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SCRAMBLED NET VARIANCE FOR INTEGRALS
OF SMOOTH FUNCTIONS1

BY ART B. OWEN

Stanford University

Hybrids of equidistribution and Monte Carlo methods of integration
can achieve the superior accuracy of the former while allowing the simple

Ž .error estimation methods of the latter. One version, randomized t, m, s -
nets, has the property that the integral estimates are unbiased and that

Ž .the variance is o 1rn , for any square integrable integrand.
Stronger assumptions on the integrand allow one to find rates of

convergence. This paper shows that for smooth integrands over s dimen-
y3 Ž .sy1 y1sions, the variance is of order n log n , compared to n for ordi-

nary Monte Carlo. Thus the integration errors are of order
y3 r2Ž .Ž sy1.r2n log n in probability. This compares favorably with the rate
y1 Ž . sy1 Ž .n log n for unrandomized t, m, s -nets.

1. Introduction. We consider the problem of integrating a function f
over the unit cube of dimension s. We assume that f is measurable without
pointing out the places below where this assumption matters, and that f 2 is
also integrable. For large enough s, Monte Carlo methods and equidistribu-

Ž .tion methods are most widely used. Recently Owen 1995, 1997 proposed a
Ž .hybrid of these two techniques based on scrambling the digits in a t, m, s -net

in base b. The resulting method provides unbiased estimates of I s
Ž . Ž . m

sH f X dX having a variance that is o 1rn along the sequence n s lb ,w0, 1.
1 F l - b, 0 F m. Thus, for any nonconstant f, the ratio of the scrambled net
variance to the ordinary Monte Carlo variance tends to zero as n ª `.

The main purpose of this paper is to find rates for the convergence, under
stronger assumptions on the integrand f. Theorem 2 shows that if f is

y3Ž . sy1smooth enough then the scrambled net variance is of order n log n as
n s lbm ª `. High powers of log n might not be negligible until n is very
large, and this raises the possibility that the scrambled net variance might be

Ž .worse than the Monte Carlo variance for finite n. Owen 1997 shows that for
n s bm the scrambled net variance is never more than a constant times the
Monte Carlo variance, and that this constant is never more than e s 2.718˙
for any f in any dimension. Theorem 1 here improves that result showing
that for n s lbm the scrambled net variance is never more than 1 q e s 3.718˙
times the Monte Carlo variance.
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The paper proceeds as follows: Section 2 provides background material,
and the proof of Theorem 1. Section 3 gives a simple proof that the scrambled
net variance is of order ny3 for smooth univariate functions and n s bm.
Section 4 considers the general s-dimensional case and sample sizes n s lbm.

y3Ž . sy1The variance rate n log n is established in Theorem 2. Section 5
considers an example integrand for which it is possible to compute both the
scrambled net variance and the Monte Carlo variance and compare them to
an asymptotic formula. Section 6 discusses for what n the asymptotic rate
might be expected to take hold and what sort of integrands are likely to be
handled well by scrambled net Monte Carlo. Section 6 also includes a
discussion of several slightly different definitions of the error rate and
compares the rates of convergence seen here to worst case rates obtained for
unscrambled nets and to some rates for the average case over random
integrands.

2. Background. This section introduces the notation and definitions
used. Here and below, the integer s G 1 denotes the dimension of the space in

w . swhich we work. The space is always the half-open cube 0, 1 . The integrand
w . s Ž .sis f : 0, 1 ª R. The goal is to find I s H f X dX.w0, 1.

Any domain that can be expressed as the image of the unit cube under
some function can be handled by subsuming the imaging function into f. The
half-open cube is chosen because it partitions easily into half-open subcubes
and hyperrectangles.

Ž 1 s. Ž 1 s.A point in the cube is denoted by X s X , . . . , X or by X s X , . . . , X .i i i
ˆ ˆ y1 n Ž .The estimate of I is I s I s n Ý f X for carefully chosen pointsn is1 i

w . sX g 0, 1 .i
� 4 w . sThe set AA s 1, 2, . . . , s denotes the coordinate axes of 0, 1 . The letter u

< <denotes a subset of AA and u is the cardinality of u. These subsets often
w .u jappear as superscripts: 0, 1 denotes the space of values for components X

u w .uof X with j g u, X denotes the coordinate projection of X onto 0, 1 and,
in integrals, dX u s Ł dX j. The case u s B can require special attention,jg u

< <either by a natural convention, or by restricting some operations to u ) 0.
The integer b G 2 is used throughout as a base for representing points in

w . j ` yk0, 1 . Thus X s Ý x b where x are integers with 0 F x - b.i ks1 i jk i jk i jk

Ž . Ž . Ž .2.1. t, m, s -nets, t, s -sequences and l, t, m, s -nets. Here we introduce
Ž . Ž .equidistribution methods known as t, m, s -nets and t, s -sequences. These

have been developed by Sobol’, Faure, and Niederreiter and a comprehensive
wŽ .discussion of them appears in the monograph by Niederreiter 1992 , Chap-

xter 4 on which this subsection is based.
w . sEquidistribution methods produce sequences X , . . . , X g 0, 1 such that1 n

the discrete uniform distribution on X , . . . , X closely approximates the1 n
w . scontinuous uniform distribution on 0, 1 . This typically involves showing

w . sthat for a class of subsets E : 0, 1 , the number of points X g E is close toi
n times the volume of E.
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w . sDEFINITION 1. An elementary interval of 0, 1 in base b is a set of the
form

s t t q 1j j
E s ,Ł k k /j jb bjs1

for nonnegative integers k and t - bk j.j j

This elementary interval is a hyperrectangle of volume byŽ k1q? ? ?qk s.. If a
w . sfinite sequence of points X , . . . , X is to be nearly equidistributed in 0, 11 n

there should be nearly nbyŽ k1q? ? ?qk s. points in E.

DEFINITION 2. Let t and m be nonnegative integers. A finite sequence
w . s m Ž .X , . . . , X g 0, 1 with n s b is a t, m, s -net in base b if every elemen-1 n

tary interval in base b of volume b tym contains exactly b t points of the
sequence.

Clearly smaller values of t imply better equidistribution properties for the
net. In the best case with t s 0, every elementary interval of volume 1rn has
one of the n points in the sequence.

DEFINITION 3. Let t be a nonnegative integer. An infinite sequence
w . s Ž .X , X . . . g 0, 1 is a t, s -sequence in base b if for all m G 0 and all k G 01 2

Ž .m mthe finite sequence X , . . . , X is a t, m, s -net in base b.k b q1 Žkq1.b

Ž .An advantage of using nets taken from t, s -sequences is that one can
increase n through a sequence of values n s lbm, 1 F l - b, and find that

ˆ ˆm mall of the points used in I are also used in I . As n increases throughlb Žlq1.b
this sequence of values, every elementary interval in base b of volume V
eventually contains nV of the points, and once such an interval is balanced

Ž .this way, it remains balanced as n increases. Niederreiter 1992 discusses
Ž . Ž .existence and construction of t, m, s -nets and t, s -sequences.

m Ž .The initial lb points of a t, s -sequence are well equidistributed but are
Ž . Ž .not ordinarily a t, m, s -net. Owen 1997 introduces the following definition

to describe such point sets.

DEFINITION 4. Let m, t, l be integers with m G 0, 0 F t F m, and 1 F l -
Ž . m Ž .b. A sequence X of lb points is called a l, t, m, s -net in base b if everyi

elementary interval in base b of volume b tym contains lb t points of the
sequence and no elementary interval in base b of volume b tymy1 contains
more than b t points of the sequence.

Ž .Numerical integration by averaging over the points of a t, m, s -net has
y1Ž . sy1an error of order n log n , for functions of bounded variation in the

wŽ . xsense of Hardy and Krause. See Niederreiter 1992 , Chapter 4 for this
result and some related ones. The rate attained along initial subsequences of

Ž . y1Ž . sa fixed t, s -sequence is n log n .
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2.2. Base b scrambling of the unit cube. Suppose that X , . . . , X is a1 n
Ž . j ` ykt, m, s -net in base b. Write X s Ý x b . It is possible to apply somei ks1 i jk
permutations to the digits x while retaining the net property for X , . . . , X .i jk 1 n

Ž .Owen 1995 describes such a scheme using uniform random permutations
of the integers 0, . . . , b y 1. There are b! permutations of these integers and a
uniform random permutation is one in which all permutations have the same
probability.

This scheme proceeds as follows, and may be described for a generic point
w . s Ž 1 s. j ` ykA g 0, 1 . Suppose A s A , . . . , A and A s Ý a b . Now let X sks1 i jk

Ž 1 s. j ` ykX , . . . , X with X s Ý x b . The scrambled version of A is theks1 i jk
point X, obtained by taking x , to be permutations of the digits a asi jk i jk
described below.

The permutation applied to a depends on the values of a for h - k.i jk i jh
Ž . Ž . Ž .Specifically x s p a , x s p a , x s p a , and in gen-i j1 j i j1 i j2 ja i j2 i j3 ja a i j3i j1 i j1 i j2

eral
x s p a ,Ž .i jk ja a ? ? ?a i jki j1 i j2 i jky1

� 4where p is a random permutation of 0, 1, . . . , b y 1 . The per-ja a ? ? ?ai j1 i j2 i jky1

mutations are mutually independent uniform random permutations.
The following geometrical description may help the reader visualize this

scrambling. The rule for choosing x is like cutting the unit cube into bi j1
Ž . jequal congruent parts along the X axis and then reassembling these parts

in random order to reform the cube. The rule for choosing x is like cuttingi j2
the unit cube into b2 equal parts along the X j axis, taking them as b groups
of b consecutive parts, and reassembling the b parts within each group in
random order. The rule for x involves cutting the cube into bk equal partsi jk

along the X j axis, forming bky1 groups of b equal parts, and reassembling
the b parts within each group in random order.

Ž . Ž .The sequence X inherits certain equidistribution properties of A andi i
w . s Žthe individual points in it are uniformly distributed on 0, 1 . Owen 1995,

.1997 proves the following two propositions.

Ž . Ž . Ž .PROPOSITION 1. If A is a l, t, m, s -net in base b then X is ai i
Ž .l, t, m, s -net in base b with probability 1.

w . sPROPOSITION 2. Let A be a point in 0, 1 and let X be the scrambled
w . sversion of A as described above. Then X has the uniform distribution on 0, 1 .

2w . s 2w . s2.3. ANOVA and wavelet decompositions of L 0, 1 . For f , g g L 0, 1 ,
² : Ž . Ž . 5 5we take the usual inner product f , g s H f X g X dX and norm f s

² :1r2f , f .
w . sIt is possible to construct an ANOVA decomposition of f over 0, 1 that

mimics the usual ANOVA decomposition used for the discrete product do-
mains widely used in experimental design. This functional ANOVA appears

Ž . Ž .in Efron and Stein 1981 , and in an operator form, in Wahba 1990 .
Ž .Hickernell 1996a presents a whole family of ANOVAs useful for studying

Ž .properties of numerical integration. The version below is from Owen 1992 .
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For u : AA, define the effect of u by

a s f y a dX AAyu ,ÝHu vž /
v;u

where the sum is over strict subsets v / u. For u s B this produces a s I.u
< <For u ) 0, the subeffects a are first subtracted from f and then thev

residual is averaged over the coordinate axes that are not in u. The result is a
w .u w . s Ž . Ž u.function a defined on 0, 1 which extends to 0, 1 by a X s a X .u u u

The ANOVA functions are analogous to the usual discrete ANOVA. Here
I s a is the analogue of the grand mean, a is the analogue of the mainB � j4

< <effect for variable j and for u ) 1, a is the analogue of the interactionu
among X j, j g u.

The following properties will also be familiar: j g u implies Ha dX j s 0,u
Ž .2 2u / v implies Ha a dX s 0, f s Ý a and H f y I dX s Ý su v u: AA u < u < ) 0 u

where s 2 s Ha 2 dX.u u
A further decomposition of the ANOVA is needed to study the variance of

Ž .scrambled nets. Owen 1997 presents a base b Haar-like multiresolution
w . s Ž .analysis of 0, 1 using ideas from Jawerth and Sweldens 1994 , Daubechies

Ž . Ž .1992 and Madych 1992 .
For s s 1, define the functions

c x s b1r21 y by1r21 , c s 0, 1, . . . , b y 1.Ž .c ? b x @sc ? x @s0

The functions c are the mother wavelets in this multiresolution. Theyc
y1 Ž .feature a narrow positive spike of width b centered over c q 0.5 rb and

they integrate to zero. Now for integers k G 0 and 0 F t - bk, define dilated
and translated versions

c x s bk r2c bk x y tŽ . Ž .k tc c

s bŽkq1.r21 kq 1 y bŽky1.r21 k? b x @sbtqc ? b x @st

of these wavelets. Because the dilation is by factors of b it would be usual to
have b y 1 mother wavelets in the family. Many readers will be familiar with

Ž .diadic b s 2 wavelets where only one mother wavelet is used. The Haar
wavelets correspond to base b s 2 and just one mother wavelet. Here b
wavelets are used, in order to preserve some symmetry. Notice that the cc
are not orthogonal:

² : y1c , c s 1 y b .c c9 csc9

More generally

² : k y1c , c s 1 1 b 1 y b .Ž .k tc k 9t 9c9 ksk 9 tst 9 csc9

All of the c integrate to zero, so they can only provide a basis fork tc
functions that integrate to zero. Let us therefore also use the function
Ž . w . wŽ . xf x s 1 on 0, 1 . Owen 1997 , Section 6 develops the representation

² : ² :f x s f , f f x q c , f c xŽ . Ž . Ž .Ý Ý k tc k tc
kkG0 0Ft-b
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for square integrable f. Notice that although the c are not orthogonal thek tc
representation takes the same simple form that it would for an orthogonal

Ž .basis. See Owen 1997 , Lemma 3.
w . sThis decomposition extends to 0, 1 by taking tensor products. For each

u : AA, take a product over j g u of scaled and translated wavelets. Such a
< < < < < <product requires u scales k , j g u and similarly u translations t and uj j

< <wavelets c . It is convenient to bundle these together into vectors of uj
components, k for the k , t for the t and g for the c . Then definej j j

c X s c X u s c X j .Ž . Ž . Ž .Łuktg uktg k t cj j j
jgu

Ž . Ž .When u s B we take by convention c X s c X s 1 where theuktg BŽ .Ž .Ž .
Ž .subscripts denote vectors of zero components. This convention is natural as

empty products are usually taken to be 1. The multiresolution decomposition
2w . sof f g L 0, 1 is

² :f X s c , f c X .Ž . Ž .ÝÝÝÝ uktg uktg
u k t g

< <This sum is taken over all subsets u : AA, over all u vectors k of nonnegative
< < k jintegers k , over all u vectors t of integers t with 0 F t - b and over allj j j

< <u vectors g of integers c with 0 F c - b.j j
We can recover the usual functional ANOVA via

² :a X s c , f c X .Ž . Ž .ÝÝÝu uktg uktg
k t g

Ž .Owen 1997 introduces the terms

² :n X s c , f c X .Ž . Ž .ÝÝu , k uktg uktg
t g

The function n is a step function, constant within elementary intervalsu, k

a a q 1j j
,Ł k q1 k q1 /j jb bjgu

for integers 0 F a - bk jq1 . Thus n is constant within each of Ł bk jq1
j u, k jg u

< u <q < k < < <s b elementary intervals where k denotes Ý k . Here a s bt q c .jg u j j j j
The n are mutually orthogonal becauseu, k

² : < k < y1
Xc , c s 1 1 1 b 1 y b .Ł ž /uktg u9k 9t 9g 9 usu9 ksk 9 tst 9 c scj j

jgu

2.4. Variance over scrambled nets. Suppose that X is obtained by scram-i
bling the base b digits of A for i s 1, . . . , n. Then by Theorem 2 of Oweni

ˆ y1 nŽ . Ž .1997 , the variance of I s n Ý f X isis1 i

1
22.1 G s ,Ž . Ý Ý u , k u , kn k< <u )0
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2 2 Ž .where s s Hn X dX and G is determined by balance propertiesu, k u, k u, k

among A , . . . , A . The constants G are interpreted as ‘‘gains’’ that multi-1 n u, k

ply the variance contribution of n . If all of the G are equal to one, thenu, k u, k

the variance is the same as under simple Monte Carlo integration with
w . sindependent X ; U 0, 1 .i

The value of G depends on the number and arrangement of matchesu, k

among the various base b digits of the A j. It follows from Section 7 of Oweni
Ž .1997 that

n n1
Ž . Ž .k q1 j k q1 j k j k j2.2 G s b1 y 1 .j j j jÝ Ý Łu, k ? b A @s? b A @ ? b A @s? b A @< <u i i9 i i9jgun b y 1Ž . is1 i9s1

Ž .By following some counting arguments, Owen 1997 shows that if A are ai
Ž . < < < <l, 0, m, s -net in base b and m G u q k , then G s 0. This is intuitivelyu, k

obvious because n is constant within each of b < u <q < k < elementary intervalsu, k

and by placing the same number of points in all of those intervals, the
Ž .scrambled l, 0, m, s -net therefore integrates n without error. Furtheru, k

< < Ž < < .counting arguments show that G s 1 for k ) m or k s m and l s 1 .u, k

Thus very coarse effects do not contribute to the integration variance and
very fine effects contribute the same as under simple Monte Carlo.

< <When u ) 1 or l ) 1, there are also some intermediate effects for which G
Ž . Ž .can be larger or smaller than one. In this case 2.2 reduces, for l, 0, m, s -

nets, to
< <u

< << < < <uy u u yll my < k <yl2.3 G s b y 1 b y1 max 1, lbŽ . Ž . Ž . Ž .Ýu , k ž /lls0

which can be reexpressed as
< < < <y u u

G s 1 q b y 1 y1Ž . Ž .u , k

< <my k< <u y 1 < << < u lmy kmy < k <= lb y1 y yb .Ž . Ž .Ý ž /ž /< <m y k lls0

2.4Ž .

Ž .For 0, m, s -nets, that is, for l s 1,
Ž . by1min sy1, mb b

0 F G F F F e s 2.718˙u , k ž / ž /b y 1 b y 1

Ž .holds by Theorem 3 of Owen 1997 . The second inequality is tight, being
< < < < < < < <attained for m - s at u s m q 1, k s 0 and for m G s at u s s, k s m y

Ž .s q 1. The third inequality holds because a 0, m, s -net can only exist for
b G s. Here we improve that theorem as follows.

THEOREM 1. In the above notation,
Ž .min sy1, mb

G F F e s 2.718˙u , k ž /b y 1
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Ž .for a scrambled 0, m, s -net in base b and

G F 1 q e s 3.718˙u , k

Ž .for a scrambled l, 0, m, s -net in base b.

Ž .PROOF. Theorem 3 of Owen 1997 covers the first claim and so we need
< <only consider the second claim for the case where 2 F l F b y 1 and m y u

< < < < < <- k F m. If m y k q u is odd then G is decreasing in l. Therefore it is
Ž .maximized at l s 1, a case already covered by Theorem 3 of Owen 1997 .

< < < < Ž .Suppose that m y k q u is even. Then, using 2.4 ,

< <u y 1< <y u my < k <G F 1 q b y 1 lbŽ .u , k ž /< <m y k

< <u y 1< <1y u my < k <F 1 q b y 1 bŽ . ž /< <m y k

< <1y u < u <y1F 1 q b y 1 bŽ .
by1F 1 q br b y 1Ž .Ž .

F 1 q e s 3.718.˙
The first inequality follows because the excluded sum is negative by an
argument based on alternating signs and monotone magnitudes of its terms.

< <The third inequality follows because for b G u y 1 the expression
< <my < k < u y 1Ž . < <b is increasing in m y k . I< <m y k

The second bound in Theorem 1 does not appear to be tight. Numerical
investigations for s F 100 find G no larger than 2.678, and so it may beu, k

Ž .true that G F e for all u, k and all l, 0, m, s -nets.u, k

2.5. Elementary lemmas. This subsection gathers some elementary calcu-
lus results that are used below. Readers uninterested in the details of the
proofs to follow can safely skip this subsection. Rules C1, C2 and C3 apply to
univariate functions whose first derivative satisfies a Lipschitz condition.

< Ž . Ž . < < < bRULE C1. Suppose that f 9 x y f 9 x* F B x y x* for some finite B G 0
Ž xand b g 0, 1 , for all real x, x*. Then

< <1qbf x s f x* q f 9 x* x y x* q C x y x* ,Ž . Ž . Ž . Ž .
< < Ž .y1where C F B 1 q b F B.

PROOF. Without loss of generality, x* F x. Now
x

f x s f x* q f 9 v dvŽ . Ž . Ž .H
x*

x
s f x* q f 9 x* x y x* q f 9 v y f 9 x* dvŽ . Ž . Ž . Ž . Ž .H

x*
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and
x x

< <f 9 v y f 9 x* dv F f 9 v y f 9 x* dvŽ . Ž . Ž . Ž .H H
x* x*

x
b< <F B v y x* dvH

x*

y1 1qb< <s B 1 q b x y x* . IŽ .

RULE C2. Let f be as in Rule C1. Then for a - a and b - b ,0 1 0 1

a b1 1y1 y1a y a f x dx y b y b f x dxŽ . Ž . Ž . Ž .H H1 0 1 0
a b0 0

1qb 1qb1qb< <s a y b f 9 b q C a y b q C a y a q C b y b ,Ž . Ž . Ž . Ž .ab a 1 0 b 1 0

y1yb y1Ž . Ž . < < < < Ž . Žwhere a s a q a r2, b s b q b r2 and C , C F B2 1 q b 20 1 0 1 a b
.y1 < < Ž .y1q b F Br4 and C F B 1 q b - B.ab

PROOF. Taking x* s a in C1 and integrating the first term over x from
a to a yields0 1

a1y1 1qba y a f x dx s f a q C a y a ,Ž . Ž . Ž . Ž .H1 0 a 1 0
a0

< < y1yb Ž .y1Ž .y1where C F B2 1 q b 2 q b . A similar result holds for the inte-a
< < y1yb Ž .y1Ž .y1gral from b to b with constant C F B2 1 q b 2 q b . Applying0 1 b

C1 to the difference of the integrals, with x* s b and x s a, yields the result.
I

w xRULE C3. Let f be as in Rule C1, for x, x* g 0, 1 . Then

ny11 12 2 ybf 9 x s f 9 x dx q O n ,Ž . Ž .Ž .Ý Htn 0ts0

Ž .where x s t q 0.5 rn.t

Ž . < Ž . <PROOF. Note that f 9 x F f 9 0 q B for 0 F x F 1. Now

ny111 22f 9 x dx y f 9 xŽ . Ž .ÝH tn0 ts0

ny1 Ž .tq1 rn
< < < <F f 9 x q f 9 x f 9 x y f 9 x dxŽ . Ž .Ž . Ž .Ý H t t

trnts0

ny1 Ž .tq1 rn b< < < <F 2 f 9 0 q B B x y x dxŽ .Ž . Ý H t
trnts0

< < ybF 2 B f 9 0 q B n . IŽ .Ž .
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3. Smooth integrands, s s 1. The one-dimensional case is much sim-
pler to understand and so it is worth describing as a special case. We further
simplify by taking l s 1. That is, we suppose that X are a scrambledi
Ž . w ym Ž . ym .0, m, 1 -net in base b. Then each interval of the form tb , t q 1 b ,
0 F t - bm contains exactly one of the X , let us call it Z , and the Z arei t t
independent random variables having the uniform distribution over the

ym ymw Ž . . Ž .interval tb , t q 1 b . Let x s t q 0.5 rn.t
< Ž . Ž . < < < b Ž xSuppose that f 9 x y f 9 x* F B x y x* for finite B G 0 and b g 0, 1 .

1qbŽ . Ž . Ž .Ž . < <Then by Rule C1, f Z s f x q f 9 x Z y x q C Z y x for a ran-t t t t t t t t
< <dom variable C satisfying C F B. Nowt t

ny1
1qby2ˆ < <V I s n V f 9 x Z y x q C Z y xŽ . Ž . Ž .Ž .Ý t t t t t t

ts0

ny1
y12y2 2s n f 9 x 12n q E q E ,Ž .Ž .Ý t 1 2

ts0

where
ny1

2qby2 y3yb< < < < < <E F 2 Bn f 9 x E Z y x s O nŽ .Ž . Ž .Ý1 t t t
ts0

and
ny1

2q2 b2 y2 y3y2 b< < < <E F B n E Z y x s O n .Ž .Ž .Ý2 t t
ts0

Thus by Rule C3,

1 1 2 yb y3ybˆV I s f 9 x dx q O n q O nŽ . Ž . Ž .Ž . H3 ž /12n 0

1 1 2 y3ybs f 9 x dx q O n .Ž . Ž .H312n 0

The result is integration with errors of order ny3r2 in probability. This is a
big improvement over the corresponding ny1r2 rate for ordinary Monte
Carlo, but is not as good as some basic one-dimensional integration schemes.

Ž y1yb .For example, a midpoint rule attains O n accuracy, which for b ) 1r2
is better than scrambled nets.

This rate ny3r2 in probability is better than the worst case rate ny1

obtained for unrandomized nets. Interestingly, the worst-case rate is com-
monly seen in applications of one dimensional nets, which are usually gener-
alizations of the van der Corput sequence. Fred Hickernell has provided a
convincing explanation of this phenomenon. The unscrambled van der Corput
schemes are, for n s bm, essentially rectangle rules with the data points
taken at the left ends of each of n intervals of width 1rn. With large n and
well-behaved f , most intervals will have either their largest or smallest value
of f at the left endpoint. It cannot be assumed that the resulting positive and
negative errors will cancel. The error in such a rule is typically of order 1rn.
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Scrambled nets take the data points at random in each of these intervals and
so there is a tendency for some cancellation to take place among the errors
from each interval.

A worst-case integrand for a scrambled net might be one which takes its
w Ž . .minimum over the interval trn, t q 1 rn at the point Z randomly gener-t

ated by the scrambled net. It is unduly pessimistic to expect such integrands
in practice.

4. Smooth integrands, s G 1. The situation for s ) 1 is more compli-
w . scated. A simple analysis based on breaking 0, 1 into n subcubes does not

capture all of the balance properties in the net. The analysis below proceeds
through the multiresolution described in Section 2.

We have that
1

2ˆV I s G s ,Ž . Ý Ý u , k u , kn k< <u )0

where

s 2 s n 2 X dX .Ž .Hu , k u , k

The coefficients G are zero if n is a multiple of b < u <q < k < and otherwise, foru, k

n s lbm, they are between 0 and 1 q e. Therefore

1
2ˆV I s O s ,Ž . Ý Ý u , kž /n < < < < < <u )0 k )my u

ˆŽ .and so a rate of convergence for V I can be attained by finding a rate of
decay for s 2 .u, k

² :The proof goes as follows: Lemma 1 gives an approximation to f , cuktg

for smooth f. Using this formula, Lemma 2 shows that s 2 is of order by2 < k <
u, k

2 ˆ y2< < < < Ž .for k ) m y u . Thus the largest s contributing to V I is of order n .u, k
ˆ y3Ž . Ž .At first sight this would suggest that V I s O n , but the number of

2 < < < <terms s for a given value k grows with k and the result is thatu, k
ˆ y3 sy1Ž . Ž Ž . .V I s O n log n .
For the purposes of this paper a smooth function is one for which the order

s mixed partial derivative satisfies the following Lipschitz condition.

w . sDEFINITION 5. A real-valued function f on 0, 1 is smooth if there exists
Ž xfinite B G 0 and b g 0, 1 such that
s s 

b5 5f x y f x* F B x y x* ,Ž . Ž .
 X  X

5 5where z is the Euclidean norm of z.

REMARK 1. If f is smooth, then every mixed partial derivative  < u < fr X u

< <with u F s satisfies a Lipschitz condition with the same b and a possibly
< <larger B. To show this for u s s y 1, connect a point x* to x by s steps each
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of which changes exactly one coordinate and bound the difference over each
< <step. Make this argument s y u times for the general case. In particular, f

itself satisfies a Lipschitz condition with the same b.

REMARK 2. If f is smooth, then every ANOVA effect a , regarded as au
w . sfunction on 0, 1 , is also smooth. Clearly this is true for the constant

Ž u. Ž . AAyu
u ufunction a . For the general case, write a X s H f Z dZ yB u Z sX

Ž u. < u < uÝ a X . Trivially,  a r X s 0. Finallyv ; u v v

 < u <a X  < u <  < u <Ž .u AAyu AAyus f Z dZ s f Z dZŽ . Ž .H Hu u uu u u u X  X  XZ sX Z sX

which satisfies the Lipschitz condition because  < u < fr X u does. Below we use
the equivalence

 sa  s fAA
4.1 s .Ž .

 X  X

Before proving the rate of convergence, we introduce some univariate
indicator functions N j and W j through

c X s c X jŽ . Ž .Łuktg k t cj j j
jgu

s bŽk jq1 .r2 N j X j y by1W j X jŽ . Ž .Ž .Ł
jgu

s bŽ < k <q < u <.r2 N j X j y by1W j X j ,Ž . Ž .Ž .Ł
jgu

jŽ . k q1where N x s 1 is the indicator function of the jth ‘‘narrow’’j? b x @sbt qcj j
jŽ . kinterval and W x s 1 is the indicator function of the jth ‘‘wide’’j? b x @st j w .uinterval. Let v s v denote the point in 0, 1 with coordinates equal tou, k , t

j yk jŽ .the centers of all the wide intervals. That is v s b t q 0.5 . We also usej

by11 b y 1
c s c sÝb 2cs0

Ž . Ž .and d s d g s c y c rb.j j j
Ž yŽ1 qb .k j.The error magnitude O Ý b appears often in the calculationsjg u

Ž yŽ1 qb .min j g u k j.below. For fixed s, it is equivalent to O b . For brevity we write
yŽ1 qb .kŽ .this as O b within proofs.

LEMMA 1. Suppose that f is smooth; then

 < u <a vŽ .u u , k , tyŽ3 < k <q < u <.r2 yŽ1qb .k j² :f , c s b d 1 q O b .Ł Ýuktg ju ž / ž /ž / X j jgu



SCRAMBLED NET VARIANCE RATES 1553

< <PROOF. The proof uses u applications of Rule C2 to approximate the
inner product with c :uktg

² : ² :f , c s a , cuktg u uktg

s a X c X dX uŽ . Ž .H u uktg

s byŽ < k <q < u <.r2 bk jq1 N j X j y by1W j X j a X dX uŽ . Ž . Ž .Ž .ŁH u
jgu

< u < a v c y cŽ .u u , k , t jyŽ < k <q < u <.r2 yŽ1qb .ks b 1 q O bŽ .Ž .Łu k q1jž / X bj

 < u <a vŽ .u u , k , tyŽ3 < k <q < u <.r2 yŽ1qb .ks b d 1 q O b . IŽ .Ž .Ł ju ž / X j

LEMMA 2. Suppose f is smooth, then:
2< <u2 < u <b y 1  au2 y2 < k < yŽ1qb .k js s b 1 q O b .Ýu , k u2 ž /ž / ž / X12b jgu

PROOF. The supports of c and c are disjoint unless t s t 9 and souktg ukt 9g 9

2 ² :² :n s f , c f , c c cÝÝÝÝu , k uktg ukt 9g 9 uktg ukt 9g 9
t g t 9 g 9

² :² :s f , c f , c c c .ÝÝÝ uktg uktg 9 uktg uktg 9
t g g 9

X Ž .Applying Lemma 1 and letting d s d g 9 ,j j

2< u < a vŽ .u u , k , t X2 y3 < k <y < u <n s b c c d dÝ ÝÝ Ł Łu , k uktg uktg 9 j ju ž / ž /ž / X j jt g g 9

yŽ1 qb .k= 1 q O b .Ž .Ž .
Now

c c dX d dXÝÝ Ł ŁH uktg uktg 9 j jž / ž /
j jg g 9

s 1 X y by1 d dXÝÝŁ Ł Łž /c sc j jž / ž /j j
j j jg g 9

< <uby1 by1
y1 2s 1 y b c y c c9 y c rbŽ . Ž .Ž .Ý Ý csc9ž /

cs0 c9s0

< <u2b y 1
s .ž /12b
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Therefore from the definition of s 2 and making use of Rule C3,u, k

< < 2u2 < u <b y 1  a vŽ .u u , k , t2 y3 < k < yŽ1qb .ks s b 1 q O bŽ .Ž .Ýu , k u2 ž /ž /  X12b t

2< < 2u2 < u <b y 1  a XŽ .uy3 < k < < k < u yŽ1qb .ks b b dX 1 q O bŽ .Ž .H už / ž /ž /12b  X

yŽ1 qb .k= 1 q O bŽ .Ž .
2< <u2 < u <b y 1  auy2 < k < yŽ1qb .ks b 1 q O b . IŽ .Ž .u2ž /  X12b

The constants implicit in the error terms of Lemmas 1 and 2 depend on the
smoothness constants, B and b for each a . These lemmas become everu
sharper as k s min k increases. Where k vanishes or is bounded, thejg u j
lemmas are less sharp, reducing to statements that the expression on the
left-hand side of the equality is bounded, uniformly in k , by some multiple of
the lead expression on the right-hand side. This is sufficient accuracy to get
the rate, but not the lead constant, in Theorem 2 below.

THEOREM 2. Suppose that f is smooth, and X , . . . , X are points of a1 n
Ž .scrambled l, 0, m, s -net in base b. Then:

sy1y3ˆV I s O n log n .Ž .Ž . Ž .

PROOF. For n s lbm, by Lemma 2 we have,

2 < <u< u < 21  a b y 1u y2 < k <ˆV I s O bŽ . Ý Ýu 2ž /n  X 12b� 0< < < < Ž < < .u )0 k G my u q1 q

2 < <u< u < 2 `1  a b y 1 < <u q l y 1u y2 ls O bÝ Ýu 2 ž /ž / < <u y 1n  X 12b� 0< < Ž < < .u )0 ls my u q1 q

< <by counting the number of vectors k with a given value of k and using
Ž .z s max z, 0 .q

Ž < < .Since we are interested in large n, we suppose that m y u q 1 s m yq
< < < < < <u q 1 for all u F s. That is, m G s y 1, and so, using l s m y u q r,

2 < <u< u < 2 `1  a b y 1 m q r y 1u 2 < u <y2 m y2 rˆV I s O b bŽ . Ý Ýu 2 ž /< <ž / u y 1n  X 12bž /< < rs1u )0

2 < <u2 < u < 2 `l  a b y 1 m q r y 1u y2 rs O b .Ý Ýu3 ž /< <ž / u y 1 X 12nž /< < rs1u )0
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It remains to examine the binomial coefficients as m ª `:
< <u y2` `1m q r y 1y2 r y2 rb s b m q r y 1 y jŽ .Ý Ý Łž /< <u y 1 < <u y 1 !Ž . js0rs1 rs1

< u <y1 `m
y2 r; bÝ< <u y 1 !Ž . rs1

m < u <y1

s 2 < <b y 1 u y 1 !Ž . Ž .
< <u y1log nŽ .

s .< <u y1 2 < <log b b y 1 u y 1 !Ž . Ž . Ž .
Therefore

sy1log nŽ .ˆV I s O . IŽ . 3ž /n

Keeping the term of largest order, ignoring the magnitudes of the gains
Ž .G and using 4.1 , we get the approximationu, k

sy1 2sy1 2 2 slog n l b y 1  fŽ .ˆ4.2 V I s .Ž . Ž . ˙ s3 ž /12 s y 1 ! log b  Xn Ž .
2 Ž . Ž .The factor l reflects the extra efficiency of a 0, m, s -net over a l, 0, m, s -

Ž .net with l ) 1. The approximation 4.2 is only good to within a constant
< < yŽ1 qb .k jmultiple because terms with large k can still have Ý b of order 1.jg u

2 2 ŽAt this level of accuracy the l term could be ignored, because 1 F l F b y
.21 . But the computational example in Section 5 and simulations in Owen

Ž .1995 show a certain wavy effect in error versus sample size plots that can
be explained by the l2 factor.

It is noteworthy that the value of b does not affect the rate of convergence.
The example in the next section considers a function for which the mixed
partial is constant, and this extra smoothness does not improve the rate of
convergence. It is an open question whether the rate in Theorem 2 holds
under weaker smoothness conditions.

5. Example. The integrand
s

sr2 j5.1 f X s 12 X y 0.5Ž . Ž . Ž .Ł
js1

has integral I s 0 and variance s 2 s 1 for any s. It has only s-dimensional
structure because s 2 s 1 . Scrambled nets are based on piecewise con-u < u <ss
stant approximations to f , and this f is multilinear. Thus f is not artificially
easy for scrambled nets, at least in terms of the rates of convergence to be
expected. Of course, this f is easier than would be a highly oscillatory
function with only s-dimensional structure.



A. OWEN1556

The various approximations used in Lemmas 1 and 2 have no error for this
integrand. Thus

² : sr2 yŽ3 < k <qs.r2f , c s 1 12 b dŁuktg < u <ss j
j

and

s2b y 1
2 y2 < k <s s 1 b .u , k < u <ss 2ž /b

For n s lbm,

s21 b y 1
y2 < k <ˆV I s G b .Ž . Ý AA , k2ž /n b < < Ž .k G mysq1 q

This variance formula has been evaluated numerically for s s 1, . . . , 10, b
equal to all prime powers between s and 11 inclusive, and all n s lbm from
n s 1 to the smallest such n greater than or equal to 108. Some of the
variances are above the Monte Carlo variance but never by more than a

Ž .factor of 2.331, so the root mean square error RMSE of scrambled nets was
never more than 1.53 times as large as that of Monte Carlo.

Figures 1 through 3 show some of these calculations. In each figure the
ˆ 1r2Ž .horizontal axis displays log n and the vertical axis displays log V I .10 10

For each plot, reference lines ny1r2 are given corresponding to the simple
Monte Carlo RMSE for the example function and ny3r2 corresponding to the
asymptotic RMSE for the example function when s s 1. The reference lines
meet at the upper left of each plot where n s 1 and the RMSE is 1.0. The
complete set of RMSE values for scrambled nets plot as a nearly uniform gray

Ž .haze not shown between the reference lines.
Figure 1 compares the RMSE values for s s b s 4 with a dashed third

reference line corresponding to the asymptotic rate

1r232l 15 3r2 y3r2RMSE s log n nŽ .˙ ž /ž /6 log 4

Ž .predicted by 4.2 . The approximation is surprisingly accurate at least for
n G 44 s 256.

Figure 2 shows results for dimensions 1 F s F 10, using in each case the
smallest prime power b G s. This choice usually, though not always, gives the

Ž .best asymptotic discrepancy among unrandomized 0, s -sequences and seems
to be a good choice for randomized nets as well. It is the smallest b for which
Ž .a 0, s -sequence in base b exists. The points for s s 1, b s 2 overstrike the

ny3r2 reference line. For higher values of s, the line follows the Monte Carlo
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Ž .FIG. 1. This plot shows the root mean squared error RMSE of scrambled nets in dimension
s s 4 generated with base b s 4, versus the sample size n. The exact RMSE values for integrating

Ž .the multilinear function given in 5.1 , are plotted as asterisks. The sample sizes n are all integers
of the form l4m from 1 to the first such integer larger than 108. The theoretical asymptote,

Ž .3r2 y3r2proportional to log n n , is shown as a dashed line. Also shown are two solid reference
lines, with RMSE s ny1r2 corresponding to simple Monte Carlo and RMSE s ny3r2 correspond-
ing to scrambled nets in dimension s s 1.

RMSE ny1r2 until n s b s at which point it appears to take on the rate
ny3r2, at least approximately. The lines for s s 9 and s s 10 do not break
below the ny1r2 line because the sample size is not sufficient. They crisscross
each other, and near n s 108 it appears that the s s 10-dimensional problem
is slightly easier than the s s 9-dimensional version.

Figure 3 shows the RMSE values for 1 F s F 10 and b s 11. These curves
are relevant for 10- or 11-dimensional integrands dominated by an s-dimen-
sional multilinear component. The RMSE’s for s s 1 return to the ny3r2 line
at powers of 11. In between powers of 11 the RMSE initially decreases
parallel to the Monte Carlo reference curve, but remains within bands
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FIG. 2. This plot shows the RMSE for scrambled net integration of the multilinear integrand
Ž .given in 5.1 , versus the sample size n. For each dimension s s 1, . . . , 10, a curve is plotted of the

Ž .exact RMSE for the first n points of a scrambled 0, s -sequence in base b, where b is the smallest
prime power for which b G s. The sample sizes n are all integers of the form lbm from 1 to the
first such integer larger than 108. Also shown are two solid reference lines, with RMSE s ny1r2

corresponding to simple Monte Carlo and RMSE s ny3r2 corresponding to scrambled nets in
dimension s s 1. The dimension s s 1 values overstrike the RMSE s ny3r2 line, and the
s s 9, 10 values fluctuate around the RMSE s ny1r2 line. The improvement over Monte Carlo
sets in around n s b s.

parallel to the ny3r2 line. The curves for s ) 7 do not break below the Monte
Carlo reference curve in this data because the sample size is not sufficient.

There is no practical way to include the errors from unrandomized nets in
Ž .the figures. The true error depends on which t, m, s -net one uses, not just

on t, m, s, and b. Numerical enumeration is unsuitable for this reason, and is
impractical for n as large as 108. The widely quoted Koksma]Hlawka bound,

Ž .using the best known constants in Niederreiter and Xing 1996 , is not sharp
enough. For example, even with s s 4 and n s 108 this bound is larger than˙
the Monte Carlo RMSE.
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FIG. 3. This plot shows the RMSE of scrambled nets for the multilinear integrand given in
Ž .equation 5.1 , versus the sample size n. For each dimension s s 1, . . . , 10, a curve is plotted of the

Ž .exact RMSE for the first n points of a scrambled 0, s -net in base b s 11. The sample sizes n are
all integers of the form l11m from 1 to the first such integer larger than 108. Also shown are two
solid reference lines, with RMSE s ny1r2 corresponding to simple Monte Carlo and RMSE s
ny3r2 corresponding to scrambled nets in dimension s s 1. The dimension s s 1 values overstrike
the RMSE s ny3r2 line, and the s s 8, 9, 10 values fluctuate around the RMSE s ny1r2 line.

y3Ž . sy16. Discussion. From the proof of Theorem 2, the n log n rate
doesn’t really set in until m G s at the earliest. For smaller n the variance is
a multiple of ny1, though this multiple decreases each time n passes another
power of b. Since we work with b G s this means that the full benefits do
not appear until n s s s. For s G 10 this is very expensive, but for s F 8 it is˙
more acceptable. The reason that scrambled nets may be useful on high-
dimensional problems is that the integrand f may have a lot of low-

2 < <dimensional structure by which is meant large values of s for small u . Theu
< <better rate of convergence starts to set in for all effects a of size u F m,u
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and if these dominate the integrand, then the result is a much smaller
variance.

Ž .An effect like this was seen in Owen 1995 for scrambled net integration
of some 10 dimensional integrands using b s 11 and m F 4. In some of those

Ž .examples, taken from Genz 1984 , scrambled nets had much greater accu-
racy than Monte Carlo and the accuracy ratio increased as n increased
through the powers of 11. Had the integrands been fully 10-dimensional with
no 1 through 4-dimensional structure, the scrambled net results would have
been essentially the same as the ordinary Monte Carlo results, for the sample
sizes used.

It is not necessary for f to be smooth for scrambled net Monte Carlo to
show a big improvement over ordinary Monte Carlo. The reason is that au

< <with u - s can be smooth even when f is not, because a is defined throughu
s Ž j .2integrals of f. For example if f is 1 for Ý X y 0.5 F 1 and 0 otherwise,js1

then all of the a are continuous except for the highest order one, a . If au AA
< <high-dimensional function is dominated by smooth a for u F m thenu

scrambled net Monte Carlo should perform well.
y3r2Ž .Ž sy1.r2The rate for scrambled net Monte Carlo is n log n in probabil-

y1Ž . sy1 y1Ž . sity while the rate for unscrambled nets is n log n or n log n along
Ž .t, s sequences. Of course great care should be taken comparing these rates.
The first rate is an average case result for a fixed function f , taken over
random permutations. The other results describe the worst case over func-
tions, for a fixed set of integration points. Because scrambled nets remain
nets, the worst-case bounds also apply to them. Interestingly, by the argu-
ment of Hickernell mentioned in the end of Section 3, we can expect that for
commonly encountered functions that the main effect a for the first input�14
variable will be integrated by unscrambled nets at the rate ny1 and for large
enough n this alone would cause the errors to be larger than the average case

Ž .with scrambled nets. Owen 1995 observes that on some test integrands
scrambling improves accuracy, but that other integrands show little differ-
ence. Furthermore, the staircase effect from the factor l2rn3 appears there,
and an even larger effect of this kind usually appears for the unscrambled
nets.

The worst-case bounds typically involve the total variation of f in the
wŽ . xsense of Hardy and Krause, as described in Niederreiter 1992 , Chapter 2 .

In practice it is probably harder to estimate this total variation than to
estimate the integral I. Thus the worst-case bounds are not useful for

ˆ< < Ž .estimating or bounding I y I in practice. Owen 1997 describes two tech-
niques to estimate the variance of scrambled net Monte Carlo. The first
technique is to take a small number r of independent replicates of the
scrambled sequence and to use the observed variation among the r answers

Ž .obtained. The second technique breaks one randomized l, 0, m, s -net into a
number of smaller nets and uses the observed variation among the answers
from subnets.

Ž .Hickernell 1996b has found that the average over permutations of a net,
ˆ< <of the worst case over functions f , of the absolute error I y I decreases at

y1Ž .Ž sy1.r2the rate n log n . Thus in an extreme analysis, where the function f



SCRAMBLED NET VARIANCE RATES 1561

is chosen pessimally after the random permutations have been drawn, no real
improvement is obtained by scrambling.

Yet another kind of error has been studied in the complexity literature.
This is the average case performance of integration with respect to random
integrands f. Clearly the outcome depends on the distribution used for the

Ž .random functions. Some well-known results are Wozniakowski 1991 who´
shows that when f is drawn from a Brownian sheet measure, the best

y1Ž .Ž sy1.r2possible rate is n log n which the Hammersley sequence attains.
Ž . yŽ1 qsy1 .r2Wasilkowski 1993 shows that n is the best possible rate for f

Ž .drawn from isotropic Brownian motion. Hickernell 1996b shows that scram-
bled nets attain the same best possible rate as the Hammersley sequence, for

Ž .f drawn from Brownian sheet measure. Morokoff and Caflisch 1994 found a
Ž . Ž .simpler proof of Wozniakowski’s 1991 result. Paskov 1993 considers inte-´
Ž .grated Brownian sheets. Ritter 1995 includes an up-to-date survey of this

area.
y3r2Ž .Ž sy1.r2The rate n log n obtained for scrambled net quadrature, as-

suming  s fr X u is Lipschitz with exponent b, is almost as good as the rate
y3r2yb r s Ž .n that Ritter, Wasilkowski and Wozniakowski 1993 show can be´

obtained for f drawn from any mean 0 process for which all partial deriva-
tives of order s exist in quadratic mean, and for which a certain second-order
difference applied to the covariance kernel of any such derivative satisfies a
Lipschitz condition of order 2b.

Ž .Most of this paper has considered the case of randomized l, 0, m, s -nets.
For the case with t ) 0 it is not possible to compute G from the definingu, k

Ž . tproperties of l, t, m, s -nets. While lb points must be in each elementary
interval of volume b tym, an elementary interval of volume b tymy1 has
somewhere between 0 and b t points. For example, merging b t identical

Ž . Ž .copies of a 0, m, s -net produces a t, m, s -net and at the other extreme a
Ž . Ž .t, m, s -net with t ) 0 might also be a t y 1, m, s -net.

< < < <It is however clear that m G k q u q t implies that G s 0. But foru, k

< < t tarbitrarily large k , it is possible to have G s b , corresponding to a b -foldu, k

Ž . tl, 0, m, s -net. A similar factor of b appears in bounds for other G .u, k

Because of this, the case with t s 0 appeared most promising. Recent work
Ž .by Niederreiter and Xing 1995 appears to change the picture dramatically.

Ž .Using global function fields, they have found new constructions of t, s -se-
quences in base 2, where for large s, t is nearly equal to s. This reduces the
sample size at which the s-dimensional effect starts to be balanced from
roughly s s to b tqs , 4 s. This suggests that enormous improvements in Monte
Carlo accuracy may be possible by scrambling these new nets. It is not yet

Ž .clear how much improvement will be seen. The bounds in Owen 1997
suggest a multiplicative variance penalty of at most b t. A penalty this large
would reduce the practical importance of the new nets, but the true penalty
might be smaller.
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