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ROBBINS, EMPIRICAL BAYES AND MICROARRAYS1
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Empirical Bayes was Herbert Robbins’ most influential contribution to
statistical theory. It is also an idea of great practical potential. That potential
is realized in the analysis of microarrays, a new biogenetic technology for the
simultaneous measurement of thousands of gene expression levels.

1. Introduction. Herbert Robbins ranks high on anyone’s list of influential
postwar statisticians. Among his many fruitful ideas, empirical Bayes, which he
named as well as developed, has had the biggest effect on statistical thinking.

For reasons that I hope to make clear, current scientific trends favor a greatly
increased role for empirical Bayes methods in practical data analysis. This short
appreciation is not a review of Robbins’ theory. His own review paper in the
1964 volume of The Annals of Mathematical Statistics needs no new competition.
Rather, after a little bit of history, I will discuss an analysis of microarray data
that makes direct use of Robbins’ empirical Bayes approach. The suggestion here,
made explicit in the final section, is that after 50 years of underuse, we are poised
for an avalanche of empirical Bayes applications.

2. Parametric and nonparametric empirical Bayes. Table 1 refers to the
“missing species problem,” a subtle conundrum that has played an important role
in empirical Bayes history. The table, abridged from Efron and Thisted (1976),
shows the number of distinct words (i.e., words with different spellings, so “tree”
and “trees” count separately) appearing in all of Shakespeare’s known works, the
“canon,”

nx = number of distinct words appearing exactly x times each.(2.1)

For example, n1 = 14,376 distinct words appearing just once each, n2 = 4,343
twice each and so on. The table stops at x = 30, but, in addition, there are
2,387 distinct words appearing more than 30 times each, giving a total observed
Shakespearian vocabulary of ∑

x≥1

nx = 31,534

Received November 2001; revised March 2002.
1Supported in part by NIH Grant 2R01 CA59039 and by NSF Grant DMS-00-72360.
AMS 2000 subject classification. 62F10.
Key words and phrases. False discovery rate, missing species, q-value, Stein estimation, simulta-

neous inference.

366



ROBBINS AND MICROARRAYS 367

TABLE 1
Shakespeare’s word count frequencies; tabled value nx is the number of distinct words

appearing exactly x times in the Shakespearian canon; 14,376 distinct words appear just
once, 4,343 appear twice each, etc. In addition to those in the table, 2,387 distinct words

appear more than 30 times each, giving Shakespeare a total of 31,534 distinct words
appearing in all of his known works

x: 1 2 3 4 5 6 7 8 9 10

0+ 14,376 4,343 2,292 1,463 1,043 837 638 519 430 364
10+ 305 259 242 223 187 181 179 130 127 128
20+ 104 105 99 112 93 74 83 76 72 63

distinct words.
The missing species here are the distinct words Shakespeare knew but did not

use. By definition, there are n0 of them, but, of course, n0 is missing from Table 1.
It does not seem possible to learn anything about missing species from the data in
Table 1, but that is where empirical Bayes thinking comes to the rescue.

Let J denote the true size of Shakespeare’s vocabulary (so J = 31,534 + n0)
and xj equal the number of times word j appears in the Shakespearian canon; also
suppose that the xj are Poisson random variables, each having its own Poisson
parameter λj ,

Prob{xj = x} = e−λj λx
j /x! for x = 0,1,2, . . . .(2.2)

Independence of the xj is not required. Denote the cumulative distribution function
(c.d.f.) of the Poisson parameters by G(λ),

G(λ) ≡ #{λj ≤ λ}/J.(2.3)

Now imagine that we could select a word at random with equal probability
from the J possibilities. Bayes theorem provides a formula for the expectation of
the selected word’s λ value given that it occurred x times in the canon, possibly
x = 0,

E{λ|x} =
∫ ∞

0 [e−λλx+1/x!]dG(λ)∫ ∞
0 [e−λλx/x!]dG(λ)

= (x + 1)

∫ ∞
0 [e−λλx+1/(x + 1)!]dG(λ)∫ ∞

0 [e−λλx/x!]dG(λ)

= (x + 1)
νx+1

νx

,

(2.4)

where νx = EG{nx} is the expectation of nx , (2.1),

νx = J

∫ ∞
0

[e−λλx/x!]dG(λ).(2.5)



368 B. EFRON

Substituting nx for the unobservable νx in (2.4) yields what may be the first,
and most famous, nonparametric empirical Bayes result,

Ê{λ|x} = (x + 1)
nx+1

nx

.(2.6)

This formula appears in both Good and Toulmin (1956) (Good credits Turing with
some of the ideas) and Robbins (1956). For x = 1, Table 1 gives

Ê{λ|x = 1} = 2 · 4,343

14,376
= 0.604,(2.7)

implying that the words appearing once each in the canon are typically overrepre-
sented: if we happened to find a collection of previously undiscovered Shakespeare
equal in volume to the present canon, the 14,376 singleton words would appear an
expected total of only 0.604 · 14,376 = 8,686 times.

Both Robbins and Good and Toulmin applied (2.6) to a variant of the missing
species problem. Let

r0 = ∑
xj =0

λj/λ+, λ+ =
J∑

j=1

λj ,(2.8)

the proportion of the total expectation in the “missing” class. A good estimate
of λ+ is N = 884,647, the total number of words, counting repetitions, in the
canon. The numerator of (2.8) is estimated by

Ê{λ|x = 0}n0 = n1

n0
n0 = n1,(2.9)

so (2.8) yields

r̂0 = n1/N,(2.10)

in our case equaling 14,376/884,647 = 0.016.
This can be provocatively interpreted as saying that the next “new” word of

Shakespeare you find has probability 0.016 of not existing in the current canon.
In fact, a previously unknown poem was discovered in the Bodelian library in 1985
and attributed by some experts to Shakespeare. Efron and Thisted (1987) applied
empirical Bayes results like (2.6) to an analysis of the poem’s Shakespearian
provenance.

Robbins preferred the term “compound Bayes” for the Shakespeare problem,
“empirical Bayes” being reserved for situations where G(λ) is a genuine
prior distribution rather than just an empirical distribution as in (2.3). This
difference was important for the careful decision-theoretic asymptotics in Robbins’
pioneering papers, Robbins (1951) and Robbins and Hannan (1955). The current
climate of more results but less precision tends to ignore the compound-empirical
distinction, as I am doing here.
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All of this concerns nonparametric empirical Bayes. Fisher, Corbet and
Williams (1943) addressed the missing species problem from a parametric
empirical Bayes viewpoint. Starting with the Poisson model (2.2), they assumed
that G(λ) in (2.3) was the c.d.f. of a gamma distribution. The two gamma
parameters, scale and index, were then estimated by maximum likelihood applied
to the equivalent of Table 1, an early example of hierarchical modeling.

Efron and Morris (1973) appropriated the name “empirical Bayes” for its
quintessentially parametric application to Stein estimation. An apology is called
for here. We believed that Robbins-type nonparametric empirical Bayes was
fundamentally impractical since it required an unimaginably large number of
parallel cases to be effective, while Stein’s rule applied to as few as three cases
at a time. What was unimaginable in 1973 is commonplace today. Nonparametric
empirical Bayes applies in an almost off-the-shelf manner to microarrays, the hot
new technology that has revolutionized genetic research.

3. Statistical analysis of microarrays. Microarrays are devices for measur-
ing gene “expression levels,” that is, how active a particular gene is in the workings
of a given cell. They differ from previous biogenetic technology in being able to
measure expression levels for thousands of candidate genes at once. This is a great
advantage for microbiologists, speeding the measurement process by three orders
of magnitude, but it leads to massive problems of statistical inference, which is
where empirical Bayes enters the picture.

Table 2 shows a small part of the data from a microarray experiment concerning
stomach cancer: 2,640 genes were measured on each of 48 microarrays; each
microarray used cells from a different cancer patient, the first 24 patients having
less aggressive disease (Type 1) while the second 24 had more aggressive disease
(Type 2), giving in total a 2,640 × 48 data matrix of expression levels. The purpose
of the study was to discover which genes were more active or less active in
Type 2 compared to Type 1 tumors. Newton, Kendziorski, Richmond, Blattner and
Tsui (2001) give some background on microarrays, as do Efron, Tibshirani, Storey
and Tusher (2001) and Efron, Storey and Tibshirani (2001). Most of the theory that
follows is taken directly from the last two references and related work in Tusher,
Tibshirani and Chu (2001), Storey (2001) and Genovese and Wasserman (2002).

If we had only the data for one gene, say gene 1, we could use a two-sample
t-statistic to test for a difference between the 24 Type 2 measurements versus
the 24 Type 1’s. Table 2 shows the t-value to be 1.550 for gene 1, two-sided
p-value 0.128 according to a standard t-distribution with 46 degrees of freedom.
This is not significant by the usual 0.05 standard, but the next gene has t = 2.847,
p = 0.007, indicating greater expression in Type 2 tumors. Gene 6 is significant
in the other direction, indicating greater expression in Type 1. All told, 818 of
the 2,640 genes were “significant,” that is, had p < 0.05, but, of course, we would
expect 132 = 0.05 · 2,640 such cases even if there were no real differences at all.
How should the statistician report the results? [Note: the discussion here assumes
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TABLE 2
Some of the expression data for the first 10 genes in the stomach cancer microarray example.

There are a total of 2,640 genes, each of which had its expression levels measured on
48 microarrays, 24 for Type 1 cancers (less serious) and 24 for Type 2 (more serious); tval is
the two-sample t -statistic comparing Type 2 with Type 1; pval is the two-sided significance

level of tval, 46 degrees of freedom

Type

Gene 1 1 . . . 1 1 2 2 . . . 2 2 tval pval

1 −0.22 −0.13 −1.23 0.13 −0.80 −0.36 −0.31 0.38 1.550 0.128
2 0.30 −0.12 −0.92 0.02 −1.13 −1.99 0.20 −0.46 2.847 0.007
3 −0.83 −0.01 −0.50 −1.69 −1.89 0.33 −1.12 −0.27 0.850 0.400
4 −0.14 0.69 −0.86 0.27 0.67 1.10 0.42 −0.96 −0.310 0.758
5 0.03 0.25 0.34 0.97 −0.43 0.10 0.03 −1.03 −1.852 0.070
6 0.66 0.68 0.22 0.58 −0.04 −0.09 −0.04 1.11 −2.226 0.031
7 −0.64 −0.36 0.66 0.01 0.18 0.31 0.57 −0.53 0.356 0.723
8 −0.02 −0.15 0.84 −0.13 −0.56 −0.24 −0.39 −0.43 −0.020 0.984
9 0.71 −0.29 0.48 −0.03 −0.56 −0.78 −0.34 0.27 0.460 0.648

10 0.16 −0.04 −0.55 −1.83 −0.90 −0.41 0.56 −0.04 1.914 0.062

independence of the 48 measurements for any one gene (though not across genes)
which is convenient for our presentation but not actually valid for the stomach
cancer data.]

Let Yi be the two-sample t-statistic for gene i. The solid histogram in Figure 1
displays all 2,640 Yi-values. We see that the histogram is much wider than the
density function f0(y) for a Student’s t-variate with 46 degrees of freedom.
Certainly, some of the genes behave differently in Type 2 vis-à-vis Type 1 tumors.
Robbins-type empirical Bayes theory will help us quantify the gene-by-gene
evidence for “different behavior.”

FIG. 1. Solid histogram shows distribution of the 2,640 two-sample t -statistics Yi ; this is much
wider than the density function f0(y) for a t -variate with 46 degrees of freedom, dashed curve; solid
curve f̂ (y) is a smooth fit to the solid histogram; empty histogram is permutation estimate of null
density f0, as explained in text. In this case it closely approximates the theoretical null density f0(y).
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A very simple Bayesian model assumes that there are two classes of genes:
“Different” and “Not Different,” meaning that the gene is either differently or not
differently expressed in Type 1 and Type 2 tumors. Let the prior probabilities for
the two classes be p1 and p0 = 1 − p1, with corresponding prior densities f1(y)

and f0(y) for the two-sample t-statistic Y :

p1 = Prob{Different},
f1(y) = density ofY if gene “Different,”

p0 = Prob{Not Different},
f0(y) = density ofY if gene “Not Different.”

(3.1)

Finally, let f (y) be the mixture density

f (y) = p0f0(y) + p1f1(y).(3.2)

We can apply Bayes theorem to get a posteriori probabilities:

p1(y) = Prob{Different|Y = y} = 1 − p0f0(y)/f (y),

p0(y) = Prob{Not Different|Y = y} = p0f0(y)/f (y).
(3.3)

In our case, f0(y) is the standard t-density with 46 degrees of freedom. We
do not know f (y) but we can estimate it by fitting a smooth curve f̂ (y) to the
Y -histogram, as in Figure 1, where f̂ (y) is a Poisson GLM fit. This is the crucial
empirical Bayes step, analogous to substituting nx for νx in the famous result (2.6).
Together, these give an estimate of p1(y), the posterior probability of “Different,”

p̂1(y) = 1 − p0f0(y)/f̂ (y).(3.4)

The prior probabilities p1 and p0 = 1 − p1 in (3.1) are unidentifiable without
parametric assumptions on the densities f0(y) and f1(y). (Robbins assumes
normality in the similar example of his 1951 paper.) Figure 2 shows p̂1(y) [(3.4)],
for two choices of p1: p1 = 0, the most conservative possible choice in terms of
minimizing p̂1(y); and p1 = 0.531, the minimum value of p1 that makes p̂1(y)

in (3.4) everywhere positive,

p1,min = 1 − min
y

{f̂ (y)/f0(y)}.(3.5)

This study actually began with more than 10,000 candidate genes, 80% of which
were discarded by a rough screening, which helps account for the big value
of p1,min.

It might seem that the prior assumption p1 = 0 rules out any interesting
posterior probabilities p̂1(Yi), but that is not the case: 389 of the 2,640 genes
still have p̂1(Yi) ≥ 0.90. The nonidentifiability of p1 or p0 also shows up
in the frequentist multiple-comparison theory discussed in Section 4. It is the
price we pay for using methods that are nonparametric and also nonstructural:
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FIG. 2. Empirical Bayes posterior probability that a gene is in the “Different” class given t -statistic
Yi = y, (3.4). Solid curve assuming prior probability p1 of “Different” equals 0; dashed curve
assuming p1 = 0.531, the smallest value that makes p̂1(y) everywhere positive. 389 of the 2,640
genes have p̂1(y) ≥ 0.90, even beginning with the conservative choice p1 = 0.

model (3.1)–(3.2) does not require a structural specification for the Y -observations
[unlike (2.2)–(2.3), where λ ∼ G and then x ∼ p0(λ)].

How do we know that a Student’s t-distribution with 46 degrees of freedom
is the appropriate choice for f0(y) in (3.1)? As a check, permutation methods
were used to generate a data-based estimate of f0: the 48 microarrays were
randomly permuted in a balanced way, 12 of the Type 2’s moved into the Type 1
class and vice versa and the 2,640 t-statistics were recomputed. This process
was independently repeated 20 times. All 20 · 2,640 permutation t-values gave
the empty histogram in Figure 1, closely following the theoretical t-density in
this case. Balancing is important here. Unbalanced permutations add a spurious
component of variance to the permutated t-value, coming from these genes where
there is actually a substantial difference between Type 1 and Type 2 responses.

Table 3 shows the empirical Bayes estimate p̂1(Yi), (3.4), for the 10 genes
of Table 2. Two sets of estimates are given, corresponding to the two curves in
Figure 2. Only gene 2 has p̂1(Yi) exceeding 0.90, but based on prior scientific
knowledge the biogeneticist might be interested in genes 6, 10, 5 or even 1. It is
important to remember the “empirical” in empirical Bayes. Bootstrap analyses,
resampling the microarrays, show some variability in the curves of Figure 2 and
considerable variability in the Yi value for any one gene.

The analysis so far depended on a drastic data reduction, from the full 48-vector
vi for gene i to the t-statistic Yi . Information is bound to be lost in the mapping
from vi to Yi , but the less we lose the more powerful our analysis and the better
our chance of detecting genuinely “Different” genes.

One can imagine applying model (3.1)–(3.2) directly to the vectors vi . The
theory stays the same, with (3.4) becoming

Prob{Different|vi} = 1 − p0f̂0(vi )/f̂ (vi).(3.6)

The trouble comes in trying to estimate the high-dimensional densities f0(v)

and f (v). However, we can at least explore various one-dimensional mappings
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TABLE 3
Empirical Bayes estimates of p1(y) = Prob{Different|Y } for

the 10 genes in Table 2; for p1 = 0 (column 3) and p1 = 0.513
(column 4). Only gene 2 has p1(Y ) exceeding 0.90

Gene tval pval P0{Diff|Y} P0.513{Diff|Y}
1 1.550 0.128 0.289 0.666
2 2.847 0.006 0.909 0.957
3 0.850 0.400 0.000 0.314
4 −0.310 0.758 0.000 0.023
5 −1.852 0.070 0.487 0.759
6 −2.226 0.030 0.718 0.868
7 0.356 0.724 0.000 0.084
8 −0.020 0.984 0.000 0.002
9 0.460 0.648 0.000 0.124

10 1.914 0.062 0.569 0.798

vi → Yi , looking for ones that do not lose much information. Information loss
manifests itself by reductions in the likelihood ratio f̂ (Yi)/f̂0(Yi), which reduces
the number of genes having Prob{Different|Yi} very large.

Figure 3 compares four choices of the constant a0 in mappings vi → Yi of the
form

vi → numi/(a0 + deni ),(3.7)

where numi and deni are the numerator and denominator of the usual two-sample
t-statistic: a0 = 0 gives the usual t-statistic; a0 → ∞ makes Yi proportional to
numi ; “a0 = 0.5” and “a0 = 0.9” correspond to intermediate cases where a0 is
taken to be the 50th, or 90th, percentile of all 2,640 deni values. The choice
“a0 = 0.9” gave the best results in the experiment featured in Efron, Tibshirani,
Storey and Tusher (2001).

FIG. 3. Prob{Different|Y } for four different choices of the constant a0 in the summary statis-
tic Y , (3.7); choice a0 = 0, the t -statistic, gives the best overall results; a0 = ∞, the difference
of the type means, is the worst. As in Figure 2 except that the vertical axis has been transformed to
the logit scale, while the Yi have been normalized.



374 B. EFRON

Figure 3 compares P̂rob{Different|Y } for the four mappings, always taking
p1 = 0, p0 = 1 in (3.4), corresponding to the solid curve in Figure 2. Here the
vertical axis has been transformed to the logit scale, to emphasize differences in the
tails, while for each mapping the Yi-values have been monotonically transformed
to have a Normal(0,1) empirical distribution. We can see that the choice a0 = inf
is bad in this case, indicating very few “Different” genes. Overall, our original
choice a0 = 0 performs best.

The important practical point is that microarray data sets are large enough to
support a lot of numerical experimentation. We can be quite empirical in our
empirical Bayes analysis, avoiding arbitrary a priori modeling in favor of data-
based investigation. Efron, Tibshirani, Storey and Tusher (2001) and Efron, Storey
and Tibshirani (2001) discuss the investigative possibilities and pitfalls, including
the tacit exchangeability assumptions we have been making; see Section 4.

4. Empirical Bayes and false discovery rates. The Robbins-type empirical
Bayes analysis of Section 3 is closely related to Benjamini and Hochberg’s (1995)
frequentist theory of false discovery rates, a promising new multiple-comparison
criterion. This relationship raises the hope, perhaps illusory, of improving the
connection between Bayesian and frequentist testing theory.

Here is a brief description of the FDR theory as it applies to the situation of
Figure 1. Let Hi be the null hypothesis that gene i is in the “Not Different”
class, in which case Yi , the two-sample t-statistic, has Student’s t-distribution with
46 degrees of freedom,

Hi :Yi ∼ t46.(4.1)

The p-value for testing Hi against the alternative that gene i is less expressed for
Type 2 than for Type 1 tumors is

Pi = Prob{t46 ≤ Yi}.(4.2)

(Of course, we could just as well test in the other direction.)
Letting P(1) ≤ P(2) ≤ · · · ≤ P(n), n = 2,640, Benjamini and Hochberg consider

the following simultaneous testing rule: for a fixed choice of α between 0 and 1,
define

iα = arg max
i

{
P(i) ≤ i

n

α

p0

}
, p0 = proportion of true Hi(4.3)

and reject all Hi with Pi ≤ P(iα). They then show that the false discovery rate of
this rule,

FDR = E{proportion of rejected Hi that are actually true}(4.4)

is bounded above by α. Their 1995 paper assumed independence of the Yi ,
but recent work has substantially relaxed this assumption; see Benjamini and
Yekutieli (2001).
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FIG. 4. Plot of P(i) vs. i, (4.2), for the 2,460 genes, i = 1,2, . . . ,250; the FDR rule (4.3) with
α = 0.05, p0 = 1, rejects Hi for Pi ≤ P(158) = 0.00298.

Notice that p0 in (4.3) has nearly the same definition as in the empirical Bayes
setup (3.1). As before, p0 is unknown and unidentifiable, but the most conservative
choice p0 = 1 can be used, just as in Section 3. Figure 4 graphically demonstrates
that iα = 158 for the cancer data, with α = 0.05 and p0 = 1, so that the FDR
rule rejects Hi for the 158 genes having Pi ≤ P(158) = 0.00298. Benjamini and
Hochberg’s theorem says that we can expect no more than 7.9 = 0.05 · 158 of the
158 rejected Hi to actually be true.

The close connection between false discovery rates and the empirical Bayes
methodology of Section 3 follows directly from Bayes theorem. Let F0(y)

and F(y) be the c.d.f.s corresponding to f0(y) and f (y) in (3.1) and (3.2) and
define the “Bayesian FDR” for the rejection rule {Yi ≤ y} to be

Fdr(y) ≡ p0F0(y)/F (y)

= Prob{gene i Not Different|Yi ≤ y}(4.5)

[called the “q-value” in Storey (2001)]. If there are say Ny genes having Yi ≤ y,
then among these the expected number of “Not Different” genes is Ny · Fdr(y).
This justifies calling Fdr(y) the Bayesian false discovery rate.

The obvious nonparametric estimate for Fdr(y) is

F̂dr(y) = p0F0(y)/F̂ (y),(4.6)

where F̂ (y) is the usual empirical cdf of the Yi . Then it is easy, as in Efron, Storey
and Tibshirani (2001), to prove the following result:

EQUIVALENCE THEOREM. For given α and p0, the Benjamini–Hochberg rule
is equivalent to rejecting all Hi having Yi ≤ yα , where

yα = max
y

{
F̂dr(y) ≤ α

}
.(4.7)

The equivalence theorem makes an important connection between empirical
Bayes and frequentist testing criteria: if we choose the rejection region {Yi ≤ y}
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as large as possible subject to the constraint that the estimated Bayes proportion
of false discoveries is less than α, then the frequentist expected proportion of
false discoveries is also less than α. One can simultaneously be a Bayesian and
a frequentist in this case, usually a good sign for both methodologies.

Tail area rejection regions like {Yi ≤ y} are natural in the frequentist framework.
The empirical Bayes approach suggests a local version of the FDR,

fdr(y) = p0f0(y)/f (y) = Prob{gene i Not Different|Yi = y}.(4.8)

Consider a small interval on the Y -axis, for example, Y = [−3,−2.8]. We expect
about

p0 · n · f0(2.9) · 0.2 = p0 · 4.05

“Not Different” genes in Y under model (3.1). Actually, we observed 36 genes
in Y, giving

f̂ (y) = 36

n · 0.2

as the nonparametric empirical estimate of f (y). The corresponding local fdr
estimate is

f̂dr(y) = p0
4.05

36
= p0 · 0.113.(4.9)

The conservative choice p0 = 1 gives f̂dr(y) = 0.113, or equivalently by (3.4),
p̂1(y) = 1−0.113 = 0.887. This makes the empirical Bayes statement (3.4) almost
obvious; we observe 36 genes in Y, and expect only about 4 of these to be “Not
Different.” Therefore we believe that about 8/9 of the 36 are in the “Different”
class. Here the exchangeability assumptions underlying Robbins-type analyses
are apparent: the 36 genes must be a priori interchangeable to justify believing
p̂1(y) = 0.887 for any one of them. Section 4.3 of Efron, Storey and Tibshirani
(2001) modifies (3.4) to handle the case of varying a priori beliefs.

5. Conclusion. The period between 1945 and 1980, when Robbins was most
active, witnessed a host of new methodological developments: nonparametrics,
robustness, Kaplan–Meier, proportional hazards, bootstrap, jackknife, Markov
chain Monte Carlo, all depending at some level on advances in computation. What
was not happening was the advancement of basic statistical theory. A Karl Pearson
or Gosset dropped into the 21st century would be impressed with our technology
but familiar with most of the underlying principles.

Empirical Bayes, of both the Stein and the Robbins variety, is the great
exception. It is definitely post Fisher–Neyman–Wald in spirit, pointing the way
toward an unexpected synthesis of Bayesian and frequentist points of view.
Moreover, it is a practical advance as well as a theoretical one. It is possible for
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empirical Bayes methods to reduce the risk of their classical competitors factors
of 2 or more, as shown by the examples in Efron and Morris (1975).

Why hasn’t there been a landrush of empirical Bayes applications? The obvious
answer is that scientists have not brought us many data sets having the parallel
structure necessary for empirical Bayes to do its stuff. This begs the question.
Statisticians are more than just passive processors of whatever problems happen to
come our way. Fisher’s theory of efficient experimental design greatly influenced
the form of 20th-century data sets. Analysis of variance (ANOVA) fits an amazing
number of situations, but that is at least partly because research scientists know we
can effectively analyze ANOVA data.

If statisticians demonstrate efficient ways of analyzing parallel data, then we
will start seeing more parallelism in database design. Microarrays and their
connection with Robbins-type empirical Bayes analysis are an emphatic case in
point. There seems to be a good chance that Robbins was 50 years ahead of his
time and that a statistical theory of the 1950s will shine in the 21st century.
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