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The Grenander estimator of a decreasing density, which is defined as
the derivative of the concave envelope of the empirical c.d.f., is known to be
a very good estimator of an unknown decreasing density on the half-line Rt
when this density is not assumed to be smooth. It is indeed the maximum
likelihood estimator and one can get precise upper bounds for its risk when
the loss is measured by the L!-distance between densities. Moreover, if one
restricts oneself to the compact subsets of decreasing densities bounded by
H with support on [0, L] the risk of this estimator is within a fixed factor
of the minimax risk. The same is true if one deals with the maximum like-
lihood estimator for unimodal densities with known mode. When the mode
is unknown, the maximum likelihood estimator does not exist any more.
We shall provide a general purpose estimator (together with a computa-
tional algorithm) for estimating nonsmooth unimodal densities. Its risk is
the same as the risk of the Grenander estimator based on the knowledge
of the true mode plus some lower order term. It can also cope with small
departures from unimodality.

1. Introduction. Nonparametric density estimation has mainly been de-
voted, for a long time, to estimation of smooth densities (Holderian or so, say)
using linear methods like kernel estimators with fixed bandwidth or projection
estimators (truncated series expansions with estimated coefficients). Typical
examples would be (among many others) the papers by Bretagnolle and Huber
(1979) or Efroimovich and Pinsker (1982). More recently, considerable atten-
tion has been given to estimation of functions with inhomogeneous smooth-
ness, which requires new nonlinear methods such as variable bandwidth ker-
nels or threshold estimators. Some illustrations can be found, for instance, in
Kerkyacharian and Picard (1992) or Donoho and Johnstone (1994). These new
methods, known under the generic term of “spatially adaptive,” try to adjust
automatically the smoothness of the estimator to the local smoothness of the
unknown underlying density f. A very simple example is as follows: even if
we know that f is decreasing on [0, 1] and bounded by H, it can very well
be steep at some places and flat elsewhere. Consequently, the best histogram
for estimating f need not be based on a regular partition as can be seen from
the results of Birgé (1987a, b) or Kogure (1987). In this particular situation
(estimation of a decreasing density on R') a special estimator, which takes
the form of a variable binwidth histogram, has been known for a long time. It
has been introduced by Grenander (1956) as the derivative of the least con-
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cave majorant of the empirical distribution function F, which is merely the
nonparametric maximum likelihood estimator (m.l.e. for short) restricted to
decreasing densities on R™ [for a proof see, for instance, Grenander (1981) or
Barlow, Bartholomew, Bremner and Brunk (1972)]. The so-called “Grenander
estimator” has been studied by Robertson (1967), Prakasa Rao (1969), Kiefer
and Wolfowitz (1976), Grenander (1981), Groeneboom (1985), Lo (1986) and
Birgé (1989); the papers by Groeneboom and Birgé provide precise results
about its asymptotic and nonasymptotic risk, respectively, when the loss func-
tion is taken to be the L!-distance between the densities. It can be derived
from Birgé (1989) that the Grenander estimator approximately achieves the
minimax risk over the class of decreasing densities on [0, 1] bounded by H.
This risk is of magnitude C(H)n"1/2, as in the case of densities with varia-
tion bounded by H but with a different form of the constant C(H) [see Birgé
(1987a) for details]. More surprisingly, the nonasymptotic evaluations of Birgé
(1989) show that the Grenander estimator (which is a histogram) generates
a partition which is approximately the best one for the estimation of the un-
known f with the value of n at hand. It is therefore an excellent example of
a spatially adaptive estimator.

The construction of the Grenander estimator can easily be extended to uni-
modal densities with a known mode at M (which need not be unique). In a
similar way, the m.l.e. restricted to unimodal densities with mode at M is
defined as the derivative of the distribution function obtained by the union of
the greatest convex minorant of F,, over (—oo, M] and its least concave ma-
jorant over [M, +00). The preceding results carry over without any difficulty
to this new Grenander estimator but it should be noted that this construc-
tion depends in a crucial way on an a priori knowledge of the position of the
mode, which is clearly unrealistic for most practical problems. If the mode is
unknown, the preceding method fails since the m.l.e. over the family of all
unimodal densities does not exist any more because it tends to put an infinite
density at one of the observations. Estimation of unimodal densities has been
studied by Wegman in a series a papers [see Wegman (1968, 1969, 1970a, b)].
In order to deal with an unknown mode, he restricts the maximization of
the likelihood to a smaller class of functions by assuming a modal interval of
length greater than some positive & which is a tuning parameter to be chosen
by the statistician. The asymptotic properties of this constrained m.l.e. are
the same as those of the Grenander estimator except for an interval of length
¢ around the mode and it is known to have a spike near the mode when &
is too small. Other estimators have been designed by Reiss (1973, 1976) and
Prakasa Rao (1983) and further references and results can be found in Barlow,
Bartholomew, Bremner and Brunk (1972) or Robertson, Wright and Dykstra
(1988).

Since the Grenander estimator is a very good spatially adaptive estimator,
even from a nonasymptotic point of view, it would be desirable, in the case of
an unknown mode, to build an estimator which is close to the Grenander and
to have a nonasymptotic evaluation of its performances as compared to those
of the Grenander (which assumes a known mode). The following study was
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essentially motivated because we did not know of any result in this direction.
Our main conclusion is that it is not essentially more difficult to estimate
a nonsmooth unimodal density when the mode is unknown than if it were
known. We shall actually provide in the next section a feasible method to
solve this problem together with a precise upper bound on the additional L*-
risk consequent to the fact that the mode is not known. As we shall see in
(2.6) below (with n = 1/n), the increase of the risk (with n observations), as
compared to the situation of a known mode, can be bounded by 6n~1/2 which
is of smaller order than the overall risk (of magnitude n~1/3 except for flat
densities) that one incurs when estimating a nonsmooth unimodal density
with a known mode.

Actually, the idea underlying the construction given in Definition 3 is ex-
tremely simple: consider all possible Grenander estimators, each one corre-
sponding to a different position of the mode and choose the one which is clos-
est to the empirical c.d.f. At first sight, this does not look like a very practical
method, leading to an untractable optimization problem but we shall see in
Section 3 that this problem can very well be solved approximately on a com-
puter since it can be reduced to a simpler one. A practical implementation
of this algorithm together with simulations and industrial applications have
actually been successfully developed by Reboul.

The main features of this study, which make it quite different from related
works on the subject are the following.

1. No assumption at all is made on the underlying density apart from the fact
that it is unimodal. It can, in particular, have an unbounded support or be
discontinuous.

2. Nothing is supposed concerning the behavior of the density near the mode
which might not even be unique. In particular, the density might be very
flat around the mode which would lead to a very slow rate of convergence of
any estimator of the mode [as can easily be checked using methods similar
to those of Has’minskii (1979)].

3. We provide an explicit construction of the estimator together with a com-
putational algorithm and the main emphasis is put on a precise control of
the risk which will be proved to be close and asymptotically equivalent to
the risk of the Grenander estimator that one would build if the true mode
were known.

4. The method is completely data driven and does not make use of any extra
parameter to be chosen by the statistician (as Wegman’s method does since
it involves choosing the length of a modal interval) or any preliminary
estimator of the mode.

It should be noticed that our estimator is not a restricted m.l.e. and since it is
an “all purpose estimator” which is supposed to cope with possibly discontinu-
ous, long-tailed or unbounded densities, it will not have a smooth appearance
but merely be a histogram-looking estimator just like the Grenander estima-
tor and it might be spiky near the mode. Its use should be limited to situations
when the true density is not known to be smooth, since it is well known that
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histogram-type estimators are not optimal for estimating smooth densities.
The estimation of smooth unimodal densities would clearly involve different
methods as described in Mammen (1991), for instance.

As pointed out by Devroye (1987), the Grenander estimator (for a decreasing
density) can only be consistent if the true density is decreasing and the same
fact is true for our estimator which is by construction unimodal and there-
fore cannot estimate consistently a multimodal density. Nevertheless, this is
an asymptotic point of view and, with a moderate number of observations, a
unimodal estimator can perform rather well if the true density is reasonably
close to unimodal. This is actually the philosophy underlying the construction
of sieves estimators for nonparametric estimation [see, for instance, Birgé and
Massart (1994)]. Actually our estimator will clearly be systematically biased
for estimating a nonunimodal density but, apart from this bias, which will
be moderate if the density is close to unimodal, the general behavior of the
estimator will not be affected by this departure from unimodality. A similar
issue was raised in Wegman (1968) although he was not concerned by precise
nonasymptotic risk evaluations.

2. Construction and performance bounds for our estimator. Let us
first give a precise definition of what we call a unimodal density.

DEFINITION 1. A density f on the real line is called unimodal if there exists
some number M (not necessarily unique) such that f is nondecreasing on
(—00, M) and nonincreasing on (M, +00). Any such M is called a mode of the
density. The density f is said to be decreasing if f(x) = 0 for x < M and
increasing if f(x) =0 for x > M.

One should notice that with such a definition the exponential or the uniform
densities are unimodal as well as the normal one.

We now have to introduce a canonical way of building unimodal densities
from arbitrary distribution functions.

DEFINITION 2. Let F be a distribution function on the line and r a conti-
nuity point of F. The unimodal regularization F" of F with mode at r is the
continuous distribution function defined by F”(r) = F(r), F" is the largest
convex minorant (or the convex envelope) of F on (—oo, r] and F” is the small-
est concave majorant (or the concave envelope) of F' on [r, +00).

It follows from this definition that F” has a unimodal density /" with mode
at r which is constant on any interval [a, b] such that inf ,_, |F"(x)—F(x)| >
0. When F has a derivative f, it can be proved [see Barlow, Bartholomew,
Bremner and Brunk (1972), Chapter 7] that f” is the unimodal density with
mode at r which is the closest to f with respect to L2-distance. It is also the
conditional expectation of f with respect to a convenient o-lattice as defined
in Wegman (1968).
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Let us now assume that we observe n i.i.d. random variables with common
distribution F and unimodal density f on the real line. Without loss of gener-
ality, 0 will be taken as a mode of f. As a particular case, f can be a decreasing
function supported by R*. We denote by F, and F, respectively the empirical
distribution of the n observations and its unimodal regularization at 0. When
f is decreasing on R*, the derivative £, of F, (which is a piecewise constant
decreasing density) is the Grenander estimator of f and it has been proved
by Groeneboom (1985) [see (1.5) of Birgé (1989)] that, if f is bounded and
compactly supported with a continuous derivative 7,

1/3

2.1) R E[Fy = Fll] = nos so 0.82 /Ooo'f(");(x) dx.

where | - ||, denotes the L”-norm for 1 < p < co. A nonasymptotic analogue
of (2.1) which is true without any smoothness assumption has been given by
Birgé (1989), Theorem 1:

(2.2) E[lIf, — fl] < 22(f, 1.24n71/2),

where the functional _Z(f, z) is defined in the following way for positive z.
Let .7 be any partition of R™ generated by some increasing sequence x, = 0 <
X <+ <X, =—+00, then

#(f,2) =inf ﬁ[/ \f(x) = fi]dx + zfﬂ where
=1

Xi-1

fi= / ERACIN

i1 X — X1

(2.3)

with the obvious convention that f,, = 0. It comes from elementary compu-
tations that .Z(f, n~/2) is an upper bound for the risk of the best histogram
for estimating f. Moreover, it follows from Birgé (1989) that, if f is bounded
with a compact support and a continuous derivative,

. 3 | f(x)f'(x) 1/3
2/3 —
(2.4) llrréz L(f,z)= 2/0 ! 3 ! dx,

and therefore that the asymptotic upper bound for the risk of the Grenander
estimator which can be derived from (2.2) is only within a factor 17/4 of the
true one given by (2.1). When f is a unimodal density (with mode at 0), these
results remain true provided that all the partitions .# which define Z(f, z)
are now generated by increasing sequences xy = —00 < X < + -+ < X,,, = +00
with one of the x;’s equal to 0.

We can now define our estimator. Starting from the empirical distribution
function F,, we can consider all the possible unimodal regularizations F’ of
F,, corresponding to the values ¢ which are not equal to the observations and
choose as an estimator of the unknown f the derivative of one of these F?
which is closest to F,,. More precisely, we give the following.
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DEFINITION 3. Let a nonnegative number 7 be given and the real number
r be chosen to satisfy

I1F}, = Fylloo < inf | F, = F oo + .
The estimator £, is then defined as the derivative of F.

Let us immediately observe that our estimator need not be unique but that
it always exists as soon as 7 > 0. If several values of r are possible, any of
them will do and lead to an estimator with the following property.

THEOREM 1. Let the true density f be unimodal with mode at 0 and f, be
the corresponding Grenander estimator (based on the true mode 0) built from
n i.i.d. observations with density f. Let F,, F and F, be, respectively, the
empirical c.d.f. and the distributions with densities [ and f s then

It is now easy to derive the performances of f n-

COROLLARY 1. The following bound on the risk of f . holds for all n:

A _ %9 1/2
E[Ilf—fnlllSE[Ilf—fn||1]+2[<n +m
(2.6) 9\ 12
< 2|;/(f, 1.24n7Y2) 4 (n> + n}.

ProOF. It has been proved by Massart (1990) that for positive ¢, P[||F —
F,lo > t] < 2exp(—2nt?) and therefore that E[||F — F,| ] < [7/(2n)]2.
Our conclusion then follows from (2.2) and (2.5). O

Choosing 7 = 1/n we see that the additional risk due to the fact that the
mode is unknown is not larger than (87/n)Y2+2/n < 6n=%2 as soon as n > 5.
One should also note that the L!-consistency of £, implies the convergence of
its mode to 0 when this is the unique mode of /. Our estimator therefore also
provides a consistent estimator of the mode.

From the asymptotic point of view we get the following, which derives im-
mediately from Corollary 1 and Theorem 2 of Birgé (1989).

COROLLARY 2. Let f be a unimodal density with mode at zero such that [’
is defined and continuous except possibly at a finite number of points. Assume
moreover that [, fY2(x)dx < oo, Six1-1 23 (x)dx < oo for some positive &
and that 1 = o(n=1/3), then

1/3
d

limnsupn1/3E[||f — fulil <35 /Ooolf(x);(m
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REMARK. A slight strengthening of the assumptions allowing the use of
(2.1) implies the stronger result:

00 ’ 1/3
timsup ! B[] - /1 = 0.82 | S g

It now remains to prove Theorem 1. The proof is based on the following ele-
mentary lemma.

LEMMA 1. Let r < t and F”, F! be the corresponding unimodal regulariza-
tions of some distribution function F. Then

I =l = 2max{rs<ux£,t[ﬁ'r(x) — F(x)];riligt[F(x) — F‘t(x)]}.

PROOF. It follows from the definition of unimodal regularizations that
Fi(x) < F"(x) < F(x), for x e (—oo,r],
2.7 F'(x) < F(x) < F"(x), forxe|r, t],
F(x) < F(x) < F(x), for x € [t, +o0).
Moreover if we define ¢ and u by
g =sup{x < r|F(x) = Fi(x)} and u =inf{x > t|F(x)= F"(x)},

Fr(x) = F'(x) and therefore f7(x) = f*(x) for both x < ¢ and x > u. It also
follows that F” is linear on the interval [, u] and F? linear on [gq, r]. Therefore
f7 is constant on (¢, u) and since it is unimodal with mode at r, it is nonde-
creasing on (g, r) and nonincreasing on (r, ©). Similarly, f! is nondecreasing
on (g, t), nonincreasing on (¢, ) and constant on (g, r). It follows from this
analysis and (2.7) that f” > f on (q, r) and that f” < f* on (¢, u). Therefore
one can find some point s in [r, ¢] such that

fr(x) = fi(x) forxe(q,s) and f7(x)<fi(x) forx e (s, u)

and since f” and f! are densities,

~ ~ S o ~ ~ ~ ~ ~
s =Fily = fq [f7(x) = f{(x)]dx = [F'(s) — F'(s)] = riuxgt[Fr(x) — F'(x)].
Since F* < F” on [r, t], the distribution functions F” and F? are, respectively,
convex and concave and both are piecewise linear, the maximum distance
between them necessarily obtains at a point where the slope of one of them
changes, which is a point of contact with F. This completes the proof of the
lemma. O

PROOF OF THEOREM 1. Since f, = f7 and f, = f2, it follows from the
preceding lemma that

10 = Fally < 2max{| F}, = Fylloo 1Fy = Folloo} < 201 F, = Foll + ]



ESTIMATION OF UNIMODAL DENSITIES 977

from the definition of F ". The second inequality in (2.5) follows from Mar-
shall’s Lemma [see Barlow, Bartholomew, Bremner and Brunk (1972), pages 70
and 227] which says that |F, — F | < 2||F, — Fl. C

3. A computational algorithm for the estimator. We assume here
that n > 4,7 > 0 and denote by Xy),..., X(,) the order statistic, keeping
in mind that our aim is to minimize over the possible values r the quantity
d(r) = |F? — F,| . In order to locate the minimum of d it will be useful to
define

d(r) = SUpl F, (x) = Fi(x)] and d*(r) = sup[F}(x) = Fy ()]

Then d = max(d—, d*) and we can derive from the definition of 7 the fol-
lowing properties of d~(r) when r increases from —oo to +oc:

1. it is a nondecreasing function on R;

2. d7(x)=0for x < X3y and d"(x) = 1/n for X ;) < x < X(9);

3. on each interval (X;), X(;;1)), d” is a continuous function;

4. for each i, there exists some positive number ¢; such that the function
Fr ]l(_oo,X(i)] is constant with respect to r for r € (X(;), X(;) + ¢;) and there-
fore on this interval, d~(r) is constant and equal to d_(Xz;)) =d (X)) Vv
1/n.

Similar properties hold for d*(r) (with obvious modifications) when r de-
creases from +o0o to —oco. One can then conclude that both d~ and d* can
be extended to continuous functions on [X;), X(,)] and define the monotone
sequences (a;)1<j<, and (b;)i;<, by a; = d7(X(;)) and b; = d*(X;)) with
a; = b, = 1/n. Since there exists an index % such thata;, < b, anda, | > b, 4,
the minimum value of d is obtained at a point r such that d~(r) = d*(r) which
belongs to the interval (X ), X (;41))- Therefore the first step of the algorithm
is to find the value of & by evaluating the sequences (a;) and (5;).

The algorithm. Let us first recall that one can easily compute F‘; and its
derivative f » from the empirical c.d.f. F,, using the classical “pool adjacent
violators algorithm” described in Barlow, Bartholomew, Bremner and Brunk
[(1972), page 13] which transforms an arbitrary histogram into a decreasing
or unimodal one. Since F, is not absolutely continuous, it is necessary to
replace it first by a linearized version, which, by derivation, will provide the
suitable histogram. For any number r different from the X ;)’s (and therefore
a continuity point of F',), we define the linear regularization G, of F, at r by

G (x)=0 forx < X; G (x)=1 for x> X,);
i1
GL(X () = ZT for X <r;  GL(r)=F,(r); and

GZ(X(l)) = % fOI' X(L) >r.
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Moreover G, is linear between these values. Then its derivative gJ, is a his-
togram and the derivative g7 of the unimodal regularization G’ of G’ at r
can be constructed from g/ by the “pool adjacent violators algorithm.” Since
it is easily seen that G7 = F” and therefore g7 = f, this method provides a
simple construction of f7.

We now want to compute the sequence (a;). Let us define G~ as the re-
X (y+1
striction to (—o0, X(,,) + 1) of Gn ™™ (where we choose 1 here for simplicity,

any other positive constant would do). If g~ is the derivative of G~, one can
get the derivative h; of the convex envelope H; of G~ restricted to the inter-
val (—oo, X ;] by a “pool adjacent violators algorithm.” Simultaneously one
computes a; = sup,x, G~ (x) — H; (x). In order to minimize the amount of
computation required for the evaluation of 4, and a; one should do this re-
cursively, starting from %4, and a, since a; = 1/n. The same method applies
to the sequence (b,) starting from b, = 1/n.

The next step is to observe that a, v b,,; < d(x) < a1 Vb, for x €
(X (#)> X (k+1))- Therefore, if the difference (a1 Vv b;)—(a;V by, 1) is not larger

than 7, one can choose for f , the derivative of any function F * with x €
(X (#)> X(z+1)) and we are done. If this is not the case, one can use a classical
dichotomy argument on the interval (X ;), X (1)), computing first f with
¥y = (X )+ X (k+1))/2, then d~(y), d*(y) (using the above method based on the
“pool adjacent violators” algorithm) in order to determine whether r belongs to
(X (x> ¥l or [y, X (}11))- Assuming that the former case obtains, one computes
the difference d~(y)vd* (X ))—d~ (X ())vd*(y). If it is not larger than 7 then
we are done, otherwise we iterate the procedure which will stop after a finite
number of steps since d~ and d* are continuous functions on [X ), X (1]
and n > 0.

REMARK. Various extensions of the principle of construction of our estima-
tor to other models than density estimation have been developed by Reboul
(1996) together with a practical implementation of the algorithm for simula-
tions and industrial applications.

4. Approximate unimodality. In order to keep the presentation short
and elementary, we shall restrict ourselves to the case of the Grenander esti-
mator f, with a mode at 0, although the results could be extended with minor
modifications but some additional technicalities to the general case of an un-
known mode as explained in Birgé (1987c¢). Therefore, from now on, unimodal
will mean unimodal with a mode at zero.

We want to understand the behavior of the Grenander estimator f, when
the true density f is not exactly unimodal. Intuitively, since F,, converges to
F and therefore F, to the unimodal regularization F° of F at 0, £, should
converge to the derivative f° of F° which is known to be the best unimodal ap-
proximation of f in L? [see Barlow, Bartholomew, Bremner and Brunk (1972),
Chapter 7, for details]. Of course, f° need not be the best unimodal approxima-
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tion of £ in L! but it follows from Proposition 1 of Birgé (1987a) that if g is a
unimodal density, | /0~ g, < [|£—gll; which implies that || /"~ £, < 2|/f—gl;
for any unimodal density g and therefore, up to a factor 2, f© is also the best
unimodal approximation of f in L. Of course, the problem of the behavior of
[, as an estimator of f only makes sense when [ is close to unimodal; that
is, when || f° — f||; is small. i

Let us first notice that the set J of those x’s such that FO(x) # F(x) is
a union of open intervals JJ, such that F* and F coincide at the end points
of J; and FO is linear (therefore f° is constant) on /. This implies that if
fr= ka f(x)dx/ ka dx, then

172 = Fli =3 [ 1)~ f@ldx =3 [ 1fs = F)ld

PROPOSITION 1. The Grenander estimator f . With a mode at 0 satisfies

E[|f, = fll] = 22(F°, 1.24n7 %) + | fO = f 1,

where -/ is defined as - by (2.3) with the additional restriction that the min-
imization is now over all partitions .# determined by sequences (x ;) including

0 and such that for any j, F(x;) = Fo(xj).

PROOF. Assuming, for the sake of simplicity, that f is a decreasing density
on R we just follow the lines of the proof of Theorem 1 of Birgé (1989) with
obvious modifications due to the fact that by our definition of #”, if I is an
element of .#, [,(f°— f)=0and F° > F. O

The meaning of Proposition 1 is actually easier to understand from an

asymptotic point of view. Let us recall that under mild assumptions on f°,
it follows from (2.4) that
_ 3 ]FO(x)}FO '(x) 1/3
0 .\ _ 23| 2
L(f,2)==z [2/| 9

dx + 0(1)]

when z — 0. When o/ is the union of a finite number of intervals </, the result
extends in a straightforward way to .’ and becomes

f(x)f'(x)
2

1/3

L. 2) = 22/3[2 [

dx + 0(1):|

since f° = f on J¢ and f° is piecewise constant (therefore with a derivative
equal to 0) on /. This means that the upper bound for the risk given in Propo-
sition 1 is the sum of a term which is essentially the same as if f where truly
unimodal (and actually smaller since integration of |ff’|'/3 is now restricted
to J¢) and an additional bias term which is bounded by twice the distance
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from f to the set of unimodal densities which is clearly unavoidable since our
estimator is by nature unimodal.
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