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We consider score tests of the null hypothesis H0� θ = 1
2 against

the alternative hypothesis H1� 0 ≤ θ < 1
2 , based upon counts multino-

mially distributed with parameters n and ρ�θ�π�1×m = π1×mT�θ�m×m,
where T�θ� is a transition matrix with T�0� = I, the identity matrix, and
T� 1

2 � = �1� 
 
 
 �1�T�α1� 
 
 
 � αm�. This type of testing problem arises in hu-
man genetics when testing the null hypothesis of no linkage between a
marker and a disease susceptibility gene, using identity by descent data
from families with affected members. In important cases in this genetic
context, the score test is independent of the nuisance parameter π and
based on a widely used test statistic in linkage analysis. The proof of this
result involves embedding the states of the multinomial distribution into
a continuous-time Markov chain with infinitesimal generator Q. The sec-
ond largest eigenvalue of Q and its multiplicity are key in determining
the form of the score statistic. We relate Q to the adjacency matrix of a
quotient graph in order to derive its eigenvalues and eigenvectors.

1. Introduction. This paper concerns a class of score tests which arise
naturally in human genetics. However, their essence can be described quite
efficiently without any of the genetic background, and we now do so. Let
α = �α1� 
 
 
 � αm� and π = �π1� 
 
 
 � πm� be two multinomial distributions,
viewed as points in a simplex, and let �T�θ�� 0 ≤ θ ≤ 1

2� be a one-parameter
family of transition matrices such that T�0� = I, the identity matrix, and
T� 1

2� = 1Tα, where 1 = �1� 
 
 
 �1�. These objects allow us to define the curve
�π�θ� of distributions ρ�θ�π� = πT�θ�, 0 ≤ θ ≤ 1

2 , connecting π = ρ�0� π� to
α = ρ� 1

2 � π�. Our interest is a score test for the null hypothesis H0� θ = 1
2

against the alternative H1� 0 ≤ θ < 1
2 , that is, for testing H0� ρ = α against

alternatives along the curve �π�θ�, based upon counts N = �N1� 
 
 
 �Nm�
multinomially distributed with parameters n = ∑

i Ni and ρ�θ�π�. The as-
sociated log-likelihood is l�θ�π� = ∑

i Ni ln�ρi�θ�π��, and the score test in
question should be based on l′� 1

2 � π� =
∑

i Niρ
′
i� 1

2 � π�/αi, where ′ denotes dif-
ferentiation in θ. It turns out in our genetic context that l′� 1

2 � π� ≡ 0, and so
we consider the second derivative, obtaining l′′� 1

2 � π� = ∑
i Niρ

′′
i � 1

2 � π�/αi =∑
i Ni�

∑
j πjuji�/αi, where U = �uij� = T′′� 1

2�. Now, we would normally need

Received August 1998; revised March 1999.
1Supported in part by a PMMB Burroughs-Wellcome Fellowship.
2Supported in part by NIH Grant R01 HG01093.
AMS 1991 subject classifications. Primary 62F03; secondary 92D30, 60J20, 15A18, 05C20,

05C30.
Key words and phrases. Score test, Markov chain, infinitesimal generator, quotient graph,

adjacency matrix, eigenvalues, orbits, Pólya’s theory, linkage analysis.
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to deal with the nuisance parameter π in this score test. This study was mo-
tivated by the observation that in some important cases in linkage analysis,
U has rank 1, that is, uij = aibj, for suitable vectors �ai� and �bi�. In such
cases, l′′� 1

2 � π� = �∑j ajπj��
∑

i biNi/αi�, and the score test is independent of
the nuisance parameter π. Moreover, for our genetic problem, the score test
is based on a widely used nonparametric statistic in linkage analysis, Spairs
[Whittemore and Halpern (1994a), Kruglyak, Daly, Reeve-Daly and Lander
(1996)]. We thought it would be of interest to understand the origins of this
property and to learn just how far it extended.

In Section 2, we present the genetic problem which motivated our study,
the linkage analysis of disease susceptibility genes using identity by descent
(IBD) data from sets of siblings (sibships). This involves describing how IBD
patterns in pedigrees (i.e., collections of related individuals) may be summa-
rized by inheritance vectors which correspond to the vertices of a hypercube.
The inheritance vectors along a chromosome are embeddable in a continuous-
time random walk on the vertices of the hypercube, with time parameter the
genetic distance along the chromosome. For our purpose, the inheritance vec-
tors may be partitioned into so-called IBD configurations, which are orbits of
groups acting on the set of inheritance vectors. In Section 3, we derive a semi-
group property for the IBD configuration transition matrix T�θ� and present
a spectral decomposition of T�θ� in terms of the eigenvalues and eigenvectors
of its infinitesimal generator Q. The second largest eigenvalue of Q and its
multiplicity are key in determining the form of the linkage score statistic. In
order to derive the eigenvalues and eigenvectors of the infinitesimal generator,
we relate it to the adjacency matrix of a quotient graph. Finally, in Section 4,
we derive score statistics for testing linkage in sibships and illustrate the re-
sults with sib-pairs and sib-trios in Section 5. Remarkably, in an affected-only
analysis, where siblings not affected by the disease are ignored, the score test
for sibships of a given size does not depend on the nuisance parameter π and
is based on a well-known statistic in linkage analysis, Spairs [Whittemore and
Halpern (1994a), Kruglyak, Daly, Reeve-Daly and Lander (1996)].

2. Testing linkage using identity by descent data. Genetic mapping
is based upon the phenomenon of crossing-over, which is the exchange of cor-
responding DNA between chromosomes from the same pair during gamete
(egg/sperm) formation. The human genome is distributed along 23 pairs of
chromosomes, 22 autosomal pairs and the sex chromosome pair (XX for fe-
males and XY for males). Each pair consists of a paternally inherited chromo-
some and a maternally inherited chromosome. As a result of crossovers, chro-
mosomes passed from parent to offspring are combinations of the two grand-
parental chromosomes (see Figures 1 and 2). In general, the DNA variants
(alleles) passed from parent to offspring at two nearby chromosomal locations
(loci) have the same grand-parental origin (e.g., at both loci, the maternally
inherited alleles are from the maternal grandfather). This is sometimes called
cosegregation, as segregation is the process leading to the choice of one of a
parent’s two variants (maternal or paternal) at any given locus for transmis-
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Fig. 1. Segregation products for a sibship of size 2 and a single chromosome pair. Male and fe-
male individuals are represented by squares and circles, respectively, and colored symbols indicate
affectedness by the disease under study. The paternal and maternal chromosome pairs are labeled
by �1�2� and �3�4�, respectively. The inheritance vectors and IBD configurations of the sib-pair are
indicated on the left.

sion to a child. Exceptions to cosegregation occur due to crossovers; then, the
variants passed on to the child have different grand-parental origins at the
two loci and the chromosome is said to be recombinant (e.g., for the mater-
nally inherited chromosome, the variant from the maternal grandfather was
inherited at one locus and that from the maternal grandmother was inherited
at the other locus). The frequency with which this occurs is the recombination
fraction between the two loci, conventionally denoted by θ. [Recombination
fracctions are assumed to be constant across conditions (e.g., age and temper-
ature) and individuals. Under general models for crossovers, the recombina-
tion fraction between two loci belongs to the interval �0�1/2�.] In general, two
loci are said to be linked if their recombination fraction is less than 1

2 , and
unlinked if it is 1

2 . Thus, unlinked loci may be widely separated on the same
chromosome, or on different chromosomes. Loci are said to be tightly linked if
the recombination fraction θ is close to 0, for example, θ < 0
05 [see Ott (1991),
McPeek (1996) and Speed (1996) for an introduction to linkage analysis].
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Fig. 2. Four-dimensional hypercube whose vertices correspond to the 16 possible inheritance vec-
tors for a sib-pair and whose edges represent permissible transitions. The arrows indicate the
transitions for the segregation products represented in Figure 1.

When mapping disease susceptibility (DS) genes, we are interested in test-
ing whether genetic markers with known location are linked or not to DS
genes, that is, in testing a null hypothesis of the form H0� θ = 1

2 , where θ is
the recombination fraction between a genetic marker and a putative DS gene.
This could be done by studying the cosegregation of variants of the DS genes
with those of other mapped genes or markers. (By now, there are hundreds
of well-mapped markers along each human, mouse and many other chromo-
somes.) Frequent cosegregation of a DS locus with a mapped marker would
imply a small recombination fraction between the two loci, and hence an ac-
curate placement of the DS locus. However, for most diseases of interest, we
do not in general know, and are unable to determine, the alleles present at
the DS loci prior to their being mapped. Indeed, much of the interest in map-
ping DS loci is to determine the variants segregating in populations. Thus,
a direct approach to mapping DS loci is generally not available. Many inge-
nious methods have been developed by geneticists to circumvent this problem,
and this paper concerns one such which studies marker identity by descent in
sibships with affected members. DNA at the same locus on two chromosomes
from the same pair is said to be identical by descent �IBD� if it originated from
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the same ancestral chromosome. This is by contrast to identity by state �IBS�,
where the same DNA variant in two individuals may have entered the family
under study through different ancestors and hence may not be IBD. Linkage
analysis methods based on IBD data seek to exploit the association between
the sharing of DNA identical by descent at loci linked to DS loci and disease
status �phenotype� in families with affected individuals. At loci unlinked to
DS loci, IBD sharing is independent of phenotype. For example, for sibships,
this association arises from the fact that full sibs get all their genes from the
same source, their parents. Consequently, if susceptibility to the disease under
study has a genetic component, the disease status (affected or not) of the sibs
should be associated with their IBD status (identical or not) at the DS loci
[see Tables 3 and 4 in Dudoit and Speed (1999) for a simple example of this
association in sib-pairs]. This approach is effective to the extent that disease
susceptibility is affected by genes rather than, say, a shared environment,
or other “random” factors. Determining IBD status at or near a DS locus is
usually feasible, where determining the gene variant is not, because one can
readily determine IBD status at so-called marker loci, one of which may be
tightly linked to the DS locus [cf. Kruglyak and Lander (1995) and Kruglyak,
Daly, Reeve-Daly and Lander (1996) for a treatment of incomplete IBD data].
IBD-based methods for detecting linkage to DS loci will thus be successful if
(and only if) (1) there is a noticeable association between phenotype and IBD
status of relatives at the DS loci, and (2) this association is strong enough
to remain detectable when IBD status at an (unknown) DS locus is replaced
by observed IBD status at a marker locus. Recombination between a DS locus
and a marker locus will attenuate the association between phenotype and IBD
status. If we have a dense enough set of marker loci, problem (2) would appear
to be solved, but in truth there is always a close connection between the mag-
nitude of the association in (1) and the density of the marker set necessary for
its detection. These issues were addressed by Thompson (1997), who refers
to the two components (1) and (2) as the specificity of the DS loci and the
scale of the genetic distance, respectively. We refer the reader to Whittemore
and Halpern (1994a, b), Whittemore (1996), Kruglyak, Daly, Reeve-Daly and
Lander (1996), Kong and Cox (1997), Feingold and Siegmund (1997), Teng and
Siegmund (1997), Dudoit (1999), and Dudoit and Speed (1999), McPeek (1999)
for recent discussions of linkage analysis using IBD data.

The IBD pattern within a pedigree may be summarized at any chromosomal
locus by the inheritance vector. Consider a sibship of k ≥ 2 sibs and suppose
we wish to identify the parental origin of the DNA inherited by each sib at
a particular autosomal locus, � say (for loci on sex chromosomes, males and
females need to be treated differently). Arbitrarily label the paternal chro-
mosomes containing the locus of interest by �1�2�, and similarly label the
maternal chromosomes by �3�4�. The inheritance vector of the sibship at the
locus � is the 2k-vector x = �x1� x2� 
 
 
 � x2k−1� x2k�, indicating the outcome
of each of the 2k segregations giving rise to the sibship. More precisely, for
i = 1� 
 
 
 � k, x2i−1 is the label of the paternal chromosome from which sib i
inherited DNA at � , 1 or 2, and x2i is the label of the maternal chromosome
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from which sib i inherited DNA at � , 3 or 4 (see Figures 1 and 2). Denote by
� the set of all 22k inheritance vectors.

Consider now two loci, �1 and �2, separated by a recombination fraction
θ, and denote the inheritance vectors at the two loci by x and y, respectively.
If these two inheritance vectors differ at a particular entry, this indicates
the occurrence of a recombination between �1 and �2 in the corresponding
segregation. The chance of a recombination between the two loci is the recom-
bination fraction θ, taken to be constant across conditions and individuals.
the transition matrix R�θ� between inheritance vectors at loci separated by a
recombination fraction θ has entries

rxy�θ� = θ��x�y��1 − θ�2k−��x�y��(2.1)

where ��x�y� is the number of coordinates at which the inheritance vectors x
and y differ, that is, the number of recombination events between the two loci.
The matrix R�θ� may be expressed as the Kronecker power of 2×2 transition
matrices corresponding to transitions in each of the 2k coordinates,

R�θ� =
[

1 − θ θ

θ 1 − θ

]⊗2k


(2.2)

The notion of inheritance vector generalizes to arbitrary pedigrees, where
pedigree members are separated into founders (individuals whose parents
are not in the pedigree) and nonfounders (individuals whose parents are in
the pedigree). In the case of sibships, the parents are founders and the sibs
are nonfounders. For a pedigree with k nonfounders, the inheritance vector
at a particular locus is defined to be a 2k-vector with coordinates describ-
ing the outcome of the paternal and maternal segregations giving rise to the
k nonfounders [Lander and Green (1987); Kruglyak and Lander (1995) and
Kruglyak, Daly, Reeve-Daly and Lander (1996)]. The �2i − 1�st coordinate is
0 or 1 according to whether the grand-paternal or grand-maternal DNA was
transmitted in the paternal segregation giving rise to the ith nonfounder. The
�2i�th coordinate contains the same information for the maternal segregation.
For the purpose of this paper, we prefer the definition introduced earlier for
sibship inheritance vectors (with labels 1�2�3�4 for parental chromosomes)
to the more common definition with binary labels, since this facilitates the
presentation in Section 3 of group action on inheritance vectors. It is easy to
show that for general pedigrees the transition matrix R�θ� between inheri-
tance vectors also has the form given in (2.2). Although this paper is primar-
ily concerned with IBD data from sibships, the general setup and some of the
results presented here (Propositions 1, 2 and 3) apply to arbitrary pedigree
types, and we discuss generalizations where appropriate.

For the purpose of linkage analysis of disease genes, certain inheritance
vectors are equivalent to each other, in that they have the same probability of
arising at DS genes in pedigrees with given phenotypes. Although not needed
for an understanding of this paper, a discussion of these probabilities for sib-
ships and the genetic model under which they are calculated may be found in
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Dudoit and Speed (1999) and Dudoit (1999). For an arbitrary pedigree type,
we define IBD configurations as any partitioning of the set of inheritance vec-
tors. For example, for k affected sibs, Ethier and Hodge (1985) partition the
22k inheritance vectors into a much smaller number of equivalence classes as
follows. Two inheritance vectors belong to the same IBD configuration if one
may be obtained from the other by applying any combination of the following
four operations: (1) interchange the paternal labels 1 and 2, (2) interchange
the maternal labels 3 and 4, (3) interchange the parental origin of the DNA
by interchanging 1 and 3 and 2 and 4, and (4) permute the sibs. With this
definition, the 16 possible inheritance vectors for a sib-pair are partitioned
into three IBD configurations, corresponding to the number of chromosomes
sharing DNA IBD at the locus of interest (cf. Table 1). In general, inheritance
vectors may be partitioned in various ways for different purposes, and we
address this question in greater detail for sibships in Section 3.

For a pedigree with given phenotypes, the conditional probability vector of
IBD configurations at a genetic marker � linked to a DS locus � at recom-
bination fraction θ is given by

ρ�θ�π�1×m = π1×mT�θ�m×m�

where π is the conditional probability vector of IBD configurations at the DS
locus (possibly one of several unlinked DS loci), m is the number of IBD con-
figurations and T�θ� is the transition matrix between IBD configurations θ
apart. In general, π depends on unknown and numerous genetic parameters,
such as penetrances and genotype frequencies. In this paper, we consider a
general genetic model with multiple genes unlinked to each other, arbitrary
penetrances, and no population genetic assumptions such as random mating
or Hardy–Weinberg equilibrium. Under the null hypothesis of no linkage be-
tween the marker and the DS locus, the IBD distribution at the marker is

α = ρ

(
1
2
� π

)
= 1

22k

(��1�� 
 
 
 � ��m�
)
�

where ��i� is the number of inheritance vectors in �i, the ith IBD configuration.
Thus, the IBD probabilities at the marker have two separate components:

one component involving the recombination fraction θ between the marker
and the DS locus (scale), the other depending on the mode of inheritance of

Table 1
Sib-pair IBD configurations

Orbits of Orbits of
S2 � D4 S2 � �C2 � C2� Inheritance vectors

0 IBD 0 IBD �1�3�2�4�, �1�4�2�3�, �2�3�1�4�, �2�4�1�3�
1 IBD 1 paternal IBD �1�3�1�4�, �1�4�1�3�, �2�3�2�4�, �2�4�2�3�

1 maternal IBD �1�3�2�3�, �1�4�2�4�, �2�3�1�3�, �2�4�1�4�
2 IBD 2 IBD �1�3�1�3�, �1�4�1�4�, �2�3�2�3�, �2�4�2�4�
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the disease (specificity). Our score test in the recombination fraction θ focuses
on the scale component and seems to achieve some robustness with respect to
the specificity (π). Examples of the transition matrix T�θ� are given in Section
5 for sib-pairs and sib-trios.

Suppose we collect data on n sibships of given size and phenotypes and
wish to test the null hypothesis of no linkage between a genetic marker and
a DS locus. Denote by Ni the number of sibships with IBD configuration i,
i = 1� 
 
 
 �m, at the genetic marker. Under certain sampling assumptions [Du-
doit (1990)], �N1� 
 
 
 �Nm� have a Multinomial�n� ρ�θ�π�� distribution. There
is no uniformly most powerful test of H0� θ = 1

2 , however, the score test is
locally most powerful. Moreover, for affected-only sibships of a given size, the
score statistic does not involve the nuisance parameter π and reduces to a
widely used statistic in linkage analysis, Spairs, which is obtained by forming
all possible pairs of sibs and averaging the proportions of chromosomes on
which they share DNA IBD at the marker [Whittemore and Halpern (1994a)
and Kruglyak, Daly, Reeve-Daly and Lander (1996)]. This result is a corollary
to Theorem 2 in Section 4.

Corollary 1. For affected sib-k-tuples, using the IBD configurations of
Ethier and Hodge, the score test of H0� θ = 1

2 is based on Spairs, regardless of
the model for disease susceptibility, that is, regardless of π. For one affected
sib-k-tuple,

Spairs =
∑

i<j Sij

k�k− 1� �

where Sij is the number of chromosomes on which the ijth sib-pair shares DNA
IBD. Under the null hypothesis of no linkage, the Sij’s are pairwise independent

Binomial�2� 1
2� random variables, and thus

E0�Spairs� =
1
2
� Var0�Spairs� =

1
4k�k− 1� 


For a collection of affected sib-k-tuples, Spairs is summed over all sibships.

Thus, for affected-only sibships of a given size, Spairs is locally most powerful
(in θ), and may be calculated easily by considering each sib-pair one at a
time and without the need for assigning sibships to IBD configurations. This
finding extends the work of Knapp, Seuchter and Baur (1994a) to sibships
of any size and to general genetic models with multiple unlinked DS loci
and no population genetic assumptions such as random mating or Hardy–
Weinberg equilibrium. Unfortunately, this simple property does not hold with
all types of sibships, and we consider examples where it fails in Sections 4
and 5. Furthermore, we show that the linkage score statistic combining IBD
data from sibships of different sizes assigns different weights to the various
sibship types and these weights depend on the genetic model.

The remainder of this paper is concerned with the proof of Corollary 1 and
with deriving score statistics for general sibships, with any number of affected
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and unaffected sibs, and distinguishing the parental origin of the DNA. In
general, the form of the score statistic is based on properties of the transition
matrix T�θ�, which in turn are determined by the pedigree type and the choice
of IBD configurations. Thus, we first describe how sibship inheritance patterns
may be summarized by IBD configurations which are orbits of groups acting
on the set of inheritance vectors.

3. Transition matrix for IBD configurations.

3.1. Sibship IBD configurations. Let a = �1�3�, b = �1�4�, c = �2�3� and
d = �2�4� denote all four possible segregation outcomes at a particular locus
for a given sib. Then we may think of the set of inheritance vectors � as the set
of mappings x� �1� 
 
 
 � k� → �a� b� c� d�. In this setting, the IBD configurations
are orbits of groups acting on � , where the groups are determined by the type
of operations allowed within IBD configurations [cf. Fraleigh (1989), Section
3.2 for an introduction to group action]. Let

α = �ac��bd� interchange labels 1 and 2 of paternal chromosomes,

β = �ab��cd� interchange labels 3 and 4 of maternal chromosomes,

γ = �bc� interchange parental origin of DNA.

The group of permutations generated by α� β and γ is actually the dihedral
group, D4 (α and γ are sufficient to generate D4), and the group generated
by α and β is the Klein four-group, C2 × C2. Figure 3 displays a square with
vertices a� b� c, and d. Permutations α and β correspond to mirror images in
the perpendicular bisectors of the sides, and permutations γ corresponds to a
diagonal flip. The diherdral group D4 is the group of symmetries of the square.
The IBD configurations of Ethier and Hodge (1985) for affected-only sibships
are the orbits of the direct product Sk×D4, of the symmetric group Sk on k let-
ters and the dihedral group D4, acting on � . In some situations (e.g., parental

Fig. 3. Permutations α, β and γ of the vertices of the square.
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imprinting, when disease susceptibility is different for maternally and pater-
nally inherited disease alleles), it may be appropriate to distinguish between
sharing of maternal and paternal DNA and exclude the group operation γ.
For example, for a sib-pair, it may be appropriate to distinguish between the
two inheritance vectors �1�3�1�4� and �1�3�2�3�; for �1�3�1�4� the sibs share
DNA IBD on the paternal chromosome, whereas for �1�3�2�3� the sibs share
DNA IBD on the maternal chromosome (cf. Table 1). For sibships with both
affected and unaffected individuals, similar configurations may be defined, but
the sibs are permuted only among affecteds or unaffecteds. The different types
of group action are listed in Table 2.

For a group G×H acting on the set � , let m denote the number of orbits
and �i denote the ith orbit. In general, we may use the Pólya theory of count-
ing [van Lint and Wilson (1992) and deBruijn (1964)] to find the number of
orbits of groups acting on mappings, and hence determine the number of IBD
configurations of each type (see Appendix, Section A). Ethier and Hodge de-
rived the number of IBD configurations of affected sib-k-tuples, as well as the
number of inheritance vectors in each IBD configuration, without reference
to the group Sk ×D4. Instead, they based their calculations on labels for the
equivalence classes which are triples of integers [cf. pages 264, 265 in Ethier
and Hodge (1985) and Appendix, Section A].

3.2. Properties of transition matrix. In this section, we derive properties
of transition matrices between IBD configurations. While Theorems 1 and 2
are specific to the sibship IBD configurations defined in the previous section,
Propositions 1 and 2 hold more generally for any type of pedigree, with IBD
configurations defined as orbits of groups acting on the set of inheritance vec-
tors. The transition matrix T�θ� between IBD configurations at loci separated
by a recombination fraction θ is the m×m matrix with entries

tij�θ� =
1
��i�

∑
x∈�i

∑
y∈�j

rxy�θ� =
1
��i�

∑
x∈�i

∑
y∈�j

θ��x�y��1 − θ�2k−��x�y�


However, given any two inheritance vectors in �i, the probability of a transi-
tion to �j is the same, that is,∑

y∈�j
rxy�θ� =

∑
y∈�j

rx̃y�θ� for any x� x̃ ∈ �i
(3.1)

Table 2
Sibship IBD configurations

Distinguish maternal
# affected, # unaffected from paternal sharing Group G � H

k�0 NO Sk ×D4
YES Sk × �C2 ×C2�

h�k− h NO �Sh ×Sk−h� ×D4
YES �Sh ×Sk−h� × �C2 ×C2�
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This result follows by observing that if ∼ denotes the operation applied to x
to obtain x̃, then ��x̃� y� = �� ˜̃x� ỹ� = ��x� ỹ� and ỹ ∈ �j. Consequently,

tij�θ� =
∑
y∈�j

θ��x�y��1 − θ�2k−��x�y� where x is any x ∈ �i

= ��j�
��i�

∑
x∈�i

θ��x�y��1 − θ�2k−��x�y� where y is any y ∈ �j

(3.2)

The next two propositions relate the transition matrix T�θ� to the adjacency
matrix of a quotient graph, whose eigenvalues are key in determining the form
of the score statistic (see Appendix, Section B for proofs).

Proposition 1. Let T�θ� denote the transition matrix between IBD config-
urations which are orbits of groups acting on the set of inheritance vectors � ,
and let θ1 ∗ θ2 = θ1�1 − θ2� + θ2�1 − θ1�. Then, T�θ� satisfies the semigroup
property

T�θ1 ∗ θ2� = T�θ1�T�θ2�

Thus, T�θ� may be written as

T�θ� = ed�θ�Q�

where d�θ� = − 1
2 ln�1 − 2θ� is the inverse of the Haldane map function and Q

is the infinitesimal generator. The infinitesimal generator is given by

Q = B− 2kI�

where B is the m×m matrix with entries

bij = ∑
y∈�j

I���x�y� = 1� for any x ∈ �i

��x�y� is the number of coordinates at which x and y differ and I� � denotes
the indicator function. The stationary distribution of T�θ� is

α = �α1� 
 
 
 � αm� =
1

22k

(��1�� 
 
 
 � ��m�
)

and T�θ� is reversible, that is,

αitij�θ� = αjtji�θ�


Hence, for one segregation, the crossover process is embeddable in a
continuous-time random walk on �0�1�, where 0 and 1 denote, respectively,
the transmission of paternal and maternal DNA to one’s child, and the time
parameter is d�θ� = − 1

2 ln�1 − 2θ�. Jointly, the crossover processes are i.i.d.
and hence embeddable in a continuous-time random walk on the vertices
of the hypercube �0�1�2k (cf. Donnelly (1983) and Figures 1 and 2). The
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random walk model for the crossover process is widely used and is referred
to in the genetics literature as the no interference model. The Haldane map
function relates the recombination fraction to the map distance under the
no interference model. The map distance between two loci is the expected
number of crossover events, that is, of changes of the grand-parental origin
of the DNA, occurring on a segregation product in the chromosomal interval
between the two loci. Under the no interference model, the crossover process
on individual segregation products is a Poisson process with intensity 1
[cf. Ott (1991), McPeek (1996) and Speed (1996) for an introduction to map
functions and a more detailed discussion of crossover processes]. Note that,
if we have three ordered loci, and θ1 and θ2 are the recombination fractions
between the first and second and second and third locus, respectively, then
θ1 ∗ θ2 is the recombination fraction between the first and third locus, under
the assumption that recombination events in disjoint intervals are indepen-
dent, that is, there is no crossover interference. Also, note that we did not
need to assume no crossover interference to derive the semigroup property.
If, however, we do assume no crossover interference, then the inheritance
vectors along a chromosome form a continuous-time Markov chain with time
parameter the genetic distance along a chromosome. From (3.1) and condition
(15), page 63 in Rosenblatt (1974), it follows that the IBD configurations also
form a continuous-time Markov chain.

In order to compute score statistics, we need derivatives of the transition
matrix at θ = 1

2 . These may be computed by differentiating (3.2); however, we
gain more knowledge on the transition matrix T�θ� and on the form of the
score statistic by using the following spectral decomposition of T�θ�.

Proposition 2. Let T�θ� denote the transition matrix between IBD config-
urations which are orbits of groups acting on the set of inheritance vectors � .
Then T�θ� may be written as

T�θ� = ∑
h

exp�λhd�θ��Ph = ∑
h

�1 − 2θ�−λh/2 Ph�(3.3)

where λh are the m real eigenvalues of the infinitesimal generator Q, and
Ph are projection matrices satisfying P2

h = Ph = P∗
h, PhPl = 0, h �= l, and∑

h Ph = I. Here P∗
h is the adjoint of Ph with respect to the inner product

�x�y�α = ∑
i αixiyi. The ijth entry of Ph is αjvihvjh, where vih is the ith entry

of the right eigenvector vh of Q corresponding to λh, and the eigenvectors vh
are orthonormal with respect to the inner product � � �α. In particular, the first
two derivatives of the transition matrix with respect to θ are

T′�θ� = ∑
h

λh�1 − 2θ�−�λh+2�/2Ph(3.4)

and

T′′�θ� = ∑
h

λh�λh + 2��1 − 2θ�−�λh+4�/2Ph
(3.5)
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Thus, eigenvalues of Q and their multiplicity give us information regarding
the derivatives of the transition matrix T�θ� and hence, the form of the score
statistic. In particular, powers of θ in T�θ� are determined by the eigenvalues
of Q, and the first nonzero derivative of T�θ� at θ = 1

2 and its rank are
determined by the second largest eigenvalue of Q and its multiplicity. We will
relate Q to the adjacency matrix of a quotient graph in order to derive its
eigenvalues. Consider the graph � with vertex set the set of all inheritance
vectors of length 2k and adjacency matrix A�� � = A with �x�y�-entry,

axy =
{

1� if ��x�y� = 1�
0� otherwise


Here � is the graph defined by the first associates in the Hamming scheme
H�2k�2� [Chapter 30 in van Lint and Wilson (1992)]. Consider any of the four
groups G×H described in Table 2. The matrix B, defined in Proposition 1, is
the adjacency matrix of the quotient graph � /�G×H�, which is the multidi-
graph with the orbits of G×H as its vertices and with bij arcs going from �i
to �j. Recall that Q = B− 2kI; consequently, we may work with B to derive
the eigenvalues of Q. The following theorem relies on general facts concerning
eigenvectors and eigenvalues of adjacency matrices of quotient graphs, as well
as specific facts regarding the behavior of eigenvectors of A on the orbits of
the four groups G ×H described in Section 3.1 (see Appendix, Section C for
proof).

Theorem 1 (Eigenvalues of infinitesimal generator Q for sibship IBD con-
figurations). The largest eigenvalue of Q is 0, with multiplicity one, and the
second largest eigenvalue of Q is −4, with multiplicity depending on the group
G×H defining the IBD configurations.

(a) Sk ×D4: −4 has multiplicity one;
(b) Sk × �C2 ×C2�: −4 has multiplicity two;

and for k ≥ 3

(c) �Sh ×Sk−h� ×D4: −4 has multiplicity two if h = 1 or h = k− 1, and three
if 2 ≤ h ≤ k− 2;

(d) �Sh × Sk−h� × �C2 × C2�: −4 has multiplicity four if h = 1 or h = k − 1,
and six if 2 ≤ h ≤ k− 2.

Furthermore, all other eigenvalues of Q belong to the set �−2i� 2k
i �� i =

3� 
 
 
 �2k�, where the subscript
( 2k
i

)
is the largest possible multiplicity of the

eigenvalue −2i. Thus, from (3.4) and (3.5),

T′( 1
2

) = 0(3.6)

and

U = T′′( 1
2

) = 8P−4�(3.7)

where P−4 is the projection matrix for the second largest eigenvalue, −4, with
rank the multiplicity of −4. In general, the ijth entry of P−4 is αj

∑
vivj,
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where the v’s are the right orthonormal (with respect to the inner product
� � �α) eigenvectors of Q corresponding to −4, and the sum is over all such
eigenvectors.

Note that we may also show that T′� 1
2� = 0 by simple algebra, but this

approach does not yield any particular insight into other general properties
of T�θ�.

The projection matrix for the largest eigenvalue of Q, λ1 = 0, is T� 1
2�, the

matrix whose rows are equal to the stationary distribution α. From Proposi-
tion 2 and Theorem 1, transition matrices for sibship IBD configurations have
the form

T�θ� = T
( 1

2

)+ �1 − 2θ�2P−4 + o��1 − 2θ�2��
and the rate of convergence of T�θ� to T� 1

2� as θ→ 1
2 is O��1−2θ�2�. Under the

no interference model, the rate of convergence in terms of the map distance
d = − ln�1 − 2θ�/2 is O�e−4d�.

More generally, since the matrix R�θ� has the same form for any type of
pedigree, Propositions 1, 2 and 3 apply to arbitrary pedigrees, as long as the
IBD configurations are defined as orbits of groups. Thus, for 2k segregations,
the transition matrix for IBD configurations has the general form

T�θ� = ∑
h

�1 − 2θ�−λh/2 Ph�

where the eigenvalues λh of Q belong to the set �−2i� 2k
i �� i = 0� 
 
 
 �2k�. The

ith derivative, i = 0� 
 
 
 �2k, of T�θ� is given by

T�i��θ� = ∑
h

{i−1∏
j=0

�λh + 2j�
}
�1 − 2θ�−�λh+2i�/2Ph


The first nonzero derivative of T�θ� at θ = 1
2 and its rank are determined by

the second largest eigenvalue of Q, λ2, and its multiplicity. If λ2 = −2i, the
first nonzero derivative is the ith derivative,

T�i�( 1
2

) = �−2�ii!P−2i�

and the rank of this ith derivative is the multiplicity of λ2 = −2i. Furthermore,
the rate of convergence toT� 1

2� is determined by the second largest eigenvalue,

T�θ� = T
( 1

2

)+ �1 − 2θ�−λ2/2Pλ2
+ o��1 − 2θ�−λ2/2�


The smaller the second largest eigenvalue, the faster the convergence to T� 1
2�.

We proved that for sibships, the second largest eigenvalue is −4, but this is
not the case for all types of relatives. In turns out that for grandparent/grand-
child pairs, who can share DNA IBD on either 0 or 1 chromosome, the second
largest eigenvalue is −2 [Dudoit (1999)]. It is noteworthy that for some types
of relative pairs (e.g., cousin pairs), the usual IBD configurations (0 or 1 IBD)
are not orbits of groups and the transition matrix for these usual configura-
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tions does not satisfy the semigroup property [Donnelly (1983) and Dudoit
(1999)].

In the next section, we will explore the implications of Theorem 1 on score
tests of the null hypothesis of no linkage between a marker and a gene using
IBD data from sibships.

4. Linkage score test for sibships. Suppose we have data on n sibships
of a given type (e.g., affected sib-k-tuples with orbits of Sk ×D4), in the form
of multinomial counts Ni, i = 1� 
 
 
 �m, for the number of sibships with IBD
configuration i at a marker � . We wish to test the null hypothesis of no
linkage between the marker � and a DS locus � , which could be one of
several DS loci unlinked to each other; that is, we wish to test

H0� θ = 1
2 �no linkage� versus H1� 0 ≤ θ < 1

2 �linkage��

where θ denotes the recombination fraction between � and � . Note that θ = 1
2

and π = α are not identifiable.
The log-likelihood of the IBD data, conditional on the phenotypes, is

l�θ�π� = ∑
i

Ni ln�ρi�θ�π���

where

ρ�θ�π�1×m = π1×mT�θ�m×m


The score test is based on the first nonzero derivative in the Taylor series
expansion of the log-likelihood about θ = 1

2 . In our problem, the first derivative
vanishes, so we turn to the second derivative of the log-likelihood with respect
to θ, which yields a test that maximizes the second derivative of the power
function at the null. We find the score statistic for the given sibship type to be

S = ∂2l�θ�π�
∂θ2

∣∣∣∣
θ=1/2

=
m∑
i=1

Ni

∂2ρi�θ�π�/∂θ2

ρi�θ�π�

∣∣∣∣
θ=1/2

=
m∑
i=1

Ni

∑m
j=1 πjuji

αi
�

where U = T′′� 1
2� = 8P−4 = �8αj

∑
vivj�, the v’s are right orthonormal (with

respect to � � �α) eigenvectors of Q corresponding to the eigenvalue −4, and
the sum in U is over all such eigenvectors. The null hypothesis of no linkage is
rejected for large values of the score statistic S. We show next that for affected
sib-k-tuples, with the orbits of Sk × D4, the second largest eigenvalue has
multiplicity one, and as a result, the score statistic for affected-only sibships
of a given size is independent of the nuisance parameter π.

4.1. Affected sib-k-tuples, orbits of Sk×D4. A very widely used statistic in
linkage analysis is Spairs [cf. Kruglyak, Daly, Reeve-Daly and Lander (1996),
SP of Whittemore and Halpern (1994a), and PAIRS and WP of Suarez and
van Eerdewegh (1984)]. For a sibship of size k, Spairs is obtained by forming all
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possible pairs of sibs and averaging the proportions of chromosomes on which
they share DNA IBD at the locus of interest; that is,

Spairs =
∑

i<j Sij

k�k− 1� �

where Sij is the number of chromosomes on which the ijth sib-pair shares
DNA IBD. The corollary in Section 2 results from the following theorem.

Theorem 2 (Affected sib-k-tuple score statistic, orbits of Sk×D4). Suppose
we have IBD data on n affected sib-k-tuples, with IBD configurations defined
as the orbits of Sk×D4. Then the score test of the null hypothesis of no linkage
between a marker and a DS locus, H0� θ = 1

2 , is based onSpairs. The contribution
of n affected sib-k-tuples to the overall score statistic is

S = 8
( m∑
j=1

vjπj

)( m∑
i=1

viNi

)

= 22k−2
( m∑
j=1

uj1πj

)
�2Spairs − n�

= 8
√
k�k− 1�

( m∑
j=1

vjπj

)
�2Spairs − n��

(4.1)

where ui1 is the ith entry of the first column of U = T′′� 1
2�, vi is the ith

entry of the right eigenvector of Q corresponding to the eigenvalue −4 and
ui1 = 25−2k

√
k�k− 1�vi. For n sibships, Spairs is summed over all sibships.

The proof of Theorem 2 may be found in the Appendix, Section D, and
relies on Theorem 1 and the following identity. For a sibship with inheritance
vector x,

Spairs =
∑4

i=1 ai�x��ai�x� − 1�
2k�k− 1�

= a1�x�2 + a2�x�2 + a3�x�2 + a4�x�2 − 2k
2k�k− 1� �

(4.2)

where ai�x� is the number of i labels in the inheritance vector x of the sibship,
i = 1�2�3�4, and a1�x� + a2�x� + a3�x� + a4�x� = 2k. Without loss of general-
ity, we let the first IBD configuration be the one for which all sibs inherited
the same maternal and paternal DNA, that is, with representative inheri-
tance vector �1�3�1�3� 
 
 
 �1�3� and label �0�0�0� in the notation of Ethier
and Hodge (1985). The entries of the first column of U are easily computed,
as seen in the proof.

Thus, for affected sib-k-tuples and without distinguishing between sharing
of maternal and paternal DNA, the score test is based on Spairs, regardless
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of the genetic model, and may be calculated easily by considering each sib-
pair one at a time and without the need for assigning sibships to IBD con-
figurations. For commonly studied genetic models, the affected sib-pair “pos-
sible triangle” constraints hold [Dudoit and Speed (1999)], and as a result,∑

j vjπj ≥ 0. This follows by noting that n
∑

j vjπj is the expected value of∑
j vjNj = √

k�k− 1��2Spairs − n� when θ = 0. Also, for each sibship, Spairs
is an average of sib-pair statistics, each with expected value π2 + π1/2 ≥ 1/2,
where in this expression πi, i = 0�1�2, is the probability that an affected sib-
pair shares DNA IBD on i chromosomes at the DS locus. For IBD data from
sibships of a given size, it is thus appropriate to reject the null hypothesis of
no linkage for large values of Spairs. However, the score statistic for combining
IBD data from sibships of different sizes involves weights which do depend on
the genetic model (

∑
i viπi).

4.2. Affected sib-k-tuples, orbits of Sk×�C2×C2�. For affected sib-k-tuples
and distinguishing between sharing of maternal and paternal DNA, the second
largest eigenvalue of the infinitesimal generator Q, −4, has multiplicity two
(Theorem 1). Hence, the second derivative of the transition matrix at θ = 1

2
has rank 2 and entries

uij = 8αj�vivj + ṽiṽj��
where v = �v1� 
 
 
 � vm�T and ṽ = �ṽ1� 
 
 
 � ṽm�T are the right orthonormal
(with respect to the inner product � � �α) eigenvectors of Q corresponding to
the second largest eigenvalue. These eigenvectors are based on Ve and Vo,
respectively (see Appendix, Section C). The score statistic is given by

S =
m∑
i=1

Ni

∑m
j=1 πj8αi�vivj + ṽiṽj�

αi

= 8
( m∑
j=1

vjπj

)( m∑
i=1

viNi

)
+ 8

( m∑
j=1

ṽjπj

)( m∑
i=1

ṽiNi

)



Thus, in general, the score test depends on the parameters of the genetic
model through π. However, in some situations (e.g., no imprinting), this score
statistic reduces to Spairs.

4.3. Discordant sib-k-tuples. For sibships of size at least 3, with both af-
fected and unaffected individuals [orbits of �Sh × Sk−h� × D4 or of �Sh ×
Sk−h� × �C2 × C2�], the second largest eigenvalue of the infinitesimal gen-
erator has multiplicity at least two (Theorem 1). Hence, in general, the score
statistic depends on the genetic model and is a sum of terms of the form
�∑m

j=1 vjπj��
∑m

i=1 viNi�, where the v’s are the right orthonormal eigenvec-
tors of Q corresponding to the second largest eigenvalue.

In the next section, we consider the examples of sib-pairs and sib-trios and
present the transition matrix T�θ�, the infinitesimal generator Q and the
score statistic for these sibship types.
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5. Examples.

5.1. Sib-pairs, orbits of S2 × D4. For sib-pairs with either 0, 1 or 2 af-
fected individuals and without distinguishing between sharing of maternal
and paternal DNA, there are three distinct IBD configurations, labeled 0, 1,
2, according to the number of chromosomes sharing DNA IBD at the locus of
interest. The transition matrix is

T�θ� =



ψ2 2ψψ̄ ψ̄2

ψψ̄ ψ2 + ψ̄2 ψψ̄

ψ̄2 2ψψ̄ ψ2


�

where ψ = θ2+�1−θ�2 and ψ̄ = 1−ψ. Figure 4 is a barycentric representation
of curves �π�θ� = �ρ�θ�π� = πT�θ�� 0 ≤ θ ≤ 1

2� for the sib-pair transition
matrix T�θ� and for π = �π0� π1� π2� on the boundaries of the simplex. The
infinitesimal generator is

Q =



−4 4 0

2 −4 2

0 4 −4





Q has eigenvalues λ = 0, −4 and −8. The left and right eigenvectors of Q cor-
responding to λ2 = −4 are �1/2√2�0�−1/2

√
2� and �√2�0�−√

2�, respectively

Fig. 4. S2 ×D4-Barycentric representation of curves �π�θ�, 0 ≤ θ ≤ 1
2 , for π on boundaries of

simplex.
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(right eigenvector has unit norm with respect to the inner product � � �α).
Hence

U = 8P−4 = 8




√
2

0

−√
2



[

1

2
√

2
�0�− 1

2
√

2

]
=




4 0 −4

0 0 0

−4 0 4





If we let Ni denote the number of affected sib-pairs sharing DNA IBD on i
chromosomes at the marker, i = 0�1�2, then the score statistic for affected
sib-pairs is

16�π2 − π0��N2 −N0��

similarly for discordant and unaffected sib-pairs. Note that N2 −N0 may be
rewritten as N2 − �n −N1 −N2� = 2�N2 + 1

2N1� − n. Thus, the score test
is based on Spairs = N2 + 1

2N1, also known as the mean IBD statistic. These
findings extend the work of Knapp, Seuchter and Baur (1994a), who proved the
local optimality of the mean IBD statistic for affected sib-pairs under a single
DS locus model with random mating and Hardy–Weinberg equilibrium. The
score statistic for combining IBD data from affected, discordant and unaffected
sib-pairs is a linear combination of the mean IBD statistics for each type of
sib-pair, with weights π2 − π0 depending on the genetic model.

Note that this setup also applies to testing linkage to quantitative trait loci.
In this case, each sib-pair may have different continuous phenotypes, and the
score statistic is given by

16
∑
i

�π2i − π0i��N2i −N0i��

where Nji = 1 if the ith sib-pair shares DNA IBD on j = 0�1�2 chromosomes
at the marker and Nji = 0 otherwise, and πji is the conditional probability
that the ith sib-pair shares DNA IBD on j chromosomes at the trait locus
given the phenotypes of the sibs [Dudoit (1999)].

5.2. Sib-pairs, orbits of S2 × �C2 ×C2�. For sib-pairs with any number of
affecteds and distinguishing between sharing of maternal and paternal DNA,
there are four distinct IBD configurations, conveniently labeled by the pair
�i� j�, i� j = 0�1, where i and j denote the number of paternally and mater-
nally inherited chromosomes sharing DNA IBD, respectively. The transition
matrix is

T�θ� =



ψ2 ψψ̄ ψψ̄ ψ̄2

ψψ̄ ψ2 ψ̄2 ψψ̄

ψψ̄ ψ̄2 ψ2 ψψ̄

ψ̄2 ψψ̄ ψψ̄ ψ2
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and the infinitesimal generator is

Q =



−4 2 2 0

2 −4 0 2

2 0 −4 2

0 2 2 −4





Q has eigenvalues λ = 0, −4, −4 and −8. The two orthonormal right eigenvec-
tors corresponding to λ2 = −4 are �√2�0�0�−√

2� and �0�√2�−√
2�0�, hence

U = 8P−4 = 8




√
2

0

0

−√
2



[

1

2
√

2
�0�0�− 1

2
√

2

]
+ 8




0√
2

−√
2

0



[
0�

1

2
√

2
�− 1

2
√

2
�0

]

=




4 0 0 −4

0 0 0 0

0 0 0 0

−4 0 0 4


+




0 0 0 0

0 4 −4 0

0 −4 4 0

0 0 0 0





LetNij denote the number of affected sib-pairs sharing DNA IBD on i paternal
and j maternal chromosome at the marker, i� j = 0�1. The score statistic is
given by

16�π11 − π00��N11 −N00� + 16�π10 − π01��N10 −N01��

and in general depends on the genetic model, similarly for discordant and
unaffected sib-pairs. When π10 = π01, the score test is based on N11 −N00,
that is, N2 −N0 in the more usual notation.

5.3. Affected sib-trios, orbits of S3×D4. For affected sib-trios (ASTs), there
are four IBD configurations, with representative inheritance vectors and labels
[defined as in Ethier and Hodge (1985)] listed in Table 3.

Table 3
IBD configurations for affected sib-trios

IBD configuration i Representative inheritance vector Label ��i�

1 �1�3�1�3�1�3� �0�0�0� 4

2 �1�3�1�3�1�4� �0�0�1� 24

3 �1�3�1�4�2�3� �0�1�1� 24

4 �1�3�1�3�2�4� �1�1�1� 12
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The transition matrix T�θ� is given by


�1−3θ+3θ2�2 6θθ̄�1−3θ+3θ2� 6θ2θ̄2 3θ2θ̄2

θθ̄�1−3θ+3θ2� 1−4θ+10θ2−12θ3+6θ4 2θθ̄�1−θ+θ2� θθ̄�1−θ+θ2�
θ2θ̄2 2θθ̄�1−θ+θ2� 1−4θ+10θ2−12θ3+6θ4 θθ̄�2−5θ+5θ2�
θ2θ̄2 2θθ̄�1−θ+θ2� 2θθ̄�2−5θ+5θ2� 1−6θ+17θ2−22θ3+11θ4




and the infinitesimal generator is

Q =



−6 6 0 0

1 −4 2 1

0 2 −4 2

0 2 4 −6





Q has eigenvalues λ = 0�−4�−8�−8, and the left and right eigenvectors corre-

sponding to λ2 = −4 are 1
16

√
2
3�3�6�−6�−3� and

√
2
3�3�1�−1�−1�, respectively.

Hence

U = 8P−4 = 8

√
2
3




3

1

−1

−1


 1

16

√
2
3
�3�6�−6�−3� =




3 6 −6 −3

1 2 −2 −1

−1 −2 2 1

−1 −2 2 1





Let Ni denote the number of ASTs with IBD configuration i at the marker,
i = 1�2�3�4. Then the score statistic for testing linkage is

S = 16
3 �3π1 + π2 − π3 − π4��3N1 +N2 −N3 −N4�


Note that 3N1+N2−N3−N4 may be rewritten as 2�3N1+2N2+N3+N4�−
3n = 6Spairs − 3n.

5.4. Discordant sib-trios, orbits of �S1 ×S2�×D4. For discordant sib-trios
(DSTs), where the first sib is the “odd” sib (i.e., the only affected sib or the
only unaffected sib), there are seven IBD configurations, with representative
inheritance vectors listed in Table 4.

Table 4
IBD configurations for discordant sib-trios

IBD configuration i Representative inheritance vector ��i�

1 �1�3�1�3�1�3� 4
2 �1�3�1�3�1�4� 16
3 �1�3�1�3�2�4� 8
4 �1�3�1�4�2�3� 8
5 �1�3�1�4�2�4� 16
6 �1�3�1�4�1�4� 8
7 �1�3�2�4�2�4� 4
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The infinitesimal generator is

Q =




−6 4 0 0 0 2 0

1 −5 1 1 1 1 0

0 2 −6 2 2 0 0

0 2 2 −6 2 0 0

0 1 1 1 −5 1 1

1 2 0 0 2 −6 1

0 0 0 0 4 2 −6






Q has eigenvalues λ = 0�−4�−4�−8�−8�−8�−8, and the two orthonormal

right eigenvectors corresponding to λ2 =−4 are v=
√

2
3�−1�−1�−1�−1�1�1�3�

and ṽ = �1/√3��4�1�−2�−2�−1�2�0�. Hence

U = 8P−4 =




3 4 −2 −2 −4 2 −1

1 2 0 0 −2 0 −1

−1 0 2 2 0 −2 −1

−1 0 2 2 0 −2 −1

−1 −2 0 0 2 0 1

1 0 −2 −2 0 2 1

−1 −4 −2 −2 4 2 3






Denote the ith column of U by ui, then u1 + u7 = −u3 = −u4 = u6 and
u1−u7 = u2 = −u5. Let Ni denote the number of DSTs with IBD configuration
i at the marker, i = 1� 
 
 
 �7. Then, the score statistic for testing linkage is

S = 8
( 7∑
j=1

vjπj

)( 7∑
i=1

viNi

)
+ 8

( 7∑
j=1

ṽjπj

)( 7∑
i=1

ṽiNi

)

= 8
3

(
2�−π1 − π2 − π3 − π4 + π5 + π6 + 3π7�
× �−N1 −N2 −N3 −N4 +N5 +N6 + 3N7�
+ �4π1 + π2 − 2π3 − 2π4 − π5 + 2π6�
× �4N1 +N2 − 2N3 − 2N4 −N5 + 2N6�

)



6. Discussion. In this paper, we have derived score statistics for testing
the null hypothesis of no linkage between a marker and a disease gene using
identity by descent (IBD) data from sibships. We considered IBD configura-
tions which are orbits of groups acting on the set of inheritance vectors, and
proved that the transition matrix between IBD configurations satisfies a semi-
group property (Proposition 1). For general pedigree types, we derived the
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following spectral decomposition for the IBD configuration transition matrix
T�θ�:

T�θ� = ∑
h

�1 − 2θ�−λh/2 Ph�

where λh and Ph are the eigenvalues and projection matrices of the infinitesi-
mal generator Q , respectively, and λh are negative even integers (Propositions
2 and 3). By relating Q to the adjacency matrix of a quotient graph, we derived
properties of its eigenvalues and eigenvectors. In general, the second largest
eigenvalue of Q and its multiplicity determine the form of the score statis-
tic for a given pedigree type. If the second largest eigenvalue of Q is −2i, the
score test is based on the ith derivative of the log-likelihood, and if it has mul-
tiplicity one, the score statistic is independent of the genetic model (i.e., of the
nuisance parameter π). For affected-only sibships of a given size, the second
largest eigenvalue is −4 and has multiplicity one. As a result, the score test is
based on the second derivative of the log-likelihood and is independent of the
genetic model. Furthermore, the score statistic for affected-only sibships of a
given size reduces to a well-known nonparametric statistic in linkage analysis,
Spairs.

Testing the null hypothesis of no linkage using IBD data, as we do here, is
an instance of a general class of testing problems in which the null hypoth-
esis is that a Markov chain has reached its stationary distribution [Diaconis
(1988)]. The second largest eigenvalue of the infinitesimal generator not only
determines the rate of convergence to the stationary distribution, but also
plays an important role in hypothesis testing, as illustrated by our study.

Since the mid-1970’s, linkage statistics have been the subject of numerous
studies in the genetics literature. Earlier research focussed on IBD data from
sib-pairs, and the sib-pair case still remains popular for theoretical work on
linkage analysis and in practice for genetic studies. Several test statistics have
been examined to test the null hypothesis of no linkage between a marker and
a DS locus, based on the numbers �N0�N1�N2� of affected sib-pairs sharing
DNA IBD on 0, 1 and 2 chromosomes, respectively. These include the mean
IBD statistic, that is, Spairs = N2 + 1

2N1 [Blackwelder and Elston (1985),
Schaid and Nick (1990), Knapp, Seuchter and Baur (1994a, b)], N2 [Day and
Simons (1976), Blackwelder and Elston (1985) and Schaid and Nick (1990)],
N2 + 1

4N1 [Feingold and Siegmund (1997)], likelihood ratio statistics and χ2

goodness-of-fit statistics, either unrestricted or restricted to the “possible tri-
angle” [Risch (1990a, b), Holmans (1993), Faraway (1993), Feingold, Brown
and Siegmund (1993), Holmans and Clayton (1995), Knapp, Seuchter and
Baur (1994c) and Kruglyak and Lander (1995)]. Knapp, Seuchter and Baur
(1994a) first pointed out the relationship of Spairs to likelihood-based tests,
in the special case of affected sib-pairs and genetic models with a single dis-
ease locus with random mating and Hardy–Weinberg equilibrium. In the past
five years, nonparametric allele-sharing statistics for small pedigrees have
been actively studied. Current methods for analyzing IBD data from small
pedigrees rely on “scoring functions” which are defined as functions of the
IBD configurations of affected pedigree members. [Whittemore and Halpern



966 S. DUDOIT AND T. P. SPEED

(1994a), Kruglyak, Daly, Reeve-Daly and Lander (1996), Kong and Cox (1997),
Teng and Siegmund (1997) and McPeek (1999)]. A few scoring functions have
been suggested on empirical grounds, such as Spairs and Sall [Whittemore and
Halpern (1994a)], but the optimality and relationship of these scoring func-
tions to likelihood analysis deserve further study. In addition, while it is clear
that different pedigree types differ in their linkage information, IBD data
from different pedigrees are typically combined by assigning equal weights
to the standardized allele-sharing statistics of the various pedigrees. Differ-
ent standardization and weighing schemes have been suggested, but the issue
of combining IBD data from different pedigree types has not yet been thor-
oughly examined in the literature and remains an open problem. Whittemore
(1996) proposed a likelihood-based approach to linkage analysis using multi-
point marker data from general pedigrees. In the context of a genome scan,
Whittemore considered the null hypothesis of no DS gene linked to the can-
didate locus against the alternative hypothesis of a DS gene at the candidate
locus (θ = 0). The null and alternative hypotheses were expressed in terms
of a specificity parameter β, which is a function of genetic parameters, such
as penetrances and allele frequencies. Whittemore proposed testing the null
hypothesis of no DS gene linked to the candidate locus using a score test in β,
that is, in the specificity parameter. Like our score test in the recombination
fraction θ, this is a likelihood-based test which simultaneously treats the IBD
data from all pedigrees. However, this type of score test depends intrinsically
on the parameterization of the genetic model. This is a potentially serious
shortcoming for complex diseases, for which there typically is no established
knowledge regarding the number of DS loci, the penetrances, or the frequency
of genotypes in the study population. Similarly, McPeek (1999) derived allele-
sharing statistics for different types of alternative genetic models by focusing
on specificity parameters.

It is important to note that in genome scans, where marker density is high,
one expects to be testing near θ = 0 rather than near θ = 1

2 . If one has some
knowledge concerning the mode of inheritance of the disease (e.g., rare reces-
sive disease), then making use of this information in deriving allele-sharing
statistics as in McPeek (1999) is desirable. However, the main obstacle in
obtaining optimal statistics for an alternative hypothesis where θ = 0 is pre-
cisely their dependence on the genetic model, which is usually unknown. By
contrast, our score test in the recombination fraction θ focuses on the scale
component and seems to achieve some robustness with respect to specificity.
Although our score statistic in θ is locally most powerful near θ = 1

2 , Spairs
was also found to be optimal for some classes of genetic models when θ = 0 by
McPeek (1999). A recent study by Davis and Weeks (1997) on affected sib-pairs
found Spairs to perform well for a variety of two-locus genetic models. Our pre-
liminary work on applying the sib-pair score test in θ to the linkage analysis
of quantitative traits also demonstrates the power of this type of score test for
nonlocal alternatives (Dudoit (1999)). However, when the alternative hypoth-
esis is such that θ = 0, the optimal statistic depends on the genetic model,
and there are inevitably classes of models for which Spairs is outperformed by
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other statistics. For example, Feingold and Siegmund (1997) reported that for
sib-pairs N2 performed better than Spairs for rare heterogeneous traits. For
larger sibships, the performance of Spairs needs to be further investigated.

As mentioned earlier, an important issue is the combination of IBD data
from different pedigree types. The score test in θ presented in this paper
produces weights for combining IBD data from different types of sibships
(
∑

j vjπj), but these weights are linear combinations of the IBD probabilities,
π, which depend on the usually unknown genetic model. Our work on quan-
titative traits revealed that the sib-pair score test was robust to the choice of
model for computing the weights π2−π0. For sib-pairs sampled randomly with
respect to their phenotypes, the score test was found to be similar in power
to the widely used Haseman–Elston test, and for sib-pairs selected with ex-
treme concordant or discordant phenotypes, the score test was found to be far
more powerful than the Haseman–Elston test [cf. Haseman and Elston (1972),
Risch and Zhang (1995, 1996), Dudoit (1999)].

We believe that score statistics in θ as described in this paper have the
potential to be useful in practice for linkage analysis using IBD data from
sibships and relative pairs, when the mode of inheritance is unknown. We
have derived score statistics in θ for IBD data from other types of relative
pairs (e.g., cousin pairs), using the IBD configurations considered by Donnelly
(1983) and the general framework of Propositions 1 and 2 [Dudoit (1999)].
These score statistics may readily be extended to accommodate incomplete
IBD data by replacing the IBD counts by their expected value given multipoint
marker data [cf. inheritance distribution of Kruglyak and Lander (1995) and
Kruglyak, Daly, Reeve-Daly and Lander (1996)]. We were very encouraged by
our preliminary studies with sib-pairs and will further explore the issue of
combining IBD data from different sibship types and relative pairs.

APPENDIX

A. Pólya theory of counting. Let A and B be finite sets, �A� = n, and
let G and H be finite groups, G acting on A and H on B. By Theorem 35.3 in
van Lint and Wilson (1992), the number of orbits of G×H acting on BA, the
set of mappings from A to B, is given by

1
�H�

∑
τ∈H

ZG�m1�τ�� 
 
 
 �mn�τ���

where
mi�τ� �=

∑
j�i
jzj�τ�� i = 1� 
 
 
 � n�

zj�τ� �= number of cycles of τ having length j� j = 1� 
 
 
 � �B�

For a group G acting on a set of n elements, the cycle index ZG is a polynomial
in n letters, X1� 
 
 
 �Xn, defined by

ZG�X1� 
 
 
 �Xn� �=
1
�G�

∑
σ∈G

X
z1�σ�
1 · · ·Xzn�σ�

n 
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The cycle index for the symmetric group on n letters is

ZSn
�X1� 
 
 
 �Xn� =

∑
�1k1 ···nkn �

1
1k1 · · ·nknk1! · · ·kn!

X
k1
1 · · ·Xkn

n �

where �1k1 · · ·nkn� denotes a partition of n with ki parts of size i, i =
1� 
 
 
 � n. ZSn

�X1� 
 
 
 �Xn� is also the coefficient of zn in the expansion of
exp�∑∞

i=1�zi/i�Xi� [cf. deBruijn (1964), page 147]; this is the formula which
is most appropriate for our problem. In our problem, we wish to determine
the number of orbits of G×H acting on the set of mappings �a� b� c� d��1�


�k�

(i.e., the set of inheritance vectors), where H = D4 or C2 ×C2 and G = Sk or
Sh × Sk−h. Table 5 lists for each permutation in D4 the number of cycles of
length j, j = 1�2�3�4. The mi’s of Table 6 are calculated using Table 5, and
the fact that for τ ∈ D4 and i ≥ 0,

m4�τ� =m4i+4�τ��
m1�τ� =m4i+1�τ� =m4i+3�τ��
m2�τ� =m4i+2�τ�


Table 7 lists for each permutation in D4 the cycle index ZSk
�m1�τ�� 
 
 
 �

mk�τ��. When H = C2 ×C2, only the first and third rows of Table 7 are used.
When G = Sh × Sk−h, we note that the cycle index polynomial of the direct
product of two groups is simply the product of the cycle indices of the two
groups and Table 7 may be used again. The number of IBD configurations for
the four groups are listed below.
Sk ×D4:

m =



�k+ 1��k+ 3��k+ 5�/48� k odd�
�k+ 2��k2 + 7k+ 18�/48� k even and k/2 odd�
�k+ 4��k2 + 5k+ 12�/48� k even and k/2 even�

which agrees with equation (5) of Ethier and Hodge (1985).

Table 5
Cycles of D4. zj�τ� denotes the number of cycles of τ having length j ∗

Permutation � z1��� z2��� z3��� z4���

ι 4 0 0 0
ρ1 = �cadb� 0 0 0 1
ρ2 = �ad��bc� 0 2 0 0
ρ3 = �bdac� 0 0 0 1
µ1 = �ab��cd� 0 2 0 0
µ2 = �ac��bd� 0 2 0 0
δ1 = �bc� 2 1 0 0
δ2 = �ad� 2 1 0 0

∗The elements of D4 are listed according to the notation of Fraleigh [(1989), page 70].
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Table 6
mi�τ� for τ ∈ D4

Permutation � m4i�1���� m4i�3��� m4i�2��� m4i�4���

ι 4 4 4
ρ1� ρ3 0 0 4
ρ2� µ1� µ2 0 4 4
δ1� δ2 2 4 4

Sk × �C2 ×C2�:

m =
{ �k+ 3��k+ 2��k+ 1�/24� k odd�
�k+ 2��k2 + 4k+ 12�/24� k even


�Sh ×Sk−h� ×D4:

m = 1
8

[(
h+ 3

3

)(
k− h+ 3

3

)
+ 2I�4�h�I�4�k− h�

+ 3
4
I�2�h�I�2�k− h��h+ 2��k− h+ 2�

+ 1
8
�I�2�h� + �h+ 1��h+ 3���I�2�k− h� + �k− h+ 1��k− h+ 3��

]
�

where I�j�i� = 1 if j divides i and 0 otherwise.
�Sh ×Sk−h� × �C2 ×C2�:

m = 1
4

[(
h+ 3

3

)(
k− h+ 3

3

)
+ 3

4
I�2�h�I�2�k− h��h+ 2��k− h+ 2�

]



For any inheritance vector x, let pat denote the less frequent of the paternal
labels 1 and 2, and similarly let mat denote the less frequent of the maternal
labels 3 and 4. The number of paternal labels pat in the inheritance vector
x is denoted by �pat�, similarly for the maternal labels. The number of sibs
with a pair of labels �pat�mat� is denoted by ��pat�mat��. Ethier and Hodge
(1985) define the label of the particular inheritance vector x to be the triple
�l1� l2� l3� where

l1 = ��pat�mat��� l2 = min��pat�� �mat��� l3 = max��pat�� �mat��


Table 7
ZSk

�m1�τ�� 
 
 
 �mk�τ�� for τ ∈ D4. I� � is the indicator function

Permutation � exp
(∑�

i�1 mi���zi

i

)
ZSk

�m1���� 
 
 
 �mk����

ι �1 − z�−4
(
k+3

3

)
ρ1� ρ3 �1 − z4�−1 I�4�k�
ρ2� µ1� µ2 �1 − z2�−2 I�2�k��k+ 2�/2
δ1� δ2 �1 − z�−2�1 − z2�−1 1

4 �I�2�k� + �k+ 1��k+ 3��
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For example, if x = �1�3�1�4�2�3�, the less frequent of the paternal labels is
2, thus pat = 2 and �pat� = 1. Similarly, mat = 4 and �mat� = 1. �mat�pat� =
�2�4� and the number of sibs with pair of labels �2�4� is 0. Thus l1 = 0, l2 = 1
and l3 = 1. In ambiguous cases such as �1� = �2� = k/2 or �3� = �4� = k/2 ,
Ethier and Hodge suggest making a choice that results in l1 ≥ l2/2. Then the
triple satisfies

0 ≤ l1 ≤ l2 ≤ l3 ≤ k/2� and l1 ≥ l2/2 if l3 = k/2


We can modify the labeling of Ethier and Hodge for the orbits of Sk×�C2×C2�
and let

l1 = ��pat�mat��� l2 = �pat�� l3 = �mat�


B. Transition matrix for IBD configurations.

B.1. Proof of Proposition 1. Let θ̄ = 1 − θ. We first prove the semigroup
property for the transition matrix R�θ� of inheritance vectors. Let � = ��x�y�,
then

rxy�θ1 ∗ θ2� = �θ1 ∗ θ2���1 − �θ1 ∗ θ2��2k−�

= �θ1θ̄2 + θ̄1θ2���θ1θ2 + θ̄1θ̄2�2k−�

=
�∑
i=0

2k−�∑
j=0

(
�

i

)(
2k− �

j

)
θ
i+j
1 θ̄1

2k−�i+j�
θ
�−i+j
2 θ̄2

2k−��−i+j�



Also,

∑
z

rxz�θ1�rzy�θ2� =
∑
z

θ
��x� z�
1 θ̄1

2k−��x� z�
θ
��y�z�
2 θ̄2

2k−��y� z�



Now, for i = 0� 
 
 
 � �, j = 0� 
 
 
 �2k − �, divide the set of all 22k inheritance
vectors into groups of

(
�
i

)( 2k−�
j

)
inheritance vectors z, such that z differs from

x at i of the � positions at which x and y differ and z differs from x at
j of the 2k − � positions at which x and y agree. Then, ��x� z� = i + j,
��y� z� = ��− i� + j, and

∑
z

θ
��x� z�
1 θ̄1

2k−��x� z�
θ
��y� z�
2 θ̄2

2k−��y� z�

=
�∑
i=0

2k−�∑
j=0

(
�

i

)(
2k− �

j

)
θ
i+j
1 θ̄1

2k−�i+j�
θ
�−i+j
2 θ̄2

2k−��−i+j�



Therefore,

rxy�θ1 ∗ θ2� =
∑
z

rxz�θ1�rzy�θ2�
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Consider now the transition matrix for IBD configurations. From (3.2),

tij�θ1 ∗ θ2� =
∑
y∈�j

rxy�θ1 ∗ θ2� (where x is any x ∈ �i)

= ∑
y∈�j

∑
z

rxz�θ1�rzy�θ2� =
∑
y∈�j

∑
l

∑
z∈�l

rxz�θ1�rzy�θ2�

= ∑
l

∑
z∈�l

rxz�θ1�
∑
y∈�j

rzy�θ2�

= ∑
l

tlj�θ2�
∑
z∈�l

rxz�θ1�

= ∑
l

til�θ1�tlj�θ2�


Hence, T�θ� satisfies the semigroup property T�θ1 ∗ θ2� = T�θ1�T�θ2�. Now
T�θ� is differentiable and for θ �= 1

2 ,

T�θ+ h�1 − 2θ�� −T�θ�
h�1 − 2θ� = T�θ ∗ h� −T�θ�

h�1 − 2θ�

=
(
T�θ�

1 − 2θ

)(
T�h� − I

h

)
=

(
T�h� − I

h

)(
T�θ�

1 − 2θ

)



Thus T′�θ�, the matrix of first derivatives of the transition probabilities, is
given by

T′�θ� = lim
h→0

T�θ+ h� −T�θ�
h

= lim
h→0

T�θ+ h�1 − 2θ�� −T�θ�
h�1 − 2θ� �

that is,

T′�θ� = T�θ�
1 − 2θ

T′�0� = T′�0� T�θ�
1 − 2θ

�

and hence

T�θ� = ed�θ�Q�

where d�θ� = − 1
2 ln�1 − 2θ� is the inverse of the Haldane map function and

Q = T′�0� is the infinitesimal generator. Q has entries,

qij = ∑
y∈�j

�−2kI���x�y� = 0� + I���x�y� = 1�� = ∑
y∈�j

I���x�y� = 1� − 2kδij�

where x is any inheritance vector in �i and δij = 1 if i = j and 0 otherwise.
Then Q may be written as Q = B − 2kI, where B is the m ×m matrix with
entries

bij = ∑
y∈�j

I���x�y� = 1� for any x ∈ �i
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T�θ� satisfies

��i�tij�θ� = ��j�tji�θ��
hence, the stationary distribution of T�θ� is

α = �α1� 
 
 
 � αm� =
1

22k

(��1�� 
 
 
 � ��m�
)
�

since ∑
i

αitij�θ� =
∑
i

αjtji�θ� = αj
 ✷

B.2. Proof of Proposition 2. Q satisfies the reversibility condition αiqij =
αjqji, hence Q is self-adjoint with respect to the real inner product �x�y�α =∑

i αixiyi on R
m. Hence, from the principal axis theorem [cf. Jacob (1990),

page 288], Q has an orthonormal basis of eigenvectors with only real eigen-
values, λh, h = 1� 
 
 
 �m (not necessarily distinct). Denote the hth right eigen-
vector by vh and its ith entry by vih. Then �vh�vl�α = ∑

i αivihvil = δhl. Since
Q is reversible, the row vector wh with ith entry whi = αivih is the left eigen-
vector of Q corresponding to the hth eigenvalue. Hence Q may be written as

Q = ∑
h

λhPh�

where

�Ph�ij = vihwhj = αjvihvjh�

that is,

Ph = vhwh


The projection matrices satisfy P2
h = Ph = P∗

h� PhPl = 0, h �= l and
∑

h Ph =
I, where P∗

h is the adjoint of Ph with respect to � � �α. It follows that

T�θ� = ∑
h

exp�λhd�θ��Ph = ∑
h

�1 − 2θ�−λh/2 Ph
 ✷

C. Adjacency matrix of quotient graph � /�G � H�. Consider the
graph � with vertex set the set of all inheritance vectors of length 2k and
adjacency matrix A�� � = A with �x�y�-entry,

axy =
{

1� if ��x�y� = 1�
0� otherwise


To describe the eigenvectors of A it is convenient to code the inheritance
vectors x = �x1� x2� 
 
 
 � x2k� as in a 22k factorial experiment, where x2i−1 = 1
when factor 2i−1 is absent and 2 when it is present, and x2i = 3 when factor
2i is absent and 4 when it is present. The eigenvectors of A have the following
patterns.
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Proposition 3 (Eigenvalues and eigenvectors of adjacency matrix A). The
eigenvector corresponding to the eigenvalue λ = 2k is the grand mean term
V0 = �1�1� 
 
 
 �1�T. The eigenvectors corresponding to the eigenvalue λ = 2k−2
are the 2k main effect terms, V1�V2� 
 
 
 �V2k, where

V2i−1�x� = I�x2i−1 = 2� − I�x2i−1 = 1��
V2i�x� = I�x2i = 4� − I�x2i = 3�


The eigenvectors corresponding to the eigenvalue λ = 2k−4 are the
( 2k

2

)
2-factor

interactions, Vij, 1 ≤ i < j ≤ 2k, where

Vij�x� = Vi�x�Vj�x�


In general, the eigenvectors corresponding to the eigenvalue λ = 2�k − i�, i =
0� 
 
 
 �2k, are the

( 2k
i

)
i-factor interactions, Vj1�j2�


�ji

, 1 ≤ j1 < j2 < · · · <
ji ≤ 2k, where

Vj1� j2�


�ji
�x� = Vj1

�x�Vj2
�x� · · ·Vji

�x�


Let H denote the matrix with rows the 22k eigenvectors of A described above.
Then, H is an Hadamard matrix; that is, its entries are 1 and −1 and HHT =
22kI.

Proof (Partial). We need not distinguish the parental origin of the DNA,
hence, for simplicity, denote 1’s and 3’s by 0’s and 2’s and 4’s by 1’s. Then

Vi�x� = I�xi = 1� − I�xi = 0� = 2I�xi = 1� − 1


λ = 2k: the rows of A sum to 2k hence λ = 2k is an eigenvalue of A with
eigenvector V0.
λ = 2k− 2:∑

y

axyVi�y� =
∑
y

I���x�y� = 1��2I�yi = 1� − 1�

= 2
∑
y

I���x�y� = 1� yi = 1� − 2k

= 2�I�xi = 1��2k− 1� + I�xi = 0�� − 2k

= 2��2k− 2�I�xi = 1� + 1� − 2k

= �2k− 2��2I�xi = 1� − 1� = �2k− 2�Vi�x�


Hence λ = 2k− 2 is an eigenvalue of A with eigenvectors Vi, i = 1� 
 
 
 �2k. It
is easy to show that �Vi�Vj� = 22kδij.
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λ = 2k− 4:∑
y

axyVi�y�Vj�y�

= ∑
y

I���x�y� = 1��2I�yi = 1� − 1��2I�yj = 1� − 1�

= ∑
y

I���x�y� = 1��4 I�yi = 1� yj = 1� − 2I�yi = 1� − 2I�yj = 1� + 1�

= 4�I�xi = 1� xj = 1��2k− 2� + I�xi = 1� xj = 0� + I�xi = 0� xj = 1��
− 2�I�xi = 1��2k− 1� + I�xi = 0��
− 2�I�xj = 1��2k− 1� + I�xj = 0�� + 2k

= 4I�xi = 1� xj = 1��2k− 2�
+ 4�I�xi = 1� − I�xi = 1� xj = 1��
+ 4�I�xj = 1� − I�xi = 1� xj = 1��
− 2��2k− 2�I�xi = 1� + 1� − 2��2k− 2�I�xj = 1� + 1� + 2k

= �2k− 4��4I�xi = 1� xj = 1� − 2I�xi = 1� − 2I�xj = 1� + 1�
= �2k− 4�Vi�x�Vj�x�


Hence λ = 2k− 4 is an eigenvalue of A with eigenvectors Vij. ✷

In order to prove Theorem 1, we rely on the following general facts con-
cerning quotient graphs [Chapter 5 in Godsil (1993)]. Consider a group G×H
acting on the vertices of � , as described in Table 2. Then, by the same argu-
ment as that leading to (3.1), the orbits of G ×H, �i, i = 1� 
 
 
 �m, form an
equitable partition of the vertex set of � . The matrix B defined in Proposi-
tion 1 is the adjacency matrix of the quotient graph � /�G×H�, which is the
multidigraph with the orbits of G×H as its vertices and with bij arcs going
from �i to �j. Let C denote the characteristic matrix of the partition ��i�; C
is a 22k ×m matrix, with ijth entry 1 or 0 according as the ith vertex of � is
contained in the orbit �j or not.

Fact 1 [Based on Lemma 2.2 in Godsil (1993)]. The eigenvalues of B are
a subset of the eigenvalues of A.

Fact 2 [Based on Lemma 2.2 in Godsil (1993)]. If v is an eigenvector of
B, then Cv is an eigenvector of A which is constant over the orbits of G×H,
with entry vi on �i.

Fact 3. If V is an eigenvector of A which is constant over the orbits of
G ×H, with V�x� = vi ∀ x ∈ �i, then the vector v, with ith entry vi, is an
eigenvector of B.
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Proof. For any x ∈ �i

λvi = λV�x� = ∑
y

axyV�y� = ∑
j

vj
∑
y∈�j

axy = ∑
j

vjbij
 ✷

The proof of Theorem 1 also relies on the following specific properties of the
eigenvectors of A on the orbits of G×H.

C.1. Quotient graph � /�Sk ×D4�.

Fact 4. The 2k eigenvectors of A corresponding to the eigenvalue 2k− 2
sum to 0 over the orbits of Sk ×D4, that is, ∀ i = 1� 
 
 
 �2k, and any orbit � ,∑

x∈�
Vi�x� = 0


Proof. Let ι ∈ Sk denote the identity permutation and as before, let α =
�ac��bd� denote the permutation of D4 which corresponds to interchanging
the paternal labels 1 and 2. Let x̃ = �ι� α��x� denote the inheritance vector
obtained from x by interchanging the paternal labels. Then, for 1 ≤ i ≤ k,

V2i−1�x� = �I�x2i−1 = 2� − I�x2i−1 = 1��
= �I�x̃2i−1 = 1� − I�x̃2i−1 = 2�� = −V2i−1�x̃��

and since applying �ι� α� to the elements of � results in a permutation of the
inheritance vectors in � , then∑

x∈�
V2i−1�x� = − ∑

x∈�
V2i−1�x̃� = − ∑

x∈�
V2i−1�x�


Consequently, ∑
x∈�

V2i−1�x� = 0


The proof for V2i is similar, but uses the permutation β instead of α. ✷

Fact 5. The k2 eigenvectors of A corresponding to the eigenvalue 2k − 4
and involving “odd” and “even” factors sum to 0 over the orbits of Sk × D4,
that is, ∀ i� j = 1� 
 
 
 � k, and any orbit � ,∑

x∈�
V2i−1�x�V2j�x� = 0


Proof. Here again, let x̃ = �ι� α��x�. Then

V2i−1�x�V2j�x� = �−V2i−1�x̃��V2j�x̃�
and ∑

x∈�
V2i−1�x�V2j�x� = − ∑

x∈�
V2i−1�x̃�V2j�x̃� = − ∑

x∈�
V2i−1�x�V2j�x�
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Hence ∑
x∈�

V2i−1�x�V2j�x� = 0
 ✷

Fact 6. Let

V�x� = ∑
�i� j�

{
V2i−1�2j−1�x� +V2i�2j�x�

}
�

where the sum is over all
(
k
2

)
unordered pairs �i� j� of distinct integers ranging

from 1 to k. Then V is an eigenvector of A corresponding to the eigenvalue
2k− 4. Furthermore, V is constant over the orbits of Sk×D4, that is, for any
orbit � ,

V�x� = V�x̃� whenever x� x̃ ∈ � 


Proof. Members of the same orbit are obtained by a combination of any of
the following three operations: a permutation σ ∈ Sk of the sibs, and permu-
tations α and γ of the pairs of labels of all sibs simultaneously. We consider
a particular configuration � and the effect of each operation separately on
x ∈ � .
x̃ = �ι� α��x�, where ι is the identity in Sk and α = �ac��bd�: for each pair

�i� j�,
V2i−1�x̃�V2j−1�x̃�+V2i�x̃�V2j�x̃�= �−V2i−1�x���−V2j−1�x��+V2i�x�V2j�x��
hence V�x̃� = V�x�.
x̃ = �ι� γ��x�, where ι is the identity in Sk and γ = �bc�: for each 1 ≤ i ≤ k,

I�x̃2i−1 = 1� = I�x̃2i−1 = 1� x̃2i = 3� + I�x̃2i−1 = 1� x̃2i = 4�
= I�x2i−1 = 1� x2i = 3� + I�x2i−1 = 2� x2i = 3�
= I�x2i = 3��

and similarly

I�x̃2i−1 = 2� = I�x2i = 4�

Hence, for 1 ≤ i ≤ k,

V2i−1�x̃� = V2i�x��(C.1)

and consequently V�x� = V�x̃�.
x̃ = �σ� ι��x�, where σ ∈ Sk and ι is the identity in D4: For 1 ≤ i ≤ k,

x̃2i−1 = x2σ−1�i�−1 and x̃2i = x2σ−1�i�, thus

V�x̃� = ∑
�i� j�

{
V2σ−1�i�−1�x�V2σ−1�j�−1�x� +V2σ−1�i��x�V2σ−1�j��x�

}

= ∑
�i� j�

{
V2i−1�x�V2j−1�x� +V2i�x�V2j�x�

} = V�x�
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In particular, for k > 1,

V�1�3�1�3� 
 
 
 �1�3� = ∑
�i� j�

�−1��−1� + �−1��−1� = 2
(
k

2

)
= k�k− 1� �= 0


Hence, since V is a linear combination of eigenvectors of A which is nonzero,
then V is an eigenvector of A corresponding to the eigenvalue 2k − 4. Fur-
thermore, V is constant on the orbits of Sk ×D4. ✷

Fact 7. The k�k − 1� 2-factor eigenvectors �V2i−1�2j−1�V2i�2j� 1 ≤ i <
j ≤ k� have the same sums over the orbits of Sk×D4, that is, for any orbit �
and 1 ≤ i1 < j1 ≤ k, 1 ≤ i2 < j2 ≤ k,∑

x∈�
V2i2−1�2j2−1�x� =

∑
x∈�

V2i1−1�2j1−1�x� =
∑
x∈�

V2i1�2j1
�x� = ∑

x∈�
V2i2�2j2

�x�


Proof. Let x ∈ � , then x̃ = �ι� γ��x� ∈ � , and by (C.1), for each 1 ≤ i <
j ≤ k, ∑

x∈�
V2i−1�x�V2j−1�x� =

∑
x∈�

V2i�x̃�V2j�x̃� =
∑
x∈�

V2i�x�V2j�x�


Also, consider any permutation σ ∈ Sk, then x̃ = �σ� ι��x� ∈ � and∑
x∈�

V2i�x�V2j�x� =
∑
x∈�

V2i�x̃�V2j�x̃� =
∑
x∈�

V2σ−1�i��x�V2σ−1�j��x�


Similarly for V2i−1�2j−1.

Propositon 4 [Eigenvalues of adjacency matrix B of quotient graph
� /�Sk ×D4�]. The two largest eigenvalues of Bare 2k and 2k− 4, and have
multiplicity one. All other eigenvalues of B are strictly less than 2k − 4 and
belong to the set �2�k− i�� 2k

i �� i = 3� 
 
 
 �2k�, where
( 2k
i

)
is the largest possible

multiplicity of the eigenvalue 2�k − i�. The eigenvector v corresponding to
2k− 4 may be obtained from

V�x� = ∑
�i�j�

{
V2i−1�2j−1�x� +V2i�2j�x�

}
�

by letting

vi = V�x� where x is any x ∈ �i


Proof. From Proposition 3 and Fact 1, the eigenvalues of B belong to the
set �2�k− i�� 2k

i �� i = 0� 
 
 
 �2k�.
λ = 2k: the rows of B sum to 2k, hence 2k is an eigenvalue of B with

corresponding eigenvector 1 = �1�1� 
 
 
 �1�T.
λ = 2k− 2: from Fact 4, eigenvectors of A corresponding to the eigenvalue

2k − 2 sum to 0 over the orbits of Sk × D4, hence no eigenvector of A can
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be constant and nonzero over the orbits. Hence, from Fact 2, 2k− 2 is not an
eigenvalue of B.
λ = 2k − 4: we have shown with Fact 6 that V is an eigenvector of A,

corresponding to the eigenvalue 2k − 4, which is constant over the orbits.
Hence, by Fact 3, V yields an eigenvector of B. It remains to show that B has
no other eigenvector, that is, V is the only eigenvector of A which is constant
over the orbits. The orthogonal complement of V in the eigenspace of A for
λ = 2k− 4 is spanned by the following 2k2 − k vectors:

W2i−1�2j = V2i−1�2j −
�V2i−1�2j�V�

�V�2 V

= V2i−1�2j� 1 ≤ i� j ≤ k�

W2i−1�2j−1 = V2i−1�2j−1 −
�V2i−1�2j−1�V�

�V�2 V

= V2i−1�2j−1 −
1

k�k− 1�V� 1 ≤ i < j ≤ k�

W2i�2j = V2i�2j −
�V2i�2j�V�

�V�2 V

= V2i�2j −
1

k�k− 1�V� 1 ≤ i < j ≤ k


By Fact 5, for any orbit � , ∑
x∈�

W2i−1�2j�x� = 0


Also, by Fact 7,∑
x∈�

W2i−1�2j−1�x�

= ∑
x∈�

V2i−1�2j−1�x� −
1

k�k− 1�
∑
�i� j�

∑
x∈�

�V2i−1�2j−1�x� +V2i�2j�x�� = 0�

and similarly ∑
x∈�

W2i�2j�x� = 0


Hence, no eigenvector in the orthogonal complement of V in the eigenspace
of A for λ = 2k − 4 is constant over the orbits of Sk ×D4. Consequently, by
Fact 2, 2k− 4 is an eigenvalue of B with multiplicity 1. ✷

C.2. Quotient graph � /�Sk × �C2 ×C2��. Facts 4 and 5 also apply to the
orbits of Sk × �C2 ×C2�. Facts 6 and 7 may be modified as follows.
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Fact 8. Let

Vo�x� =
∑
�i� j�

V2i−1�2j−1�x�

and

Ve�x� =
∑
�i� j�

V2i�2j�x��

where the sums are over all
(
k
2

)
unordered pairs �i� j� of distinct integers

ranging from 1 to k. Then, Ve and Vo are two eigenvectors of A corresponding
to the eigenvalue 2k−4. Furthermore, Ve and Vo are constant over the orbits
of Sk × �C2 ×C2�.

Fact 9. The k�k − 1�/2 2-factor eigenvectors �V2i−1�2j−1� 1 ≤ i < j ≤ k�
have the same sums over the orbits of Sk × �C2 ×C2�, that is, for any orbit �
and 1 ≤ i1 < j1 ≤ k, 1 ≤ i2 < j2 ≤ k,∑

x∈�
V2i1−1�2j1−1�x� =

∑
x∈�

V2i2−1�2j2−1�x�


Similarly for the k�k− 1�/2 2-factor eigenvectors �V2i�2j� 1 ≤ i < j ≤ k�.

Proposition 5 [Eigenvalues of adjacency matrix B of quotient graph
� /�Sk × �C2 × C2��]. The largest eigenvalue of B is 2k, with multiplicity
one, and the second largest eigenvalue is 2k − 4, with multiplicity two. All
other eigenvalues of B are strictly less than 2k − 4 and belong to the set
�2�k− i�� 2k

i �� i = 3� 
 
 
 �2k�. The eigenvectors corresponding to 2k− 4 may be

obtained from Ve and Vo.

Proof. From Proposition 3 and Fact 1, the eigenvalues of B belong to the
set �2�k− i�� 2k

i �� i = 0� 
 
 
 �2k�.
λ = 2k: the rows of B sum to 2k, hence 2k is an eigenvalue of B with

corresponding eigenvector 1 = �1�1� 
 
 
 �1�T.
λ = 2k− 2: from Fact 4, eigenvectors of A corresponding to the eigenvalue

2k − 2 sum to 0 over the orbits of Sk × �C2 × C2�, hence no eigenvector of A
can be constant and nonzero over the orbits. Hence, from Fact 2, 2k− 2 is not
an eigenvalue of B.
λ = 2k − 4: from Fact 8, Vo and Ve are eigenvectors of A, corresponding

to the eigenvalue 2k − 4, which are constant over the orbits. Hence, by Fact
3, Ve and Vo yield two eigenvectors of B. It remains to show that B has only
two eigenvectors, that is, Ve and Vo are the only eigenvectors of A which are
constant over the orbits. The orthogonal complement of Span�Vo�Ve� in the
eigenspace of A for λ = 2k− 4 is spanned by the following 2k2 − k vectors:

W2i−1�2j = V2i−1�2j −
�V2i−1�2j� Ve�

�Ve�2
Ve −

�V2i−1�2j� Vo�
�Vo�2

Vo

= V2i−1�2j� 1 ≤ i� j ≤ k�
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W2i−1�2j−1 = V2i−1�2j−1 −
�V2i−1�2j−1� Ve�

�Ve�2
Ve −

�V2i−1�2j−1� Vo�
�Vo�2

Vo

= V2i−1�2j−1 −
2

k�k− 1�Vo� 1 ≤ i < j ≤ k�

W2i�2j = V2i�2j −
�V2i�2j� Ve�

�Ve�2
Ve −

�V2i�2j� Vo�
�Vo�2

Vo

= V2i�2j −
2

k�k− 1�Ve� 1 ≤ i < j ≤ k


By Fact 5, for any orbit � , ∑
x∈�

W2i−1�2j�x� = 0


Also, by Fact 9,

∑
x∈�

W2i−1�2j−1�x� =
∑
x∈�

V2i−1�2j−1�x� −
2

k�k− 1�
∑
�i� j�

∑
x∈�

V2i−1�2j−1�x� = 0�

and similarly, ∑
x∈�

W2i�2j�x� = 0


Hence, no eigenvector in the orthogonal complement of Span�Vo�Ve� in the
eigenspace of A for λ = 2k − 4 is constant over the orbits of Sk × �C2 × C2�.
Consequently, by Fact 2, 2k− 4 is an eigenvalue of B with multiplicity 2. ✷

C.3. Quotient graph � /��Sh×Sk−h�×D4�. Facts 4 and 5 also apply to the
orbits of � /��Sh ×Sk−h� ×D4�. The proof for sibships with both affected and
unaffected sibs is similar to that for affected-only sibships, but involves new
combinations of eigenvectors. Without loss of generality, order the sibs such
that the first h are affected and the last k− h unaffected. For k ≥ 3, define

Va�x� = ∑
1≤i<j≤h

{
V2i−1�2j−1�x� +V2i�2j�x�

}
� h ≥ 2�

Vu�x� = ∑
h+1≤i<j≤k

{
V2i−1�2j−1�x� +V2i�2j�x�

}
� h ≤ k− 2�

Vau�x� = ∑
1≤i≤h�h+1≤j≤k

{
V2i−1�2j−1�x� +V2i�2j�x�

}



Facts 6 and 7 are then modified as follows.

Fact 10. For k ≥ 3, Va (h ≥ 2), Vu (h ≤ k − 2) and Vau are eigenvectors
of A corresponding to the eigenvalue 2k− 4. Furthermore, these are constant
over the orbits of � /��Sh ×Sk−h� ×D4�.
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Fact 11. For any orbit � of � /��Sh × Sk−h� ×D4� and 1 ≤ i1 < j1 ≤ h,
1 ≤ i2 < j2 ≤ h,∑

x∈�
V2i2−1�2j2−1�x� =

∑
x∈�

V2i1−1�2j1−1�x� =
∑
x∈�

V2i1�2j1
�x� = ∑

x∈�
V2i2�2j2

�x�


Similarly for h + 1 ≤ i1 < j1 ≤ k, h + 1 ≤ i2 < j2 ≤ k and 1 ≤ i1� i2 ≤ h,
h+ 1 ≤ j1, j2 ≤ k.

Proposition 6 [Eigenvalues of adjacency matrix B of quotient graph
� /��Sh × Sk−h� ×D4�]. The largest eigenvalue of B is 2k, with multiplicity
one, and the second largest eigenvalue is 2k − 4, with multiplicity three if
2 ≤ h ≤ k − 2 and two otherwise. All other eigenvalues of B are strictly less
than 2k−4 and belong to the set �2�k− i�� 2k

i �� i = 3� 
 
 
 �2k�. The eigenvectors

corresponding to 2k− 4 may be obtained from Va, Vu and Vau.

Proof. From Proposition 3 and Fact 1, the eigenvalues of B belong to the
set �2�k− i�� 2k

i �� i = 0� 
 
 
 �2k�. We give the proof for λ = 2k−4; for the other
eigenvalues, the proof is as for Propositions 4 and 5. From Fact 10, Va (h ≥ 2),
Vu (h ≤ k−2) and Vau are eigenvectors of A, corresponding to the eigenvalue
2k− 4, which are constant over the orbits. Hence, by Fact 3, they yield eigen-
vectors of B. It remains to show that these are the only eigenvectors of B, that
is, Va, Vu and Vau are the only eigenvectors of A which are constant over the
orbits. The orthogonal complement of Span�Va�Vu�Vau� in the eigenspace of
A for λ = 2k− 4 is spanned by the 2k2 − k vectors Wi�j, 1 ≤ i, j ≤ 2k, i �= j,
defined as follows

Wi�j = Vi�j −
�Vi�j� V

a�
�Va�2 Va − �Vi�j� V

u�
�Vu�2 Vu − �Vi�j�V

au�
�Vau�2 Vau


The Wi�j’s simplify to

W2i−1�2j = V2i−1�2j� i� j = 1� 
 
 
 � k�

W2i−1�2j−1 = V2i−1�2j−1 −
1

h�h− 1�V
a� 1 ≤ i < j ≤ h�

= V2i−1�2j−1 −
1

�k− h��k− h− 1�V
u� h+ 1 ≤ i < j ≤ k�

= V2i−1�2j−1 −
1

2h�k− h�V
au� 1 ≤ i ≤ h� h+ 1 ≤ j ≤ k�

W2i�2j = V2i�2j −
1

h�h− 1�V
a� 1 ≤ i < j ≤ h�

= V2i�2j −
1

�k− h��k− h− 1�V
u� h+ 1 ≤ i < j ≤ k�

= V2i�2j −
1

2h�k− h�V
au� 1 ≤ i ≤ h� h+ 1 ≤ j ≤ k
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By Fact 5, for any orbit � ,

∑
x∈�

W2i−1�2j�x� = 0


Also, by Fact 11,

∑
x∈�

W2i−1�2j−1�x� = 0

and

∑
x∈�

W2i�2j�x� = 0


Hence, no eigenvector in the orthogonal complement of Span�Va�Vu�Vau� in
the eigenspace of A for λ = 2k − 4 is constant over the orbits of � /��Sh ×
Sk−h� ×D4�. Consequently, by Fact 2, 2k− 4 is an eigenvalue of B with mul-
tiplicity three if 2 ≤ h ≤ k− 2 and two otherwise. ✷

C.4. Quotient graph � /��Sh×Sk−h�×�C2 ×C2��. For �Sh×Sk−h�×�C2 ×
C2� we again separate “even” and “odd” eigenvectors and consider six new
combinations of eigenvectors,

Va
e �x� =

∑
1≤i<j≤h

V2i�2j�x�� h ≥ 2�

Va
o�x� =

∑
1≤i<j≤h

V2i−1�2j−1�x�� h ≥ 2�

Vu
e �x� =

∑
h+1≤i<j≤k

V2i�2j�x�� h ≤ k− 2�

Vu
o �x� =

∑
h+1≤i<j≤k

V2i−1�2j−1�x�� h ≤ k− 2�

Vau
e �x� = ∑

1≤i≤h�h+1≤j≤k
V2i�2j�x��

Vau
o �x� = ∑

1≤i≤h�h+1≤j≤k
V2i−1�2j−1�x�


Facts 6 and 7 may then be suitably modified.

D. Score statistic: Proof of Theorem 2. From Theorem 1, −4 is an
eigenvalue of the infinitesimal generator Q with multiplicity 1. Hence, the
second derivative of the transition matrix at θ = 1

2 has rank 1 and entries

uij = 8αjvivj�
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where v = �v1� 
 
 
 � vm�T is the right eigenvector of Q with unit norm with
respect to the inner product �·� ·�α. The score statistic is given by

S =
m∑
i=1

Ni

∑m
j=1 πj8αivivj

αi

= 8
( m∑
j=1

vjπj

)( m∑
i=1

viNi

)



It is convenient to express the score statistic in terms of the first column of
U, 8α1v1v. Without loss of generality, we let the first IBD configuration be the
one for which all sibs inherited the same maternal and paternal DNA, that is,
with representative inheritance vector �1�3�1�3� 
 
 
 �1�3� and label �0�0�0�
in the notation of Ethier and Hodge (1985):

S = 8

8�8α1v
2
1�α1

( m∑
j=1

uj1πj

)( m∑
i=1

ui1Ni

)

= 22k

u11��1�
( m∑
j=1

uj1πj

)( m∑
i=1

ui1Ni

)



By differentiating (3.2) we find that

uij = 24−2k ∑
y∈�j

����x�y� − k�2 − k/2�� where x is any inheritance vector in �i

and in particular, u11 = 25−2kk�k − 1�. The contribution of an affected sib-k-
tuple with inheritance vector x ∈ �i to the score statistic is based on

ui1 = 24−2k ∑
y∈�1

����x�y� − k�2 − k/2�

= 24−2k��a2�x� + a4�x� − k�2 + �a2�x� + a3�x� − k�2

+ �a1�x� + a4�x� − k�2 + �a1�x� + a3�x� − k�2 − 2k�
= 24−2k�2�a1�x�2 + a2�x�2 + a3�x�2 + a4�x�2�

+ 2�a2�x�a4�x� + a2�x�a3�x� + a1�x�a4�x� + a1�x�a3�x��
− 2k�2a1�x� + 2a2�x� + 2a3�x� + 2a4�x�� + 4k2 − 2k�

= 25−2k�a1�x�2 + a2�x�2 + a3�x�2 + a4�x�2

+ �a1�x� + a2�x���a3�x� + a4�x�� − 4k2 + 2k2 − k�
= 25−2k�a1�x�2 + a2�x�2 + a3�x�2 + a4�x�2 + k2 − 2k2 − k�
= 25−2k�a1�x�2 + a2�x�2 + a3�x�2 + a4�x�2 − k�k+ 1��




984 S. DUDOIT AND T. P. SPEED

Hence, from (4.2),

ui1 = 25−2kk�k− 1��2Spairs − 1�


Now, ui1 = 8α1v1vi, u11 = 25−2kk�k− 1� and α1 = 22−2k. Thus

v1 =
√
k�k− 1� and vi =

√
k�k− 1��2Spairs − 1�


Hence

S = 22k−2
(∑

j

uj1πj

)
�2Spairs − n� = 8

√
k�k− 1�

(∑
j

vjπj

)
�2Spairs − n��

where Spairs is summed over all sibships with k affected sibs. ✷
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