽ . Ž .JI ? J I <1 I < k 2 JI ? J I <1 I < k 1

Ž . Ž .FIG. 1. The pair of network structures i and ii are equivalent because both encode precisely
Ž .those distributions where A and C are conditionally independent, given B. Network structure iii

is not equivalent to them, because it encodes those distributions where A and C are marginally
independent.
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Using local and global parameter independence to factor f and f , weIJ JI
Ž . Žimmediately obtain 4 . We suppress the conditioning hypotheses because

h h .B s B . Thus for the two complete network structures, the only possible1 2
strictly positive prior pdfs on their parameters is, according to Theorem 2, the
Dirichlet distribution.

In this derivation, in order to apply Theorem 2, we assumed local and
global parameter independence, a regularity condition that each B h has ai

Ž h.positive probability because we condition on B , and that each f is ai IJ
strictly positive pdf. Also, we used the equality B h s B h.1 2

The parameter priors for the noncomplete network structure B are deter-0
mined from the added assumption of parameter modularity, which says that
if the nodes corresponding to a random variable have the same parents in two

Ž .different structures, then the prior pdfs associated with the parameter s of
those nodes are equal. In our two-variable example, parameter modularity
gives us

< h < hf u B s f u B ,Ž . Ž .i i ? 1 i i ? 0

< h < hf u B s f u B .Ž . Ž .j ? j 2 j ? j 0

These equalities imply that the prior for each parameter set of B is a0
Dirichlet distribution as well.

Recall that the hyperparameters of a Dirichlet distribution can be written
Žas Na where N is an equivalent sample size the size of an imaginary set ofi j

.complete cases that summarize a person’s prior knowledge and a is thei j
expectation of u . The equivalent sample size can be viewed as the assessor’si j
confidence in the expectations of each u . A joint Dirichlet prior is thereforei j
quite restrictive, because it accommodates only one equivalent sample size or
confidence for the entire set of variables. Thus, a practical ramification of our
characterization is that the commonly made global and local parameter
independence assumption is inappropriate whenever a single equivalent
sample size is not sufficient to describe prior knowledge. Such a situation
occurs, for example, if knowledge about u is more precise than knowledgeJ < i
about u .I ?

ŽThe inevitable choice of a Dirichlet prior for two-variable networks two-way
.tables is easily generalized to the n-variate case by induction and without

the need to solve additional functional equations. The inductive proof uses
the fact that the sample space of a set of discrete random variables can be
viewed as the sample space of a single discrete random variable. Here, we

w xstate the result in the notation of this article. For a proof, consult 12 ,
Theorem 7.

Suppose s , . . . , s are m discrete random variables having finite domains.1 m
With each of the n possible assignments of values to s , j s 1, . . . , m, wej j
associate a multinomial parameter u . Analogously, to the case m s 2i , . . . , i1 m

discussed in previous sections, let

u s u and u s u u .Ý Ýi , . . . , i i , . . . , i i < i , . . . , i i , . . . , i i , . . . , i1 j 1 m j 1 jy1 1 j 1 j
i i ijq1, . . . , m j
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For every configuration i , . . . , i , j s 1, . . . , m, we define,1 j

n y1j
u s u� 4I < i , . . . , i i < i , . . . , i i s1j 1 jy1 j 1 jy1 j

Ž � 4n1y1 .for j s 1, u s u . Similarly, we defineI < i , . . . , i i i s1j 1 jy1 1 1

u s u and u s u uÝ Ýi , i , . . . , i i , . . . , i i < i , i , . . . , i i , i , . . . , i i , i , . . . , im 1 j 1 m j m 1 jy1 m 1 j m 1 j
i i ijq1, . . . , my1 j

and let
n y1j

u s u� 4I < i , i , . . . , i i < i , i , . . . , i i s1j m 1 jy1 j m 1 jy1 j

Ž � 4nmy1 .for j s m, u s u .I < i , i , . . . , i i i s1j m 1 jy1 m m

� 4THEOREM 3. Let u , 1 F i F n , 1 F j F m, be positive randomi , . . . , i j j1 m
Ž� 4. Žvariables that sum to 1 and have a strictly positive pdf f u where mU i , . . . , i1 m

. � 4and n , j s 1, . . . , m, are integers greater than 1 . Then u have aj i , . . . , i1 m

Dirichlet distribution}namely the pdf is given by

8 f u A u a i1
, . . . , im

y1 ,� 4Ž . Ž . ŁU i , . . . , i i , . . . , i1 m 1 m
i , . . . , i1 m

where a are positive constants, if and only ifi , . . . , i1 m

<Q s u 1 F i F n , . . . , 1 F i F n� 4j I < i , . . . , i 1 1 jy1 jy1j 1 jy1

Ž . � < 4are mutually independent local parameter independence , Q 1 F j F m arej
Ž .mutually independent global parameter independence ,

<F s u 1 F i F n , 1 F i F n , . . . , 1 F i F n� 4j I < i , i , . . . , i m m 1 1 jy1 jy1j m 1 jy1

� < 4are mutually independent and F 1 F j F m are mutually independent.j

We note that some researchers give Bayesian network structures a causal
w xinterpretation 32, 25 . For example, it is common to associate the network

s ª t with the statement s causes t, and the network t ª s with the
statement t causes s. Under this causal interpretation, define B c to be the
hypothesis that ‘‘precisely the independence assertions entailed by B hold in
the joint distribution and the edges in B are in the causal direction.’’ Given
this definition, it does not follow that B c s B c whenever B and B are1 2 1 2
Markov equivalent network structures. Nonetheless, it is often reasonable to

Ž < c. Ž < c.assume that if B and B are equivalent, then p Q B s p Q B , where Q1 2 1 2
is the set of all parameters associated with one of the network structures.
Under this assumption, our characterization still applies.

4. Discussion. The independence assumptions made by Theorem 2 can
� 4be divided into two parts: u , . . . , u are mutually independent andJ <1 J < k

� 4 Ž .u , . . . , u are mutually independent local parameter independence , andI <1 I < n
� 4 � 4u is independent of u , . . . , u and u is independent of u , . . . , uI ? J <1 I < k ? J I <1 i < n

Ž .global parameter independence . A natural question to ask is whether global
� 4parameter independence alone implies a joint Dirichlet pdf for u .i j
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This question is particularly interesting in light of the analysis of decom-
w xposable graphical models given by 6 . Dawid and Lauritzen term a pdf that

satisfies global parameter independence a strong hyper-Markov law, and
show the importance of such laws in the analysis of decomposable graphical
models. We now show that the class of strong hyper-Markov laws is larger
than the Dirichlet class.

Ž .When n s k s 2, and using the notation of 5 , the new functional equa-
tion can be written as follows:

yz h 1 y zŽ .
9 f y g z , w s g x f , ,Ž . Ž . Ž . Ž .0 0 ž /x 1 y x

Ž . Ž .where x s yz q 1 y y w. Note that 5 is obtained from this equation by
Ž . Ž . Ž . Ž . Ž . Ž .setting g z, w s g z g w and f t , t s f t f t . These equalities cor-1 2 1 2 1 1 2 2

respond to local parameter independence.
� 4Let f be a joint pdf of u given byU i j

2 2 u u11 22a y1i j10 f u s K u H ,� 4Ž . Ž . Ł ŁU i j i j ž /u uis1 js1 12 21

where K is the normalization constant, a are positive constants and H isi j
an arbitrary positive Lebesgue integrable function. That this pdf satisfies

Ž .global parameter independence can be easily verified. In fact, by solving 9 , it
can be shown that every positive strong hyper-Markov law can be written in

Ž .this form when n s 2 and k s 2 . This solution includes the Dirichlet family
as a proper subclass.

Because H is a single function that does not depend on a particular
network structure, one can conclude that if local parameter independence
holds in one network structure, then f must still be Dirichlet. Therefore,U
due to Lemma 1, local parameter independence must hold for all network
structures. We have proved this claim for two-variable networks, but we
believe that it holds for the n-variate case as well. It would be interesting to

Ž .find specific pdfs of the form given by 10 , because such pdfs can be used as
priors for the parameters of Bayesian networks while still retaining the
advantages of a decomposable prior-to-posterior analysis guaranteed by global
parameter independence.

APPENDIX

This Appendix proves Theorem 2. Section A.1 shows that we are allowed to
take derivatives of the functional equation which Theorem 2 defines. Section
A.2 solves a special case of this functional equation, Section A.3 gives some
lemmas needed for the general solution and Sections A.4 and A.5 provide the
general solution. Section A.6 uses the general solution to complete the proof
of Theorem 2.



CHARACTERIZATION OF DIRICHLET DISTRIBUTIONS 1355

A.1. The functional equation. By renaming variable and function
Ž .names, 4 can be written as follows:

n

f y , . . . , y g z , . . . , zŽ . Ž .Ł0 1 ny1 j 1, j ky1, j
js1

k z y z yi1 1 i , ny1 ny1s g x , . . . , x f , . . . , ,Ž . Ł0 1 ky1 i ž /x xis1 i i

11Ž .

where
n

x s z y , 1 F i F k y 1,Ýi i j j
js1

ky1

z s 1 y z , 1 F j F nÝk j i j
is1

12Ž .

and where
ny1 ky1

13 y s 1 y y , x s 1 y x .Ž . Ý Ýn j k i
js1 is1

Ž . Ž .Note that the free variables in 11 are y , . . . , y y replaces u and1 ny1 j ? j
Ž .z , 1 F i F k y 1, 1 F j F n z replaces u . All other variables whichi j i j i < j

Ž . Ž . Ž .appear in 11 are defined by 12 and 13 . Note also that we may consider
any y to be a dependent variable instead of y as long as Ýn y s 1, inj n js1 j1

which case we remain with the same functional equation. Similarly, we may
consider x and z to be dependent variables instead of x and z ,i i j k k j1 1

respectively, as long as Ýk x s 1 and Ýk z s 1. These observations areis1 i is1 i j
particularly apparent when recalling the probabilistic origin of this equation

� 4kby which x , for example, are the multinomial parameters associatedi is1
with a random variable having k states, and no state is distinguished from
the other states.

Ž .Furthermore, we may consider x , . . . , x x replaces u and w s1 k i i ? i j
Ž . Ž .z y rx , 1 F i F k, 1 F j F n y 1 w replaces u to be free variables andi j j i i j j < i

Ž .rewrite 11 in terms of these variables. Namely,
k

g x , . . . , x f w , . . . , wŽ . Ž .Ł0 1 ky1 i i , 1 i , ny1
is1

n w , x w x1 j 1 ky1, j ky1s f y , . . . , y g , . . . , ,Ž . Ł0 1 ny1 j ž /y yjs1 j j

14Ž .

where
k

y s w x , 1 F j F n y 1,Ýj i j i
is1

ny1

w s 1 y w , 1 F i F kÝin i j
js1

15Ž .
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Ž .and where x and y are defined by 13 . This symmetric representation ofk n
Ž .11 will be used in the derivation of its solution.

Ž .We assume that all functions mentioned in 11 originated from pdfs and
thus are Lebesgue integrable in their domain. According to Jarai’s theorems´
Ž .see Section 2 these assumptions yield that each set of positive functions that

Ž .solves 11 consists of functions for which any finite-order partial derivative
exists for every point in their domain. The importance of this claim is that in

Ž .order to find all positive Lebesgue integrable functions that satisfy 11 , it is
permissible to take any derivative at any point in the domain because it
exists.

A.2. The bivalued equation. We shall now find all positive Lebesgue
Ž .integrable solutions of 11 when k s n s 2. This derivation is different from

the general derivation which is given in the next sections.
Ž .When k s n s 2, 11 reduces to

yz y 1 y zŽ .
16 f y g z g w s g x f f ,Ž . Ž . Ž . Ž . Ž .0 1 2 0 1 2ž / ž /x 1 y x

where
17 x s yz q 1 y y w.Ž . Ž .

Let
d

X̂18 f t s ln f t ,Ž . Ž . Ž .i idt
and

d
X19 g t s ln g t .Ž . Ž . Ž .ˆi idt

Taking the logarithm and then a derivative once wrt y, once wrt z and
Ž .once wrt w of 16 yields the following three equations:

X̂ Xf y y z y w g xŽ . Ž . Ž .ˆ0 0

zw yz 1 y z 1 y w y 1 y zŽ . Ž . Ž .20Ž . X Xˆ ˆs f q f ,1 22 2ž / ž /x 1 y xx 1 y xŽ .

gX z y ygX xŽ . Ž .ˆ ˆ1 0

yw 1 y y yz 1 y w 1 y y y y 1 y zŽ . Ž . Ž . Ž .21Ž . X Xˆ ˆs f y f ,1 22 2ž / ž /x 1 y xx 1 y xŽ .

gX w y 1 y y gX xŽ . Ž . Ž .ˆ ˆ2 0

yz 1 y y yz y 1 y z 1 y y y 1 y zŽ . Ž . Ž . Ž .22Ž . X Xˆ ˆs y f q f .1 22 2ž / ž /x 1 y xx 1 y xŽ .
X̂ X̂Ž . Ž Ž . Ž .. Ž . Ž .Solving f yzrx and f y 1 y z r 1 y x from 21 and 22 , plugging the1 2

Ž . X Ž . X Ž . X Ž .result back into 20 and collecting all the terms involving g x , g z , g wˆ ˆ ˆ0 1 2
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X̂ Ž .and f y yields0

h y , z , w gX xŽ . Ž .ˆ0

X X X̂s z 1 y z g z q w 1 y w g w y y 1 y y w y z f y ,Ž . Ž . Ž . Ž . Ž . Ž . Ž .ˆ ˆ1 2 0

23Ž .

where
2h y , z , w s y 1 y y w y z q yz 1 y z q 1 y y 1 y w w.Ž . Ž . Ž . Ž . Ž . Ž .

Ž .Taking a derivative wrt z of 23 and multiplying the result by 1 y y, and
Ž .similarly, taking a derivative wrt w of 23 and multiplying the result by y

yields, after subtracting the two equations,
X1 y y h y , z , w y yh y , z , w g xŽ . Ž . Ž . Ž .ˆz w 0

X Ys 1 y y 1 y 2 z g z q z 1 y z g zŽ . Ž . Ž . Ž . Ž .ˆ ˆ1 1

X̂q 1 y y y 1 y y f yŽ . Ž . Ž .0

24Ž .

X Y X̂y y 1 y 2w g w q w 1 y w g w y y 1 y y f y ,Ž . Ž . Ž . Ž . Ž . Ž .ˆ ˆ2 2 0

where h and h are the partial derivatives of h wrt z and w, respectively.z w
But we also have

1 y y h y , z , w y yh y , z , w ' 0Ž . Ž . Ž .z w

Ž .and therefore 24 yields

1 y 2w gX w q w 1 y w gY wŽ . Ž . Ž . Ž .ˆ ˆ2 2

1 y y
X Y X̂s 1 y 2 z g z q z 1 y z g z q 1 y y f y .Ž . Ž . Ž . Ž . Ž . Ž .ˆ ˆ1 1 0y

25Ž .

Because w does not appear in the right-hand side of this equation, we get

26 1 y 2w gX w q w 1 y w gY w s c ,Ž . Ž . Ž . Ž . Ž .ˆ ˆ2 2 1

where c is an arbitrary constant. Equation 26 is a first-order linear differ-1
ential equation, the general solution of which is given by

b c 1 y 2w1Xg w s y ,Ž .ˆ2 w 1 y w 2 w 1 y wŽ . Ž .
Ž .where b is an arbitrary constant and brw 1 y w is the homogeneous

solution. Thus,
a b

Xg w s y ,Ž .ˆ2 w 1 y w

where a and b are arbitrary constants defined by a s b y c r2 and b s1
Ž . Ž . a Ž . by b q 3c r2 . Hence, g w s cw 1 y w where c is a third arbitrary1 2

constant.
Ž .From 25 we also get

c y1X Y X̂1 y 2 z g z q z 1 y z g z s q uf y .Ž . Ž . Ž . Ž . Ž .ˆ ˆ1 1 01 y y
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Hence both sides are equal to a constant, say c . Consequently,2
c c2 1X̂f y s yŽ .0 y 1 y y

and
aX b X

Xg z s y .Ž .ˆ1 z 1 y z
Ž . Ž . Ž .Consequently, f y , g z and g w all have the Dirichlet functional form0 1 2

and each function depends on three constants.

A.3. Preliminary lemmas. We now provide several lemmas that are
Ž .needed for the derivation of the general solution of 11 .

LEMMA A.1. The general solution of the following partial differential
Ž .equation for f x , . . . , x ,1 n

27 f q x f q x f s 0Ž . i x j xi j

Ž .min the domain 0, ` , is given by

1 x i
28 f x , . . . , x s h , x , . . . , x , x , . . . , x , x , . . . , xŽ . Ž .1 n 1 iy1 iq1 jy1 jq1 nž /x xi j

or, equivalently, by
1 x i

29 f x , . . . , x s g , x , . . . , x , x , . . . , x , x , . . . , x ,Ž . Ž .1 n 1 iy1 iq1 jy1 jq1 nž /x xj j

where h and g are arbitrary differentiable functions having n y 1 arguments.

Ž . Ž 2 .PROOF. Let s s x and t s x rx . Thus, f s f q trs f , f s y t rs f .i i j x s t x ti j

Hence, after a change of variables, the differential equation becomes
f q sf s 0s

Ž . Ž .and therefore f s 1rs h t, x , . . . , x , x , . . . , x , x , . . . , x . By1 iy1 iq1 jy1 jq1 n
changing the roles of x and x in this derivation, we get the other formi j
of f. I

LEMMA A.2. The general solution of the following partial differential
Ž .equation for f x , . . . , x ,1 n

a b
30 f y f s q ,Ž . x xi j x xi j

is given by

f x , . . . , xŽ .1 n

s a ln x y b ln xi j31Ž .
q h x q x , x , . . . , x , x , . . . , x , x , . . . , x ,Ž .i j 1 iy1 iq1 jy1 jq1 n

where h is an arbitrary differentiable function having n y 1 arguments.



CHARACTERIZATION OF DIRICHLET DISTRIBUTIONS 1359

PROOF. Let s s x q x and t s x y x . Thus, f s f q f , f s f y f .i j i j x s t x s ti j

Hence, after a change of variables, the differential equation becomes
a b

f s q .t s q t s y t
Integrating wrt t and changing back to the original variables yields the
desired solution. I

Ž .LEMMA A.3. Let f x , . . . , x be a twice-differentiable function. If for all1 n
1 F i - j F n,

f x , . . . , x s a ln x q a ln xŽ .1 n i i j j

q f x q x , x , . . . , x , x , . . . , x , x , . . . , x ,Ž .i j i j 1 iy1 iq1 jy1 jq1 n

where f are arbitrary twice-differentiable functions having n y 1 arguments,i j
then

n n

32 f x , . . . , x s g x q a ln x ,Ž . Ž . Ý Ý1 n i i iž /
is1 is1

where g is an arbitrary twice-differentiable function.

w xProof can be found in 9 .

Ž .A.4. The general solution. We now solve 11 for any n and k. First we
assume n and k are strictly greater than 2. We use the following notation:

g t , . . . , tŽ .l 1 ky1 i

­
s ln g t , . . . , t , 1 F i F k y 1, 0 F l F n ,Ž .l 1 ky1­ ti

g t , . . . , tŽ . i jl 1 ky1

­ ­
s ln g t , . . . , t , 1 F i , j F k y 1, 0 F l F n ,Ž .l 1 ky1­ t ­ ti jŽ .33 f t , . . . , tŽ .l 1 ny1 i

­
s ln f t , . . . , t , 1 F i F n y 1, 0 F l F k ,Ž .l 1 ny1­ ti

f t , . . . , tŽ . i jl 1 ny1

­ ­
s ln f t , . . . , t , 1 F i , j F n y 1, 0 F l F k .Ž .l 1 ny1­ t ­ ti j

Also we use the following notation:
X s x , . . . , x , Z s z , . . . , z ,Ž . Ž .1 ky1 j 1, j ky1, j

z y z yi1 1 i , ny1 ny1
Y s y , . . . , y , W s , . . . , .Ž .1 ny1 i ž /x xi i

34Ž .

Ž . Ž .Thus, for example, g Z stands for g z , . . . , z .j j j 1, j ky1, j
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ŽBy taking the logarithm and then a derivative wrt z 1 F i F k y 1, 1 Fi j
. Ž .j F n y 1 of 11 , we get

ny1 z y 1i l l
g Z s y g X q y f W y q f WŽ . Ž . Ž .Ž . Ý jij j j 0 j i i i il 2i xx iils1

ny1 z y 1k l lq y f W y f W .Ž . Ž .Ý jj k k k kl 2 xx kkls1

35Ž .

Ž . Ž .By setting i s i and i s i , 1 F i - i F k y 1 k G 3 in 35 , subtracting1 2 1 2
the resulting two equations and dividing by y , we getj

1
g Z y g ZŽ . Ž .j j j ji i1 2yj

s g X y g XŽ . Ž .i i0 01 2

ny1 z y z yi l l i l l2 1q f W y f WŽ . Ž .Ý i i i i2 22 2 1 1l lx xi ils1 2 1

36Ž .

1 1
q f W y f W .Ž . Ž .i i i ij j1 1 2 2x xi i1 2

Ž .Now taking the logarithm and then a derivative wrt z 1 F i F k y 1 ofin
Ž .11 yields

ny1 z yi l l
g Z s y g X q y f W yŽ . Ž . Ž .Ýin n n 0 n i ii l 2x ils1

ny1 z yk l lq y f W .Ž .Ýn k k l 2xkls1

37Ž .

Ž .Similarly, by setting i s i and i s i , 1 F i - i F k y 1 in 37 , sub-1 2 1 2
tracting the resulting two equations and dividing by y , we getn

1
g Z y g ZŽ . Ž .i in n n n1 2yn

s g X y g XŽ . Ž .i i0 01 2
38Ž .

ny1 z y z yi l l i l l2 1q f W y f W .Ž . Ž .Ý i i i i2 22 2 1 1l lx xi ils1 2 1

Ž . Ž .Subtracting 38 from 36 and setting j s j yields1

1 1
g Z y g Z y g Z y g ZŽ . Ž .Ž . Ž . i ij j j j n n n ni i 1 21 1 1 11 2y yj n1

1 1
s f W y f W ,Ž . Ž .i i i ij j1 1 2 21 1x xi i1 2

39Ž .

where 1 F i - i F k y 1, 1 F j F n y 1.1 2 1
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Ž .Now we take a derivative wrt z of 39 and obtaini j1 1

1
g Z y g ZŽ . Ž .j j j ji i i i1 1 1 11 1 2 1yj1

ny1y y z y yj j i l l j1 1 1 1s y f W q f W y q f W .Ž . Ž . Ž .Ýi i i i i i2 2 2j j l j j1 1 1 1 1 11 1 1 1xx x xii i ilsl11 1 1

40Ž .

Ž .Similarly, we take a derivative wrt z of 39 and obtaini n1

1
y g Z y g ZŽ . Ž .i i i in n n n1 1 2 1yn

ny1 z yy y i ln n 1 ls y f W q f W y .Ž . Ž .Ýi i i i2 2j j l1 1 1 11 1xx xii ils111 1

41Ž .

Ž . Ž .Equations 40 and 41 yield

1 1
g Z y g Z q g Z y g ZŽ . Ž .Ž . Ž . i i i ij j j j n n n n2 2i i i i 1 1 2 11 1 1 11 1 2 1y yj n1

1
s f W .Ž .i i2 j j1 1 1 1x i1

42Ž .

Ž .Now we take a derivative wrt z of 39 where 1 F j F n y 1, j / ji j 2 2 11 2
Ž .n G 3 , and obtain

ny1y y z y yj j i l l j2 2 1 243 0 s y f W q f W y q f W .Ž . Ž . Ž . Ž .Ýi i i i i i2 2 2j j l j j1 1 1 1 1 11 1 1 2xx x xii i ils111 1 1

Ž . Ž . Ž .Equations 41 and 43 yield j / j1 2

1 1
44 g Z y g Z s f W .Ž . Ž . Ž . Ž .i i i in n n n i i2 21 1 2 1 j j1 1 1 2y xn i1

Ž . Ž . Ž . w Ž .xPutting 42 and 44 into 43 and recalling from 12 that

ny1

z y s x y z y ,Ýi n n i i l l1 1 1
ls1

we get

z1 i j1 1f W s y g Z y g ZŽ . Ž . Ž .i i j j j jj i i i i1 1 1 1 1 11 1 1 2 1x yi j1 1

zi n1q g Z y g Z .Ž . Ž .i i i in n n n1 1 2 1yn

45Ž .
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Ž .Similarly, we derive an analogue to 40 by taking a derivative wrt zi j2 1
Ž . Ž . Ž .instead of wrt z of 39 , follow the same steps up to 45 and geti j1 1

z1 i j2 1f W s y g Z y g ZŽ . Ž . Ž .i i j j j jj i i i i2 2 1 1 1 11 1 2 2 2x yi j2 1

zi n2q g Z y g Z .Ž . Ž .i i i in n n n1 2 2 2yn

46Ž .

Ž . Ž . Ž .Plugging 45 and 46 into 39 and collecting all terms involving y onn
one side and all terms not involving y on the other side implies that eachn
side is equal to a constant, say c. Namely,

z1 i j1g Z y g Z q g Z y g ZŽ . Ž . Ž . Ž .j j j j j j j ji i i i i i1 2 1 1 2 1y yj j

zi j2q g Z y g Z s c,Ž . Ž .j j j ji i i i1 2 2 2yj

47Ž .

where 1 F j F n.
This equation holds for every value of y and therefore c s 0. Thus wej

obtain

g Z y g Z q z g Z y g ZŽ . Ž . Ž . Ž .j j j j i j j j j ji i i i i i11 2 1 1 2 1

q z g Z y g Z s 0.Ž . Ž .i j j j j ji i i i2 1 2 2 2

48Ž .

Ž . Ž . Ž . Ž .Let h Z s g Z y g Z . Thus 48 can be written as follows:j j j i j j i1 2

­ h ­ h
49 h q z q z s 0.Ž . i j i j1 2­ z ­ zi j i j1 2

Lemma A.1 provides the general solution for h and thus,

z1 i j150 h Z s g Z y g Z s g , Z ,Ž . ˜Ž . Ž . Ž .j j j j j j i i , ji i 1 21 2 ž /z zi j i j1 2

where

Z s z , . . . , z , z , . . . , z , z , . . . , zŽ .i i , j 1 j i y1, j i q1, j i y1, j i q1, j ky1, j1 2 1 1 2 2

and where g is an arbitrary function having one argument less than g , or˜j j

z1 i j151 g Z y g Z s g , Z ,Ž . ˜Ž . Ž .j j j j j i i , ji i 1 21 2 ž /z zi j i j2 2

where again g is an arbitrary function having one argument less than g .˜j j
Ž . Ž .Similarly, because f and g play a symmetric role in 11 as shown by 14i j

and hence have the same form, we get

z yx i j ji 1 1˜52 f W y f W s f , W ,Ž . Ž . Ž .j ji i i i i j j , i1 2 1 2ž /z y z yi j j i j j1 1 2 2
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where
z y z y z yi 1 i , j y1 j y1 i , j q1 j q11 1 1 1 1W s , . . . , , , . . . ,j j , i1 2 ž x x xi i i

z y z y z yi , j y1 j y1 i , j q1 j q1 in n2 2 2 2, , . . . , /x x xi i i

or

z yx i j ji 1 1˜53 f W y f W s f , W .Ž . Ž . Ž .j ji i i i i j j , i1 2 1 2ž /z y z yi j j i j j2 2 2 2

Ž .Now, by setting j s j and j s j in 39 and subtracting the resulting1 2
equations, we get

1 1
g Z y g Z y g Z y g ZŽ . Ž . Ž . Ž .j j j j j j j ji i i i1 1 1 1 2 2 2 21 2 1 2y yj j1 2

1 1
s f W j y f W y f W y f W .Ž . Ž . Ž . Ž .i i 1 i i i i i ij j j1 1 1 1 2 2 2 22 1 2x xi i1 2

54Ž .

Ž . Ž . Ž .Plugging 50 through 53 into 54 yields

z z1 1i j i j1 1 1 2g , Z y g , Z˜ ˜j i i , j j i i , j1 1 2 1 2 1 2 2ž / ž /z y z z y zi j j i j i j j i j1 1 1 2 1 2 2 2 2 2

z y z y1 1i j j i j j1 1 1 2 1 1˜ ˜s f , W y f , Wi j j , i i j j , i1 1 2 1 2 1 2 2ž / ž /z y z y z y z yi j j i j j i j j i j j1 1 1 1 2 2 2 2 2 2 2 2

55Ž .

Note that the variables in Z do not appear elsewhere in this equation.i i , j1 2 1 ˜Therefore, g is only a function of its first argument. Similarly, g , f and˜ ˜j j i1 2 1˜ Ž .f are only functions of their first argument. Thus 55 can be rewritten asi2

follows:

z z1 1i j i j1 1 1 2˜ ˜g y g˜ ˜j j1 2ž / ž /z y z z y zi j j i j i j j i j1 1 1 2 1 2 2 2 2 2

z y z y1 1i j j i j j1 1 1 2 1 1˜ ˜˜ ˜s f y f .i i1 2ž / ž /z y z y z y z yi j j i j j i j j i j j1 1 1 1 2 2 2 2 2 2 2 2

56Ž .

Ž .Let x s z y , y s z y , z s z y and w s z y in 56 . Theni j j i j j i j j i j j1 1 1 2 1 1 1 2 2 2 2 2

1 x x 1 z y˜ ˜˜ ˜˜ ˜57 g y f s g y f .Ž . ˜ ˜j i j iž / ž / ž /1 1 2 2ž /x y z w x w

Ž .By taking a derivative wrt y of 57 , we get

X X̃̃g̃ xry f yrwŽ . Ž .˜j i1 258 s .Ž . 2 2y w
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˜X ˜Ž . Ž .Setting y s w, we see that g t s b and g t s b t q a , where a and˜ ˜j j j j j j1 1 1 1 1 1

Ž .b are constants. Plugging this result into 50 yieldsj1

a b
59 g Z y g Z s q ,Ž . Ž . Ž .j j j ji i1 2 z zi j i j1 2

where 1 F i - i F k y 1.1 2
Ž .Equation 59 is a first-order partial differential equation, the general

Ž .solution of which is given by Lemma A.2. Consequently, due to 33 , we get

g t , . . . , tŽ .j 1 ky1
60Ž . a ai j i j1 2s t t g t q t , t , . . . , t , t , . . . , t , t , . . . , t .Ž .i i j i i 1 i y1 i q1 i y1 i q1 ky11 2 1 2 1 1 2 2

Now, due to Lemma A.3 we have

ky1 ky1
a i j61 g t , . . . , t s t G t .Ž . Ž . Ł Ýj 1 ky1 i j iž /is1 is1

Similarly,

ny1 ny1
b i j62 f t , . . . , t s t F t ,Ž . Ž . Ł Ýi 1 ny1 j i jž /js1 js1

Ž .which is obtained by repeating the derivation starting at 14 rather then at
Ž .11 . Note that we have almost derived the Dirichlet functional form. It
remains to derive the form of the functions F and G .i j

Ž . Ž .In 11 let z s z s ??? s z for 1 F j F n. Thus, according to 12 ,1 j 2 j k j
z s x . Consequently, we geti j i

n

f y , . . . , y g x , . . . , xŽ . Ž .Ł0 1 ny1 j 1 ky1
js1

k

s g x , . . . , x f y , . . . , y .Ž . Ž .Ł0 1 ky1 i 1 ny1
is1

63Ž .

Ž . Ž .Equations 11 and 63 yield

n kg z , . . . , z f z y rx , . . . , z y rxŽ . Ž .j 1, j ky1, n i i1 1 i i , ny1 ny1 i
64 s .Ž . Ł Łg x , . . . , x f y , . . . , yŽ . Ž .js1 is1j 1 ky1 i 1 ny1

Ž . Ž . Ž .Plugging 61 and 62 into 64 , we get

a ky1i jn ky1 nz G Ý zŽ .i j j is1 i jŁ Ł Ł ky1ž /x G Ý xŽ .js1 is1 js1i j is1 i

b ny1k ny1 ki jz F Ý z y rxŽ .Ž .i j i js1 i j j is .Ł Ł Ł ny1ž /x F Ý yis1 js1 is1 Ž .i i js1 j

65Ž .
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ky1 w Ž .xThus, using z s 1 y Ý z by 12 ,k j is1 i j

c ky1 ny1i jny1 ky1 n k˜ ˜z G Ý z F Ý z y rxŽ .Ž . Ž .i j j is1 i j i js1 i j j i
66 s ,Ž . Ł Ł Ł Łky1 ny1ž / ˜ ˜x G Ý x F Ý yjs1 is1 js1 is1Ž .i Ž .j is1 i i js1 j

where for 1 F i F k y 1 and 1 F j F n y 1, c s a y b ,i j i j i j

ya ybin k j˜ ˜F t s 1 y t F t , G t s 1 y t G tŽ . Ž . Ž . Ž . Ž . Ž .i i j j

˜ ˜ ˜Ž . Ž . Ž . Ž . Ž .and where F t s F t and G t s G t . We will show that F t , i sk k n n i
Ž .1, . . . , k y 1, are constants. Consequently, due to 62 , f has a Dirichleti

functional form. That the function f also has a Dirichlet functional form cank
be obtained by choosing z as a dependent variable defined by z s 1 y1 j 1 j

k Ž .Ý z instead of z as defined by 12 and repeating the same arguments.is2 i j k j
By symmetric arguments, each g also has a Dirichlet functional form.j

Let y s 1rn, for all j, 1 F j F n and z s 1rk for all i and j, 1 F i F k,j i j
Ž .1 F j F n y 1. Hence, the only free variables remaining in 66 are z wherein

n Ž . Ž .1 F i F k y 1. Note that x s Ý z y s n y 1 rkn q 1rn z , 1 F i Fi js1 i j j in
˜ ky1 ky1 ˜ ky1Ž . Ž .k y 1, and so G Ý x is a function of Ý z . Also G Ý z is aj is1 i is1 in j is1 i j

constant for 1 F j F n y 1 and a function of Ýky1 z for j s n. Consequently,is1 in
Ž .66 becomes

a iky1 ky1 c c q dzin˜67 f z s F ,Ž . Ý Łin i ž /ž / c q dz cis1 inis1

Ž . ny1where c s n y 1 rkn, d s 1rn and a s Ý c . Note that z s 1 yi js1 i j k n
ky1 Ž .Ý z and so the kth term on the right-hand side of 66 is absorbed, alongis1 in

Ž .with some constants, into the definition of f in 67 .
Ž . Ž .ŽŽ . .Let t s cr c q dz ; z s crd 1 y t rt . Taking the logarithm ofi in in i i

Ž .67 , we get

ky1 ky1c 1 y ti ya iˆ ˜68 f s ln t F t .Ž . Ž .Ý Ý i i iž /d tiis1 is1

Taking a derivative wrt t , 1 F i F k y 1, we geti 11

ky1c c 1 y t XiX ya iˆ ˜169 y f s ln t F t .Ž . Ž .Ý i i i2 1 1ž /d tdt ii is11

X̂ ky1ŽŽ . ŽŽ . ..Thus, f crd Ý 1 y t rt must be a constant. Hence, by integratingis1 i i
Ž .69 ,

˜ a i K r t70 F t s c t e , 1 F i F k y 1,Ž . Ž .i i

where K is a constant not depending on i.
Ž . Ž .To complete the derivation, we substitute 70 into 66 , and let y s 1rn,j

for 1 F j F n and z s 1rk except z , 1 F i F k y 1 which remain freei j i1
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variables. Consequently, we get
a iky1 ky1 is1z q w 1Ž .i1 0

g z s exp K ,Ý Ł Ýi c1 i1ž / ž /z z q wis1 i1 i1 0is1 ky1

˜Ž .where w s n y 2 rk. Therefore, K s 0, a s 0 and F is a constant as0 i i
claimed.

Thus,
bkny1 ny1

b j71 f t , . . . , t s k t 1 y t ,Ž . Ž . Ł Ýi 1 ny1 i j jž /js1 js1

akky1 ky1
a i72 g t , . . . , t s c t 1 y t .Ž . Ž . Ł Ýj 1 ky1 j i iž /is1 is1

Ž .A.5. Special cases. We now solve 11 when n s 2 and k G 3. This proof
follows the general lines presented in Section A.4 but circumvents the appli-
cations of the fact n G 3 assumed in Section A.4. When k s 3 and n G 3, a
similar derivation can be obtained, as implied by the symmetric roles of n

Ž .and k in 4 .
Ž .Note that up to 42 the derivation is valid when n s 2. Furthermore, note

Ž . Ž .that the sum in 41 consists now of one term, where l s j s 1. Thus, 411
Ž . Ž .and 42 yield, using x s z y q z y n s 2, j s 1 ,i i j j in n 11 1

f WŽ . zi i j i n1 1 1 1s g Z y g ZŽ . Ž .i i i in n n n1 1 2 1x yi n173Ž .
zi j1 1y g Z y g Z .Ž . Ž .j j j ji i i i1 1 1 11 1 2 1yj1

Similarly,

f WŽ . zi i j i n2 2 1 2s g Z y g ZŽ . Ž .i i i in n n n1 2 2 2x yi n274Ž .
zi j2 1y g Z y g Z ,Ž . Ž .j j j ji i i i1 1 1 11 2 2 2yj1

Ž . Ž .which is obtained by taking a derivative wrt z of 39 instead of wrt zi j i j2 1 1 1
Ž .and repeating the derivation up to 42 .

Ž . Ž . Ž .Plugging 73 and 74 into 39 and collecting all terms involving y onn
one side and all terms not involving y on the other side implies that eachn
side is equal to a constant, say c, namely, we obtain the partial differential

Ž . Ž . Ž .equation for g Z , 1 F j F n, given by 47 . Consequently, as given by 50j j
and because n s 2,

z1 i j1 175 g Z y g Z s gŽ . ˆŽ . Ž .j j j j ji i1 1 1 1 11 2 ž /z zi j i j1 1 2 1
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and
z1 i j1 276 g Z y g Z s g .Ž . ˆŽ . Ž .j j j j ji i2 2 2 2 21 2 ž /z zi j i j2 2 2 2

Also, when n s 2, we have x s z y q z y , and hence,i i j j in n1 1

z y z y1 1 1i j j i j j1 1 1 1 1 1ˆ77 f W s f s f ,Ž . Ž .i i i ij1 1 1 11 ž / ž /x x x z y z yi i i i j j i n n1 1 1 1 1 1 1j1

z y z y1 1 1i j j i j j2 1 1 2 1 1ˆ78 f W s f s f .Ž . Ž .i i i ij2 2 2 21 ž / ž /x x x z y z yi i i i j j i n n2 2 2 2 1 1 2j1

Ž . Ž . Ž .Plugging 75 and 78 into 39 yields

z z1 1i j i n1 1 1g y gˆ ˆj n1ž / ž /z y z z y zi j j i j i n n i n1 1 1 2 1 2 2

z y z y1 1i j j i j j1 1 1 2 1 1ˆ ˆs f y f .i i1 2ž / ž /z y z y z y z yi j j i n n i n n i n n1 1 1 1 2 2

79Ž .

Ž .This equation parallels 56 where j is replaced by n and can be solved in2
Ž . Ž .the same way. Thus 61 is obtained. Equation 62 , on the other hand, needs

Ž . Ž .no proof when n s 2 because an arbitrary function f x defined on 0, 1 can
Ž . a Ž . Ž . ya Ž .always be written as f x s x g x where g x s x f x . The remainder of

the derivation follows Section A.4 closely.

A.6. The joint density. In previous sections we have shown that, under
Ž . Ž .the assumptions made by Theorem 2, the densities f u and f u areI I ? J < i J < i

Ž . Ž .Dirichlet. Similarly, we have shown that f u and f u are Dirichlet.J ? J I < j I < j
Ž� 4.We now show that f u is Dirichlet. This completes the proof of Theo-U i j

rem 2.
We can write

n k k n
a y1 a y1j i < jf u , u , . . . , u s f u f u s c u u .Ž .Ž . Ž .Ł Ł Ł ŁJI ? J I <1 I < k J ? J I < j I < j ? j i < j

js1 js1 js1 is1

Ž .However, f u , u , . . . , u can be expressed using f by two applicationsIJ I ? J <1 J < k JI
Ž .of the Jacobian given by 3 . Thus we get

f u , u , . . . , uŽ .IJ I ? J <1 J < k

a y1y1 i < jk n k k n u uj < i i ?ny1 ky1 a y1js c u u u ,Ł Ł Ł Ł Łi ? ? j ? j uis1 js1 js1 js1 is1 ? j

80Ž .

where u s Ý u u . Because f is a product of Dirichlet functions? j i i ? j < i IJ
Ž .f , f , . . . , f , it follows from 80 that the exponent coefficients for u , 1 FI J <1 I < n ? j

Ž� 4. Ž .j F n, must vanish. Consequently, f u , which is obtained from 80 byU i j
� k ny14y1multiplying with Ł u and using the relationship u s u u , isis1 i ? i j j < i i ?

Dirichlet.
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