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Generalized linear models (GLM) include many useful models. This
paper studies simultaneous confidence regions for the mean response func-
tion in these models. The coverage probabilities of these regions are related
to tail probabilities of maxima of Gaussian random fields, asymptotically,
and hence, the so-called tube formula is applicable without any modifica-
tion. However, in the generalized linear models, the errors are often non-
additive and non-Gaussian and may be discrete. This poses a challenge to
the accuracy of the approximation by the tube formula in the moderate
sample situation. Here two alternative approaches are considered. These
approaches are based on an Edgeworth expansion for the distribution of a
maximum likelihood estimator and a version of Skorohod’s representation
theorem, which are used to convert an error term (which is of order n−1/2

in one-sided confidence regions and of n−1 in two-sided confidence regions)
from the Edgeworth expansion to a “bias” term. The bias is then estimated
and corrected in two ways to adjust the approximation formula. Examples
and simulations show that our methods are viable and complementary to
existing methods. An application to insect data is provided. Code for imple-
menting our procedures is available via the software parfit.

1. Introduction. Generalized linear models (GLM) include many useful
models, for example, linear regression models for normal response data, linear
logistic models for binary response data and log-linear models for categorical
response data. It is important to quantify the shape, presence of some special
features and uncertainty of the estimates of the mean response curve or the
regression function. For this purpose, this article studies informative simulta-
neous confidence regions (SCR hereafter) for the mean response curve under
generalized linear models.

The Scheffé (1959) method may be used to construct a SCR for a linear
parametric regression function over the whole predictor space when errors
are i.i.d. normal and additive. In more practical cases when the domain of
interest is a subset of the whole predictor space, Naiman (1987, 1990) and
Sun and Loader (1994) provided SCRs for a regression function over the sub-
set using the “tube method” [see also Knowles and Siegmund (1989), Johansen
and Johnstone (1990)]. These regions are robust for additive models with con-
taminated normal errors and errors from spherical symmetric distributions
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[cf. Loader and Sun (1997)]. The “tube formula” in principle also works with-
out modification for models with any nonnormal additive independent errors
when the sample size is large as the central limit theorem applies. In other
cases, this tube formula without any modification (called naive SCR hereafter)
may fail, as shown in Loader and Sun (1997). It is encouraging that the tube
formula can be modified and combined with other techniques to extend to
the cases with independent heteroscedastic or correlated additive errors, after
an adjustment to account for the extra variation introduced by estimation of
unknown weights in a weighted least squares regression or the structured
covariance in the correlated case [cf. Faraway and Sun (1995) and Sun, Raz
and Faraway (1999)]. However, in the generalized linear model, the errors are
often nonadditive (unless they are normal) and (response) variables are dis-
crete. This poses a challenge to the tube method used in the above work when
the sample size is moderate.

Here two remedies are proposed. They apply the Edgeworth expansion in
the middle of approximations rather than the normal approximation for a
normalized process and then use the idea of the Skorohod construction to
convert the first order error term from the Edgeworth expansion (in terms
of distribution) to a bias term (in terms of the difference of the process and
its limit, in a suitable sample space). The converted expansion may be called
an inverse Edgeworth expansion. Our corrections then proceed in two ways in
“correcting” the bias term from the inverse Edgeworth expansion.

More details are as follows. In Section 2, the GLM and some basic SCRs are
described. In Section 3, several inverse Edgeworth expansions are developed.
The first expansion is called basic inverse Edgeworth expansion in this paper.
The inverse Edgeworth expansion is of interest in itself and can be considered
as a generalization of the Cornish–Fisher expansion for a partial sum of i.i.d.
random variables. Other inverse Edgeworth expansions are generalized from
the basic inverse Edgeworth expansion for some special processes to make cor-
rections in Section 4. In Section 4, a first-level approximation to the coverage
probabilities of the basic SCRs is provided; corrections of the basic SCRs are
derived in two ways for each of two types of SCRs: one- and two-sided SCRs.
In the case of the one-sided SCR, the error term in the Edgeworth expansion
is at the rate of n−1/2 and depends on the bias, skewness and variance of a nor-
malized process; in the case of two-sided SCRs, the error term is of order n−1

and depends on the kurtosis and a secondary effect of the skewness of the pro-
cess. Thus, the corrections for one-sided and two-sided SCRs are different. Our
first way of correction is to apply the tube formula to some modified processes.
Our second way of correction uses the method of bias correction in Sun and
Loader (1994), which is equivalent to shrinking and expanding the width of
the basic SCRs, based on a bound of the bias term. Examples and simulations
are shown in Section 5. Concluding remarks and comparisons with alterna-
tive methods [e.g., Knafl, Sacks and Ylvisaker (1985), Hall and Titterington
(1988) and Härdle and Marron (1991)] are summarized in Section 6. Proofs
and other examples can be found in the Appendix. Those who wish to use
our SCRs right away may read Table 3 in Section 5 directly, though reading
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the description of GLM in Section 2 and the concluding remarks in Section 6
is always helpful. Those who wish to check the meaning of a notation may
consult the list of notations at the end of this paper, arranged roughly in the
order of their appearances in the paper.

2. Model and basic simultaneous confidence regions.

Model. Consider the usual generalized linear model (GLM) specified by a
link function and a random structure. Here the (anti) link function g links n
independent observable pairs of predictor xi and response variable Yi by

−∞ < E�Yi�xi� = g�η�xi�� <∞ for i = 1 
 
 
 n�

where E�Y�x� is the conditional expectation of a response Y given a predictor
x, η�x� = z�x�Tβ is a linear predictor, β is a q-dimensional unknown param-
eter and z is a q-dimensional known covariate, for example, z�x� = �1� x� x2�.
The random structure assumes that the density f of Yi belongs to an expo-
nential family,

f�y� θi� = exp�yθi − b�θi� + a�y�
(1)

with respect to some σ-finite measure d��y�, for some known functions b and
a and a natural parameter θi = θ�xi�. The natural parameter is a function of
the linear predictor η�xi�. Our problem of interest is to find under the GLM
an informative simultaneous confidence region for the mean response function
E�Y�x� as a function of x over a domain of interest � ⊆ �d for some d > 0.
In this paper, for simplicity we only study the case d = 1. The extension to
a high-dimensional d is possible since both the tube formula and the inverse
Edgeworth expansion (can) have their multivariate versions.

Throughout this paper, a subscripted function denotes the function eval-
uated at xi, for example zi = z�xi� and θi = θ�xi�, and b′ denotes the first
derivative of b, b′′ the second derivative and b�3� the third derivative, etc.

Basic simultaneous confidence regions. In most cases, the link function g is
chosen to be the canonical link. The canonical link requires that the natural
parameter θ = θ�x� = η�x�, so g�η� = g�θ� = E�Y�x� = b′�θ�, which is a
known monotone function of η since b′′�θ� = var�Y�x� > 0. Hence finding a
SCR for the mean response function E�Y�x� is equivalent to finding a SCR
for the linear predictor η�x�, for x ∈ � .

A basic two-sided SCR for η�x� is one centered around its estimator
η̂�x� = z�x�Tβ̂,

l�x� ≡ lc�x� = �η̂�x� − cσ̂�x�� η̂�x� + cσ̂�x�� ∀x ∈ �(2)

for some c > 0, where β̂ = β̂n is the maximum likelihood estimator of β,
and σ̂2�x� is the estimated asymptotic variance of η̂�x�. Equations (6) and (7)
below have their detailed expressions. For a prescribed level 0 < 1 − α < 1,
c is such that

1− α = pr�η�x� ∈ lc�x�� ∀ x ∈ � 

(3)
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Once c is found, we have a SCR lc�x� for η�x� and hence a SCR g�lc�x�� for
the mean response function E�Y�x� for x ∈ � . Note that for an approximate
pointwise CI at a fixed x, c is simply �−1�1− α/2�, the upper α/2 quantile of
the standard normal distribution.

Sometimes one-sided confidence bounds are of interest. For example, in
quality control applications, one might want upper bounds on the failure rates
of components under various operating conditions. Our one-sided basic upper
and lower SCRs for η�x� are of the form

lu�x� = �−∞� η̂�x� + cuσ̂�x�� ∀ x ∈ � �

ll�x� = �η̂�x� − clσ̂�x��∞� ∀ x ∈ � �
(4)

respectively, where cu and cl are such that

pr�η�x� ∈ lu�x�� ∀ x ∈ � 
 = 1− α = pr�η�x� ∈ ll�x�� ∀ x ∈ � 

(5)

We shall see in Section 4 that cl = cu, using a first-level approximation to (5).
Clearly, the estimator β̂ is a solution of the MLE equation

n∑
i=1

zi�Yi − b′�θi�� = 0
(6)

The asymptotic variance σ2�x� of η̂�x� and its estimator are

σ2�x� = z�x�TI−1
n �β�z�x�� σ̂2�x� = z�x�TI−1

n �β̂�z�x��(7)

where σ�x�/σ̂�x�=1+Op�n−1/2� [obviously, under the Cramér conditions that
lead to β̂− β = Op�n−1/2�� and In�β� is the q × q Fisher information matrix
about β in the sample �xi�Yi�, i = 1� 
 
 
 � n. This Fisher information can be
expressed as

In�β� =
n∑
i=1

b′′�θi�zizTi =XT"X�(8)

where zi = z�xi�, XT = �z1� 
 
 
 � zn� is the n× q design matrix and

" = diag�var�Y1�� 
 
 
 � var�Yn�� = diag�b′′�θ1�� 
 
 
 � b′′�θn��
is the variance matrix of the responses. Of course, β̂may be a biased estimator
of β. We will not merely recenter or shift the region in (2) based on an estimator
of the bias, as this may increase the variance of the adjusted estimator and
sometimes is worse than no correction [cf. Loader (1993) and Sun and Loader
(1994)]. Instead, to achieve a prescribed level, we shall use two methods of
bias corrections discussed at the end of Section 1.

Discussion. The following development and corrections of basic SCRs are
for the case that the link is canonical. However, it is apparent that our method
also applies to the case with known noncanonical link. A discussion for the
case of an unknown link function is given in Section 6.
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3. Inverse Edgeworth expansions. In this section, inverse Edgeworth
expansions are developed using Skorohod construction. Examples of relevant
coefficients in the inverse Edgeworth expansions, such as bias, skewness and
lattice term, are presented in the Appendix. For two sequences of distributions,
Fn and Gn, it will be convenient to have a notation to denote equality of
distributions up to o�n−1/2� or o�n−1�. We write Fn =d Gn to indicate that
Fn�x� −Gn�x� = o�n−1/2� or o�n−1�, uniformly in x. Whether it is o�n−1/2� or
o�n−1� should be clear from the last term in Fn or Gn. As is customary, we also
write Xn =d Yn to indicate that the corresponding sequence of distributions
stand in the relation of equality up to o�n−1/2� or o�n−1� and we write �x�y�
to denote the inner product between two arguments x and y.

Inverse Edgeworth expansions of vectors. The heuristics for developing
an inverse Edgeworth expansion is as follows. When β is one-dimensional,
for a normalizing constant an, following Skovgaard (1981a, b) we have an
Edgeworth expansion for the random sequence an�β̂n − β� given by

pr�an�β̂n − β� ≤ t
 = ��t� +Rn�t� ≡ Fn�t��

where Rn�t� = O�n−1/2� depends on the bias and skewness of an�β̂n − β�
and ��t� is the standard normal cumulative distribution function. (When β
is q > 1-dimensional, a similar expansion exists for �v� an�β̂n − β�� for any
v ∈ �q.) Thus, for some Qn�t� = O�n−1/2�,

an�β̂n − β� d= F−1
n �U� = �−1�U� +Qn�U� d= Z+Qn���Z���(9)

where U is a uniform random variable on (0,1) and Z is a standard normal
random variable. In this way, the O�n−1/2� error term Rn in the convergence
of the distribution is passed onto a Op�n−1/2� “bias” term Qn���Z�� between
the random sequence and its limit, in a suitable sample space. This is similar
to that of Skorohod construction. A detailed expression of Qn is given in (10)
of the following proposition.

Proposition 3.1 (Basic inverse Edgeworth expansion). Let λn ≤ λn de-
note the smallest and largest eigenvalues of An where An�β� ≡ In�β�/n − a
rescaled Fisher information, and let Bn = Bn�β� be the upper Cholesky trian-
gle in the decomposition BTnBn = An. Suppose that E�Yi�3 < ∞ for all i and
0 < lim inf λn ≤ lim supλn < ∞. Then for any v ∈ Sq−1 (the q-dimensional
unit sphere) and a random variable Z ∼N�0�1�, we have the following basic
inverse Edgeworth expansion:

〈
v�
√
nBn�β̂n − β�

〉 d= Z+ 1
6τn�v�

[
Z2 − 1

]+ �v�µn� +Tn�v�(10)

as n → ∞. Here �v�µn�, τn�v� and Tn�v� are the bias, skewness and lattice
terms of

〈
v�
√
nBn�β̂n − β�

〉
given in (13), (14) and (15) below.
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The key formula for deriving the bias, skewness and lattice term in (10) is
the following asymptotic expression of Bn

√
n�β̂n − β�:

Bn
√
n�β̂n − β� = ξ −

1
2n3/2

n∑
i=1

b�3��θi��ui� ξ�2ui + op
(

1
n1/2

)
�(11)

which comes from a second-order expansion of the MLE equation (6). Here
ui =

(
BTn

)−1
zi is a normalized covariate of zi, and

ξ = ξ�n� = 1
n1/2

n∑
i=1

ui
[
Yi − b′�θi�

]
(12)

is the normalized random variable such that E�ξ� = 0 and E�ξξT� = Iq, the
q-dimensional identity matrix. The moment relationship about ξ here follows
easily from (8). See the Appendix for its detailed derivation and the proof of
Proposition 3.1.

Based on the asymptotic expansion (11), one can simply compute the first
and third moments ofBn

√
n�β̂n−β� to get the bias �v�µn� and skewness τn�v�,

µ = µn = E
[
Bn
√
n�β̂n − β�

] = −1
2n3/2

n∑
i=1

b�3��θi��ui�2ui�(13)

τn�v� = E
〈
v�Bn

√
n�β̂n − β� − µ

〉3 = −2
n3/2

n∑
i=1

b�3��θi��ui� v�3�(14)

up to o�n−1/2�, for any v ∈ Sq−1; compare (A.3).
The bias and skewness terms are of O�n−1/2�. If the distribution of �v� ξ� is

lattice, clearly there is an additional n−1/2 order (lattice) term Tn�v� in (10),

Tn�v� =



h�v�
n1/2

H

(
n1/2

h�v�Z
)
� if �ξ� v� has a lattice distribution,

0� if �ξ� v� does not have a lattice
distribution,

(15)

where h�v� is the span of �v� ξ�, andH�x� is a periodic function with a period 1
and such that H�x� = x− 1/2 for 0 ≤ x ≤ 1.

It is easy to check when the lattice term is zero. A necessary condition for
�v� ξ� to have a lattice distribution is that at least one component of ξT =
�ξ1� 
 
 
 � ξq� has a lattice distribution. In order words, there are constants ai
and hi > 0 for some i such that

pr�ξi = ai + hik for some k = 
 
 
 �−2�−1�0�1�2� 
 
 
� = 1


The largest real number hi such that the above statement holds is called
the span. Based on this necessary condition, it is rare to need a nonzero lat-
tice term even if the response variable is discrete. See the examples in the
Appendix.
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In contrast to the one-sided case, in the case of a two-sided SCR the main
effect of skewness is ofO�n−1� instead ofO�n−1/2�, because theO�n−1/2� terms
cancel at two boundaries. Indeed, as in Hall [(1992), page 49],

pr��an�β̂n − β�� ≤ t
 = 2��t� − 1+R′
n�t� ≡ Fn�t��

where R′
n�t� = O�n−1� depends on the kurtosis and a secondary effect of the

skewness and variance of an�β̂n − β�. Then, similar to the idea for obtaining
(9), one obtains

�an�β̂n − β�� d= �Z� +Q′
n���Z��
(16)

The p2 in (25) below is an example of Q′
n.

Inverse Edgeworth expansions of processes. Let Wn�x� and W∗
n�x� denote

two normalized processes

Wn�x� �=
η̂�x� − η�x�

σ̂�x� and W∗
n�x� �=

η̂�x� − η�x�
σ�x� 
(17)

It is straightforward to show that under some regularity conditions [e.g., the
exponential family specified by (1) is minimal and steep in the sense of Brown
(1986), and the natural parameter space contains at least one interior point],
the family �Wn�x�
 is tight and

Wn�x� d−→W�x�(18)

and hence W∗
n�x� −→d W�x�, as n→ ∞. Here W�x� is a standard Gaussian

random field with mean zero and covariance function ρ�x� x′� = �s�x′�� s�x��,
where ρ�x� x′� = 1 if x = x′� s�x� = limn→∞ sn�x� and

sn�x� =
�BTn �−1z�x�√

nσ�x� = �BTn �−1z�x�√
zTA−1

n z

(19)

Since η̂�x� = z�x�Tβ̂ and W∗
n�x� = �sn�x�� Bn

√
n�β̂ − β��, it follows from

(10) and similar steps in establishing (18) that an inverse Edgeworth expansion
for W∗

n�x� is

W∗
n�x� d=W�x� + 1

6τn�sn�x���W�x�2 − 1� + �sn�x�� µn� +Tn�sn�x���(20)

under the same regularity conditions of Proposition 3.1.
However, the inverse Edgeworth expansion for Wn�x� differs from (20),

since Wn�x� =W∗
n�x�σ�x�/σ̂�x� and σ�x�/σ̂�x� = 1+Op�n−1/2�. Indeed, mul-

tiplying W∗
n [obtained by taking the inner product of the expression in (11)

with sn = sn�x�] by an expansion of σ�x�/σ̂�x�, we have up to op�n−1/2�,

Wn�x� = �sn� ξ� +
1

2n3/2

n∑
i=1

b�3��θi�

×[�sn� ui�2�ui� ξ��sn� ξ� − �ui� sn��ui� ξ�2]

(21)
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It then follows by straightforward calculations that the mean, covariance and
skewness of Wn�x�, up to o�n−1/2�, are

µ′n�x� �= E�Wn�x��=
1

2n3/2

n∑
i=1

b�3��θi�
[�s�x�� ui�3 − �s�x�� ui��ui�2]�

cov�Wn�x��Wn�x′��= �s�x�� s�x′���

τ′n�x� �= skew�Wn�x��=
1
n3/2

n∑
i=1

b�3��θi��ui� s�x��3


(22)

See the Appendix for a more detailed derivation of (21) and (22). Consequently,
an inverse Edgeworth expansion of Wn�x� is

Wn�x� d=W�x� + 1
6τ
′
n�x��W�x�2 − 1� + µ′n�x� +Tn�s�x��
(23)

Recall from (3) and (5) that our goal is to choose c > 0, cu > 0 and cl > 0
such that α = P�c� and Pu�cu� = α = Pl�cl�, where

P�c�=pr
{

sup
x∈�

�Wn�x�� > c
}
�

Pu�cu�=pr
{

inf
x∈�

Wn�x� < −cu
}
�

Pl�cl�=pr
{

sup
x∈�

Wn�x� > cl
}



(24)

Clearly, Wn has a mean and a skewness much closer to zero than those of W∗
n,

and the skewness of Wn and W∗
n have different signs; see (13), (14) and (22).

Thus, an application of (20) (intended for W∗
n) for correcting cu in lu (related

to Wn) would result in overcorrections. In Section 4, we shall use (23) to build
corrected one-sided SCRs.

Tracing the same arguments for (23) and using (16), we have a two-sided
inverse Edgeworth expansion for Wn�x�,

�Wn�x�� d= �W�x�� − p2�x�Wn�x���(25)

where the meaning of p2 is similar to that in Hall [(1992), pages 48–50] so that

p2�x� z� = −z
{

1
2

[
κ2�x� − 1+ κ2

1�x�
]

(26)

+ 1
24

[
κ4�x� + 4κ1�x�κ3�x�

]�z2 − 3�

+ 1
72
κ2

3�x��z4 − 10z2 + 15�
}
= O

(
1
n

)

(27)
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Here κi’s are the moments of Wn�x�, up to o�n−1�,
κ1�x� = EWn�x� = µ′n�x�� κ3�x� = E�Wn�x� −EWn�x��3 = τ′n�x��
κ2�x� = E�Wn�x� −EWn�x��2 = 1+ 1

2C1 − 1
2C2

−3C3 + 1
2C4 +C6 − 1

2C7 + 7
4C8�(28)

κ4�x� = E�Wn�x� −EWn�x��4 − 3κ2
2�x�

= −9C3 + 3C6 + 6C8 + 3C9

with ui = �BTn �−1zi and

C1 =
1
n3

∑
i

∑
j

b
�3�
i b

�3�
j �s�x�� ui��s�x�� uj��ui� uj�2 = C5�

C2 =
1
n2

∑
i

b
�4�
i �s�x�� ui�2�ui� ui��

C3 =
1
n3

∑
i

∑
j

b
�3�
i b

�3�
j �s�x�� ui�2�s�x�� uj�2�ui� uj��

C4 =
1
n3

∑
i

∑
j

b
�3�
i b

�3�
j �s�x�� ui�2�ui� uj��uj� uj��

C6 =
1
n2

∑
i

b
�4�
i �s�x�� ui�4�

C7 =
1
n3

∑
i

∑
j

b
�3�
i b

�3�
j �s�x�� ui��s�x�� uj�3�ui� ui��

C8 =
1
n3

∑
i

∑
j

b
�3�
i b

�3�
j �s�x�� ui�3�s�x�� uj�3 = �κ3�x��2�

C9 =
1
n2

∑
i

[
b
�2�
i

]2�s�x�� ui�4


(29)

Similarly, let W�0�
n �x� be a normalized process of Wn�x�,

W
�0�
n �x� = �Wn�x� − κ̂1�x��

/√
κ̂2�x��(30)

then a two-sided inverse Edgeworth expansion of W�0�
n �x� is

∣∣W�0�
n �x�

∣∣ d= �W�x�� − q2�x� W�0�
n �x���(31)

where q2 is the counterpart of p2 for W�0�
n �x�,

q2�x� z�=−z
{ 1

2κ
s
2�2�x� + 1

24κ
s
4�1�x��z2 − 3�

+ 1
72

[
κs3�1�x�

]2�z4 − 10z2 + 15�}�(32)
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κs2�2�x�=C3 − 3
2C8 −C5 −C4 + 1

2C7 +C6 −C2�

κs3�1�x�=κ3�x� = τ′n�x��
κs4�1�x�=−3C3 − 6C4 − 6C5 + 3C6 + 3C7 − 3C8 + 3C9


(33)

Here, q2�x� z� = O�n−1� = p2�x� z�. From their expressions, it is obvious that
the computation involving the n−1 correction term increases drastically from
that of n−1/2. Nevertheless, these formulas are easy to compute in a computer;
a user may use our software parfit to automate the computation.

4. Approximations and corrections. In this section, a first-level
approximation is developed for the coverage probabilities of basic SCRs in
(2) and (4). The inverse Edgeworth expansions in Section 3 are used to derive
corrected SCRs, in two different ways.

Approximations. In the typical case that s�x� does not self-overlap [in most
cases it does not; cf. Sun and Loader (1994)], it is straightforward to apply the
weak convergence (18), tube formula in Sun (1993) and a boundary correction
[Sun and Loader (1994)] to get

Pl�c� ≈ pr
(

sup
x∈�

W�x� > c
)
≈ κ0

2π
exp �−c2/2� + δ(1−��c�)

where Pl�c� is in (24), κ0 is the length of �s�x�� x ∈ � 
,

κ0 =
∫
x∈�

�s′�x��dx�(34)

s′ is the first derivative of s and δ is Euler–Poincaré characteristic of �s�x��
x ∈ � 
 such that (1) δ = 1 if � = �a� b� and s�a� �= s�b�, and (2) δ = 0
when s�a� = s�b�. Consult Kreyszig (1968) for more details on δ. Similarly,
the coverage probability of two-sided SCR is

P�c� ≈ pr
(

sup
x∈�

�W�x�� > c
)
≈ κ0

π
exp �−c2/2� + 2δ

(
1−��c�)


Solution of C. By the symmetry of W�x�, it is easy to see that cl = cu. So,
if c and cu = cl are the solutions of

α= κ0

π
exp�−c2/2�+2δ

(
1−φ�c�)� α= κ0

2π
exp�−�cl�2/2�+δ(1−��cl�)�(35)

respectively, basic SCRs lc�x� in (2), lu�x� and ll�x� in (4) are 1−α approximate
two-sided, one-sided upper and lower, SCRs of η�x� for all x ∈ � .

Remark 1. Note that a basic SCR for η or a SCR g�lc� forE�y�x�, based on
c or cu from the tube formula (35), is different from the naive SCR unless the
responses in GLM are normally distributed. Using the naive SCR in discrete
response cases could fail badly, as discussed in Section 4.
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Our simulation results in the next section show that these basic SCRs based
on the first level approximation in (35) are good if the sample size is large for
many discrete models including logistic (for n = 200) and Poisson models (for
n = 50). When n is small and the data are discrete, it is desirable to have a
better approximation or correction which takes into account the bias from the
Gaussian approximation in (18).

Corrections. There are two ways for modifying each of the two basic SCRs,
based on (23) for one-sided basic SCR and based on (25) and (31) for two-sided
basic SCR. We shall ignore the lattice term and name these corrections as
follows:

Name One-sided SCR Two-sided SCR
Method 1 (based on a modified process) Correction 1 Correction 2
Method 2 (bound a bias term) Correction 1′ Correction 2′

Correction 1. Based on (23), define a new process

WA
n�x� =Wn�x� − µ′n�x� −

τ′n�x�
6

{�Wn�x� − µ′n�x��2 − 1
}
�(36)

where Wn�x� = �η̂�x� − η�x��/σ̂�x�. It follows easily that WA
n�x� →d W�x�,

by (18) and “µ′n = O�n−1/2� = τ′n.” Thus, we can define corrected upper and
lower SCRs based on WA

n:

lu�1�x�= �η�x�� WA
n�x� ≥ −cu
�

ll�1�x�= �η�x�� WA
n�x� ≤ cl
 ∀ x ∈ � �

(37)

where cu = cl is a solution of (35).

Correction 1′. Our next corrected SCR is in the proposition below.

Proposition 4.1. Define R = supx∈� R�x� where

R�x� �= 1
6τ
′
n�x��W�x�2 − 1� +Tn�s�x�� + µ′n�x�


Suppose that there are positive constants r = rn such that pr�R ≥ r� = o�α� as
n→∞ and α→ 0. Then if � is one-dimensional, a conservative and a liberal
approximation to (4) are

α≈ κ0

2π
exp

(
−�c

u − r�2
2

)
+ �1−��cu − r��δ�

α≈ κ0

2π
exp

(
−�c

u + r�2
2

)
+ �1−��cu + r��δ�

(38)

respectively, where δ is the same Euler–Poincaré characteristic as that in (35).
Thus, our second corrected upper and lower one-sided SCRs are lu and ll in (4)
with cu = cl being the solutions from one of the equations in (38).
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The idea of the proof is to apply the inverse Edgeworth expansion (23) to
approximate Pl in (24) and consider the n−1/2 term, for example, R, as a bias
term. Then the method of the bias correction from Sun and Loader (1994) is
generalized to our problem for improving the accuracy of our approximation
formula. See the Appendix for the proof.

Of course, the solution cu depends on constants δ, κ0 and r, which can
be estimated. See (42)–(44) below. The resulting SCR lu may have a slightly
conservative [if the first equation in (38) is used] or a slightly liberal (if the
second equation is used) coverage probability, but both coverage probabilities
approach to 1−α as n→∞ and then α→ 0. See Section 5 for suggestions on
choosing cu from either of the two equations in (38) in practice.

Correction 2. Define new processes

W
�1�
n �x�= �Wn�x�� + p2�x�Wn�x���

W
�2�
n �x�=

∣∣W�0�
n �x�

∣∣+ q2
(
x�W

�0�
n �x�

)



(39)

Then, similar to establishing (25) and (31), we have W�1�
n �x� =d �W�x�� =d

W
�2�
n �x�, up toop�n−1�. Thus, let cbe the constant such that “P�max� �W�x��≤c


= 1 − α,” that is, c be the solution of the first equation in (35), two corrected
regions are

l�i��x� = {
η�x�� W�i�

n �x� ≤ c
} ∀ x ∈ � for i = 1�2
(40)

The SCR l�1� based on W
�1�
n is no good, while l�2� based on W

�2�
n provides a

significant improvement over that based on Wn. See Batch 2 experiment in
Section 5.

Correction 2′. It is lc�x� in (2) with c being the solution of (41) below.

Proposition 4.2. Define R′
p = supx∈� p2�x�W�x�� = Op�1/n�. Suppose

that there are positive constants r′p = r′p�n� such that pr�R′
p ≤ r′p� = 1− o�α�

as n→∞ and n−k ≤ α→ 0 for some 1 ≥ k > 0. Then if � is one-dimensional,
a conservative and a liberal approximation to “1 − α = pr�η�x� ∈ lc�x��
∀ x ∈ � 
” are

α≈ κ0

π
exp

(
−
(
c− r′p

)2
2

)
+ 2

(
1−�(c− r′p))δ�

α≈ κ0 − κ1

π
exp

(
−
(
c+ r′p

)2
2

)
+ 2

(
1−�(c+ r′p))δ�

(41)

respectively, where δ is same as (35) and κ1 ≈ 0
5
∫
x∈�1

�s′�x��dx with �1

being the overlapping area of the tubular neighborhoods of �s�x�� x ∈ � 
 and
�−s�x�� x ∈ � 
.
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Remark 2. The corrected SCR 2′ from (41) are equivalent to

l�3��x� = �η�x�� �Wn�x�� ≤ c± r′p
 ∀ x ∈ � 


The counterpart based on W�0�
n �x� is

l�4��x� = �η�x�� �W�0�
n �x�� ≤ c± r′q
 ∀ x ∈ � �

where pr�R′
q ≤ r′q� = 1− o�α� as n→∞ and R′

q = supx∈� q2�x�W�x�� =
Op�1/n�. Interestingly, l�3� (based on W

�1�
n ) works better than l�4� (based on

W
�2�
n � in practice, reversing what occurred in Correction 2; see Batch 4 exper-

iment in Section 5.

Estimation of constants κ0� κ1� r� r
′
p� r

′
q.

1. A simple approximation to κ0 when � = �a� b� can be obtained by par-
titioning �a� b� into a = t0 < · · · < tm = b, and computing

κ̂0 =
m∑
i=1

∫ ti
ti−1

∥∥∥∥D�B̂Tn �−1z�x�√
nσ̂�x�

∥∥∥∥dx ≈
m∑
i=1

∥∥∥∥�B̂Tn �−1z�ti�√
nσ̂�ti�

− �B̂
T
n �−1z�ti−1�√
nσ̂�ti−1�

∥∥∥∥�(42)

where B̂n = Bn�β̂�.
2. The calculation of κ1 depends on the set �1, which can be approximated

roughly by plotting s�x� and −s�x�. As shown in Sun and Loader (1994), if
s� � → s�� � is 1–1, three times differentiable and there exists a vector γ
with �γ� s�x�� > 0 for all x ∈ � , then the tubular neighborhoods of �s�x�
 and
�−s�x�
 do not intersect for sufficiently small radii. The vector γ = �1� 
 
 
 �1�T
suffices in most regression models. In our simulations we simply set κ1 = 0,
which worked fine. A more rigorous and complicated expression for κ1 may be
derived using the inclusion and exclusion formulas due to Naiman and Wynn
(1997). See the proof in the Appendix.

3. The estimate of r is more complicated than those of κ0 and κ1. The
sharper it bounds R the better the correction will be. Analogous to (A.5) in
the Appendix, a “sharp” estimate of r is

r̂ = r̂�c� = sup
x∈�

( 1
6 τ̂
′
n�x��c2 − 1� + T̂n�sn�x�� + µ̂′n�x�

)
�(43)

where c is a solution of an equation in (38) with r replaced by r̂�c�. Thus,
given a data set, a corrected conservative SCR 1′ is lc with c to be the solution
of the first equation in (38) where r = r̂�c�. A “corrected” liberal SCR can be
obtained similarly.

It is possible to have an estimate of r that does not depend on c, and hence
it is easier than r̂ in (43) to use for solving c based on (38) though it is not
as sharp as r̂. See Sun, Loader and McCormick (1998) for this estimate and
a related interesting little inequality.

Using the same idea for developing r̂, we have “sharp” estimates of r′p
and r′q,

r̂′p = sup
x
p2�x� c� and r̂′q = sup

x
q2�x� c�
(44)
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5. Examples and simulations. To perform a simulation experiment we
just need to compute the maxima (say, equal to b) of the processes Wn�x�,
W

A
n�x�, W�0�

n �x�, W�1�
n �x� and W�2�

n �x� using the known true η�x� and estimate
the α quantile of a tube approximation t�b� by

α̂ =
10�000∑
i=1

�t�bi� < α

10�000

�(45)

where bi is the ith independent repetition of b in the experiment, 10,000 is the
simulation size of the experiment and t�·� is a tube approximation to P�·� or
Pu�·� or Pl�·� in (24). In other words, t�bi� is the right-hand side of an equation
in (35) (for basic SCRs and Method 1, corrected SCRs 1 and 2), or the right-
hand side of an equation in (38) or in (41) (for Method 2, corrected SCRs 1′

and 2′), evaluated at c = bi or cu = bi. If the SCR works well, α̂ should be
close to the nominal noncoverage probability α. We will discuss our simulation
results for one-sided and two-sided SCRs with α = 0
005, 0.01, 0.05 and 0.1.
The canonical (anti) links for the Poisson and Bernoulli–binomial regression
are log and logistic links.

To actually compute SCRs for a data set, one places the critical values c or cu

obtained from the tube approximations on these processes to obtain equations
that can be solved to find confidence limits for η�x�. See Table 3 below and an
application to a real data set.

Simulations. Twenty xi’s were generated from U�0�1�. For a given mean
response function E�Yi�xi� = m, Poisson responses were generated, and a
log-quadratic model fitted to the data. The basic two-sided SCRs lc�x� were
computed over the interval [0, 1], and the coverage probabilities estimated
based on 10,000 simulations by (45).

Fig. 1. Simulated coverage probabilities for a Poisson log-quadratic regression. For each mean,
the actual coverage obtained at a nominal 90%, 95% and 99% levels is displayed.



SIMULTANEOUS CONFIDENCE BANDS 443

Figure 1 displays the results. The coverage probabilities are generally quite
good and comparable to what would be expected from the “naive” SCR for the
mean response function from a Gaussian model. The “naive” SCR works rea-
sonably well under a Gaussian model [Sun and Loader (1994)] but may fail
under a nonnormal GLM (especially with discrete responses). Recall Remark 1
in Section 4. There is some evidence that the true distribution has light tails
at smaller means, with the results being conservative at the nominal 90% cov-
erage and slightly liberal at the nominal 99% coverage. However, the notable
point is that the main effect (at the rate of n−1/2) of skewness does not have a
significant impact on coverage probability of two-sided SCRs, as shown in (16).
Even though the distribution ofWn�x� is quite heavily skewed [as shown below
and in (22)], the main effects of skewness cancel at the two boundaries; the
excess coverage gained at one boundary is lost at the other boundary.

To show the effect of skewness more dramatically, we consider one-sided
confidence bounds. The coverage probabilities of one-sided basic SCRs lu and
ll [based on Wn�x�] and corrected SCRs lu�1 and ll�1 [based on W

A
n�x�] are

shown in Figure 2. Clearly there is a dramatic skewness effect; The basic
lower SCRs are liberal, and the basic upper SCRs are very conservative. The
corrected SCRs improve the situation in both cases, although in the case of
the upper bound, the correction does not go far enough (This is also true
for the lower bound, since the tube formula should be slightly conservative,
especially at the 90% level.) Part of the problem may be the use of estimated
parameters in µ′n�x� and τ′n�x�; however, the main problem appears to be a
low kurtosis; E��Wn�x� − µn�x��4 − �Wn�x� − µn�x��2� < 2.

A second simulation is carried out in a Bernoulli setting, using quadratic
logistic regression with true mean function 0.5 based on basic two-sided SCRs.
Again, xi’s were generated from aU�0�1� distribution, with sample sizes rang-
ing from 20 to 200. Results are shown in Figure 3. The results in this case are
poor (in comparison to the results in the Poisson case), except for the largest
sample size n = 200. Moreover, the results here cannot be attributed to bias

Fig. 2. Simulated coverage probabilities for one-sided upper (left panel) and lower confidence
bands (right panel). Coverages from the basic SCRs are shown with a 0� and coverages from a
bias-skewness corrected SCRs 1 with a +.
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Fig. 3. Simulated coverage probabilities for a quadratic logistic regression.

and skewness; since our responses are Bernoulli with mean 0.5, symmetry
implies the estimate is unbiased and has skewness 0. Therefore, Correction 1
and 1′ will not help with one-sided confidence bands in this case. The results
with Corrections 2 and 2′ for two-sided SCRs are given below.

Implementing Corrections 2 and 2′ for two-sided SCRs is as straightforward
as those for Corrections 1 and 1′, though the computation of the n−1 term is
more complicated. Our design of experiments for comparing two-sided SCRs
is a complete or partial crossing of the cases in Table 1 for the following four
batches of experiments. In each experiment, simulation size is 10,000 and
SCRs are computed for each of 10,000 independent samples from a distribution
specified in Table 1, under an exact and/or overfitting scheme.

Batch 1. Comparisons of overfits and exact fits. The basic SCRs are com-
puted from Wn�x�, for 10 pc models with deg = 0�1�2 fits and n = 20�50�100;
for 2 bc models with deg = 0�1 fits and for bl, bq, pl and pq with the exact
fits and n = 20�50�100�150�200 and for Bl. This leads to a total of 90+ �4+

Table 1
Models and notations

Model Notation Mean Exact fit

Poisson pc mean = 1�2� 
 
 
 �10 deg = 0
pl mean = 5 exp�x�, a log linear function deg = 1
pq mean = 10 exp�−1+ 6x− 9x2�� log quadratic deg = 2

Bernoulli bc mean = 0
5�0
7 deg = 0
bl mean = expit�x� �= exp�x�/�1+ exp�x��, deg = 1

logistic linear
bq mean = expit�x− 2x2�, logistic quadratic deg = 2

Binomial Bl mean = 3 expit�x� deg = 1

Sample size n = 20, 50, 100, 150, 200; overfits if fitted with deg > exact deg.
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4� × 5 + 1 = 131 experiments. There are three points that can be made from
these experiments.

The first point relates to the justification of overfits. In practice, we often
do not know how a true mean response function depends on predictors. An
underfit is much more serious than an overfit, since an underfitted model is
wrong while an overfitted model still gives an unbiased estimator of the log
(or logit) of the mean response function, though the variance of the estimator
tends to be larger than that by an exact fit. An effect of this variance increase
(the size of which decreases as the sample size increases) is that the SCR from
an overfit tends to be more conservative. This is confirmed in this experiment;
compare the noncoverage probabilities in Figure 4. Figure 4 only has the plot
for α = 0
05; the plots for other levels are similar. If there must be a deviation
it is better to have a conservative SCR than a liberal SCR as long as the
conservative SCR is informative—not too wide. In addition, Figure 4 shows
interestingly that the coverage probabilities (not variances) under an overfit-
ted model are less varied than those under an exact fit. Thus, Corrections 1′

and 2′ should work well in practice from an overfitted model. Of course, it is
beneficial to perform an exact fit if possible (by performing diagnostics on sev-
eral possible fits) before computing a SCR. This two-stage process, obtaining
an exact fit to a given data and then computing a good SCR, will be illustrated
in the data application below.

The second point compares the SCRs for Poisson and Bernoulli models,
under exact and overfits. Most basic SCRs under the 90 pc cases are conser-
vative, though some are a little liberal. Almost all SCRs under the remaining
41 cases are conservative. Generally, the basic SCRs from Bernoulli models
are much more conservative than those from the Poisson models. This is con-
sistent with our earlier discovery in Figures 1 and 3. Since the binomial model
Bl is equivalent to a Bernoulli model bl with a larger sample size, this is the
only batch where the Bl case is experimented.

Fig. 4. Comparisons of exact fits (deg = 0) and overfits (deg = 1�2). Simulated noncoverage
probabilities of the level 0
05 basic SCRs are plotted against n and the true mean in the Poisson
model pc.
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The third point is about the computation of SCRs. In two out of these 131
experiments, our algorithm returned NA in one (or four) out of the 10,000
samples for the bc model with mean 0.7, n = 20 and a deg = 0 (or deg = 1)
fit. This indicates that our algorithm occasionally has difficulties when the
sample size is small, for example, n = 20.

The basic SCR is used as a baseline of comparisons in the rest of the
experiments.

Batch 2. Comparisons ofW�1�
n �x� andW�2�

n �x� for building corrected SCR 2.
The SCRs computed from W

�2�
n �x� are the clear winners, especially when the

models are fitted exactly. This suggests performing exact fits and using a more
centered process when possible.

Batch 3. Comparisons of W�0�
n �x� and W

�2�
n �x�. A SCR from Wn�x� is the

easiest to compute and that from W
�0�
n �x� is easier to compute than that from

W
�2�
n �x�; thus, if the results from two processes are not much different, we

suggest using the simpler one. There were a total of 390 experiments with
different fits, n and models. The results are shown in Figures 5 and 6 and
summarized in Table 2, where by small α is meant α = 0
005�0
01.

For Bernoulli models bc, the improvement from W
�0�
n �x� over Wn�x� is not

as much as W�2�
n �x�, which is consistent with our earlier observation that the

less satisfactory results of the basic SCRs “cannot be attributed to the main
effects of skewness.” The exceptions for the case of n = 20 when α is small
is not surprising since a 1/n term is less predictable when the sample size is
small. In fact, our parfit can fail to converge in some n = 20 cases. This is
expected: although κ2�x� > 0 in theory, κ2 can be negative when it is estimated
in a small sample case. Fortunately, the failure happened only when n = 20
and in the worst case only six out of 10,000 repetitions. We see similar results
in the case of deg = 1 fits. For bq, the corrected SCRs for α = 0
1 (large α)
generally improve over the basic SCRs, but not enough sometimes. This is the
case that Correction 2′ helped.

Batch 4. Comparisons of Corrections 2 and 2′. The sampling distribu-
tions are bl, bq, pl and pq. The fits are exact and n = 20�50�100�150�200.
In each experiment, nine SCRs are computed while only four of them are
listed in Table 2. Other unlisted SCRs include corrected SCR 2′ based on
max��W�0�

n �x��
 ± r̂′q and those simplified from W
�1�
n and W

�2�
n , for example,

max��W�0�
n �x�� + q2�x� c�
 is simpler for building a SCR than max�W�2�

n �x�
 =
max��W�0�

n �x�� + q2�x�W�0�
n �x��
. The unlisted SCRs though justified asymp-

totically [see (A.5)] did not perform well in simulations.
Again, the basic SCRs generally have reasonable coverage probabilities for

Poisson data, but not for Bernoulli data unless the sample size is 200. The
centered SCRs are uniformly better than the basic SCRs, though the improve-
ments are not as big as corrected SCR 2 in some cases for α = 0
1 and 0.05. Cor-
rected SCRs 2 are excellent for pq models, very good for bl except n = 20 and
pretty good for pl. Corrected SCRs 2′ defined by �η�x�� �Wn�x�� ≤ c− �r̂′p�� x ∈
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� 
 (which serves as a guideline for deciding whether to add or subtract r̂p in
the confidence width) are better than corrected SCRs 2 for bl and bq.

Example. The following is the insect data from Bliss (1935):

log2 (concentration) 0 1 2 3 4
No. of deaths 2 8 15 23 27
No. of insects 30 30 30 30 30

An exploratory data analysis suggests that the log2(concentration) of an
insecticide might be a good predictor for modeling the probability of death
of an insect. The analysis of a deviance table for a linear logistic fit and a
quadratic logistic fit to the data [available in Sun, Loader and McCormick
(1998)] suggests the linear logistic fit is good enough. This is also confirmed
by other simple diagnostics plots. The estimates of the linear predictor η�x�

Fig. 5. Comparisons of Wn�x��W�2�
n �x��W�0�

n �x�, for the Bernoulli models bc.
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Fig. 6. Comparisons of three SCRs with exact fits. For the pq model, results from three SCRs for
n = 150 and 200 are very close and hence are omitted.
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Table 2

Comparisons of W�0�
n �x� and W�2�

n �x�

Winner Exception

pc W
�0�
n �x� None

bc W
�2�
n �x� Use W�0�

n �x� if n = 20

bl W
�0�
n �x� Use W�2�

n �x� if n = 20 and Wn�x� if n = 50 when α = 0
005, 0.01

bq W
�2�
n �x� Use W�0�

n �x� if n = 20 when α = 0
005, 0.01

pl W
�0�
n �x� Use Wn�x� for n > 100

pq W
�0�
n or Wn Use W�2�

n �x� for n = 20 when α = 0
005, 0.01

and its variance σ2�x� are

η̂�x� = −2
32379+ 1
161895x�

σ̂2�x� = �1 x �
(

0
17462 −0
06582
−0
06582 0
03291

)(
1
x

)
�

where x = logc(concentration). Based on 41 equally spaced points in (0, 4) and
α = 0
05, we obtain c = 2
4304, r̂p = 0
043414. The summary statistics of
κ̂1�x�� κ̂2�x�� u�x� are

Min 1st qu. Median Mean 3rd qu. Max st.dev.
κ̂1�x� −0
036 −0
012 −0
00055 −0.00011 0.012 0.036 0.00279
κ̂2�x� 0.985 0.986 0.98660 0.98670 0.988 0.988 0.00015
u�x� 2.185 2.203 2.23700 2.23800 2.279 2.284 0.00517

Figure 7 displays an approximate pointwise confidence region (CR), η̂�x� ±
1
96σ̂�x�, basic, centered, corrected simultaneous CRs in Table 3 for E�Y�x� =
p�x�, the probability of death as a function of log2(concentration). The point-
wise confidence region is narrowest of all CRs. This is expected since it can not

Table 3
Comparisons of corrected SCRs 2 and 2′ and recommendations

Name Process SCR for ��x� Recommendations

Basic SCR max��Wn�x��
 η̂�x� ± cσ̂�x�, For* pc, pq

Centered SCR max��W�0�
n �x��
 η̂�x� − κ̂1�x�σ̂�x� For* pc, bl, pl

± cσ̂�x�√κ̂2�x�
Corrected SCR 2 max�W�2�

n �x�
 η̂�x� ± u�x�σ̂�x� For* bc, bq, pl, pq
Corrected SCR 2′ max��Wn�x��
 ± r̂′p η̂�x� ± �c− �r̂p��σ̂�x� For bl, bq

Here c is the first level approximation from the first equation in (35), r̂′p is in (44), κ̂1�x� and κ̂2�x�
are estimated mean and variance of Wn�x� in (28), and u�x� is the solution of “�u�+q2�x�u� = c,”
with q2 defined in (32).
∗Summarized based on Table 2 and Batch 4 experiments: briefly, if bl and pl, use corrected SCR
2′; if one is to choose between the first three SCRs, follow Table 2 for exceptions and specifics
related to n and α.
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be interpreted simultaneously for making inferences about the entire curve
as the other SCRs do. All SCRs are fairly close since the sample size (number
of insects) is 150. However, the basic SCR is the widest (as expected) and cen-
tered SCR is indistinguishable from the basic SCR. Both corrected SCR 2 and
2′ are narrower than the basic SCR with the corrected SCR 2 being the best.

6. Discussion and concluding remarks. We constructed basic SCRs
and corrected SCRs for the mean response function in a GLM. The central
idea in our approach is similar to the Skorohod construction so that we could
explicitly study the “bias” from approximatingWn�x� byW�x�. When this bias
is small we can estimate the bias for adjusting the approximating formula.

Basic SCRs are informative [an original Figure 8 is omitted. If interested,
see Sun, Loader and McCormick (1998)]. They are reasonable for continuous
data and Poisson data when n ≥ 50 and binomial data when n ≥ 200. In
other cases, centered or corrected SCRs should be used. Our centered SCRs
uniformly improve over the basic SCRs and corrected SCRs in most cases offer
improvement over the basic SCRs. Corrections 1 are generally helpful for one-
sided bands. Corrections 2 and 2′ can be used for two-sided bands. See Table 3
for a summary of recommended two-sided SCRs. Implementing these SCRs
via our software parfit is fairly straightforward.

Our methods require that the link function be known. When the link func-
tion is unknown, a user may use residual plots to guess a reasonable link
function and then proceed as above as if the link were known. In this case,

Fig. 7. Approximate pointwise CI, basic, centered, corrected simultaneous CI for E�Y�x� = p�x�.
The points are percentages of deaths at each log 2 (concentration). The middle black solid curve is
the estimate p̂�x� = expit�−2
32379+ 1
161895 ∗ x�.
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a further justification may be needed to justify the use of the plug-in link
function.

Alternative methods for constructing a SCR can be found in Knafl, Sacks
and Ylvisaker (1985), Hall and Titterington (1988), Härdle and Marron (1991)
and others. Knafl, Sacks and Ylvisaker (1985) assume that the errors are nor-
mal and additive. They build simultaneous confidence bands on discrete points
using discrete upcrossings and then interpolate between these points, so in
the limit it is equivalent to the “tube method” in the one-dimensional case
(d = 1) when errors are normal. Härdle and Marron (1991)’s bands are based
on kernel estimates of the regression function and a bootstrap procedure for
building simultaneous error bars, that is, their bands are simultaneous on a
set of finite discrete points in the predictor space. Some comparisons with the
tube formula approach are presented in Loader (1993). Hall and Titterington
(1988) present an alternative approach for constructing SCRs for density func-
tions and regression functions. They divide the data into nonoverlapping bins
and then use the data in each bin to find confidence intervals at the centers
of each bin (this essentially amounts to using a rectangular kernel estimate).
Since the bins are nonoverlapping, the intervals for separate bins are indepen-
dent, so they can easily make these simultaneous. Then, to construct a SCR,
for a regression problem, say, they assume a bound on a low-order derivative
of the regression function. So this bound plays an important role in the actual
size and coverage probability of their SCR. In any case, the tube formula
approach is complementary to previous bands [cf. Sun and Loader (1994) and
Loader (1993)].

APPENDIX
DERIVATION AND EXAMPLES

Exemplar µn� τn and Tn’s.

Example 1 (Gamma). Here the response variables have a gamma density
with a known shape parameter r > 0 and an unknown scale parameter ω > 0,

f�y� r�ω� = ωr

G�r�y
r−1e−ωy for y > 0


We have the form of (1) with θ = −ω, b�θ� = −r log�−θ�. Clearly, g�θ� =
b′�θ� = −r/θ is monotone in θ� −ωi = θi = �z�xi�� β� and

b′�θ� = −r
θ
= r

ω
� b′′�θ� = r

θ2
= r

ω2
� b�3��θ� = −2r

θ3
= 2r
ω3



Substituting them into (13) and (14) etc. gives

An=
1
n

n∑
i=1

r

θ2
i

ziz
T
i � µn=

1
n3/2

n∑
i=1

r

θ3
i

�ui�2ui and τn�v�=
4
n3/2

n∑
l=1

r

θ3
i

�ui�v�3


In this case ξ cannot be lattice as Yi is a continuous random variable and
hence Tn in Proposition 3.1 is zero.



452 J. SUN, C. LOADER AND W. P. McCORMICK

Note that a commonly used noncanonical link for the gamma case is log-
link, that is,

log�ω� = �z�x�� β�

In this case, a similar Edgeworth expansion exists though the maximum like-
lihood estimates of β, τn and µn may be different from ones under the canon-
ical link.

Example 2 (Poisson). Here the response variables have a Poisson density
with an intensity parameter ω > 0,

f�y�ω� = ωy

y!
e−ω for y = 0�1� 
 
 
 


We have the form of (1) with θ = log�ω�� b�θ� = eθ. Again, g�θ� = b′�θ� = eθ

is monotone in θ, and log�ωi� = θi, so b′�θ� = b′′�θ� = b�3��θ� = eθ = ω.
Substituting them into (13) and (14) etc., yields similar expressions of An�µ
and τn.

Note that ξj has the lattice distribution iff the jth component of
∑n
i=1�yi−

ωi�zi does, or if the jth component of zi for all i only take lattice values; that
is, they belong to aj + hj� for some aj� hj, for j = 1� 
 
 
 � q, where � is the
integer set. Hence, Tn = 0 unless we have a very special design, for example,
zTi = �1� 
 
 
 �1�, which is rare.

Example 3 (Binomial). Here the response variables have a binomial den-
sity with a success parameter 0 < p < 1,

f�y�p� =
(
n
y

)
py�1− p�n−y for y = 0�1� 
 
 
 � n


The GLM with such a random structure is called a logistic model. We also have
the form of (1) with θ = log�p/�1 − p��, b�θ� = n log�1 + eθ�. So g�θ� = b′�θ�,
and for q = 1− p,

b′�θ� = neθ

1+ eθ = np� b′′�θ� = neθ

�1+ eθ�2 = npq�

b�3��θ� = neθ

�1+ eθ�2 −
n2e2θ

�1+ eθ�3 = npq− 2np2q


Note that ξ might have a lattice distribution if we use the same special
design described in Example 2: zTi = �1� 
 
 
 �1�.

In most cases, �v� ξ� does not have a lattice distribution, and it is approxi-
mately normally distributed.

Proof of Proposition 3.1 and Equation (11). Let β0 be the true value of
β, set θi�0 = z�xi�Tβ0, and denote

ψn �=
1
n

n∑
i=1

�Yi − b′�θi�0��zi and gn�β� �=
1
n

n∑
i=1

(
b′�θi� − b′�θi�0�

)
zi
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Then from (6) we see that β̂ is a solution to
ψn = gn�β�
(A.1)

Note that (A.1) has as a first-order approximation the equation

ψn =
1
n

n∑
i=1

b�2��θi�0��zi� β− β0�zi = An�β− β0�

with solution β̂n�1 given by “β̂n� l−β0 = A−1
n ψn.” A second-order approximation

to (A.1) yields the equation

ψn =
1
n

n∑
i=1

b�2��θi�0��zi� β− β0�zi +
1
2n

n∑
i=1

b�3��θi�0��zi� β− β0�2zi


Replacing β−β0 with the first-order solution A−1
n ψn in the second term on the

right-hand side above yields a linear equation with solution β̂n�2. Continuing
in this way one can obtain an expansion for β̂n defined in (A.1) in terms of ψn.
Taking the branch that sets β̂n = β0 when ψn = 0 yields

β̂n − β0 = A−1
n ψn −

1
2n

n∑
i=1

b�3��θi�0�
[
z�xi�TA−1

n ψn

]2
A−1
n z�xi� + op��ψn�2��

that is, β̂n = β̂n�2 if op��ψn�2� term above is zero. This is equivalent to

Bn
√
n�β̂n − β0� = ξ −

1
2n3/2

n∑
i=1

b�3��θi�0��ui� ξ�2ui + op�n1/2�ψn�2�
(A.2)

Note that ψn = n−1/2BTnξ = Op�n−1/2� with ξ defined in (12), so (A.2)
implies (11).

The moments of ξ can be calculated easily as
E�a0�ξ� = 0� E�a0�ξ��a1�ξ�=�a0�a1��

E�a0�ξ��a1�ξ��a2�ξ� =
1
n3/2

n∑
l=1

b�3��θl��a0�ul��a1�ul��a2�ul��

E�a0�ξ��a1�ξ��a2�ξ��a3�ξ� = �a0�a1��a2�a3�(A.3)

+�a0�a2��a1�a3�+�a0�a3��a1�a2��

+ 1
n2

n∑
l=1

[
b�4��θl�+3b′′�θl�

]
×�a0�ul��a1�ul��a2�ul��a3�ul�

for any nonrandom vectors a0� 
 
 
 � a3. It then follows from (A.2) and (A.3) that
the bias and skewness of �v�Bn

√
n�β̂n −β�� are �v�µn� and τn�v� in (13) and

(14), respectively.
In the nonlattice case it follows again from (A.2) that for � and φ denoting

the standard normal distribution and density, respectively,∣∣∣pr
{〈
v�Bn

√
n�β̂n − β0� − µn

〉 ≤ x}
−��x� − 1

6
τn�v��1− x2�φ�x�

∣∣∣ = o( 1√
n

)



(A.4)



454 J. SUN, C. LOADER AND W. P. McCORMICK

Taking note of

∣∣∣pr
{
Z+ 1

6
τn�v�

[
Z2−1

] ≤ x}−pr
{
Z+ 1

6
τn�v�

[
x2−1

] ≤ x}∣∣∣ = o( 1√
n

)
�(A.5)

where τn�v� = O�1/
√
n� and

∣∣∣pr
{
Z ≤ x+ 1

6
τn�v��1− x2�

}
−��x� − 1

6
τn�v��1− x2�φ�x�

∣∣∣ = o( 1√
n

)
�

we obtain∣∣∣pr
{
Z+ 1

6
τn�v�

[
Z2−1

] ≤ x}−��x�− 1
6
τn�v�

[
1−x2]φ�x�∣∣∣ = o( 1√

n

)
�(A.6)

thus we see from (A.4) and (A.6) that up to order op�1/
√
n�,

〈
v�Bn

√
n
(
β̂n − β0

)− µn〉 d=Z+ 1
6
τn�v��Z2 − 1�


The inverse Edgeworth expansion now follows. The lattice case proceeds sim-
ilarly, but using the notations in Hall [(1992), page 46]. ✷

Proof of (21) and (22). For Ân = An�β̂�, since

BnÂ
−1
n B

T
n = Bn�An + Ân −An�−1BTn =

[
I+ �BTn �−1�Ân −An�B−1

n

]−1

= I− �BTn �−1�Ân −An�B−1
n + op�Ân −An�

= I− 1
n

n∑
i=1

uiu
T
i �b′′�θ̂i� − b′′�θi�� + op�Ân −An� �by �8��

= I− 1
n3/2

n∑
i=1

b�3��θi�uiuTi �ui� ξ��1+ op�1�� �by �A
2��

we have for v = �BTn �−1z�x� that sn�x� = v/�v� and (omitting the subscripts
of s)

σ�x�
σ̂�x� =

[
z�x�TA−1

n z�x�
z�x�TÂ−1

n z�x�

]1/2

= �v�[
vTBnÂ

−1
n B

T
nv

]1/2

=
[
1− 1

n3/2

n∑
i=1

b�3��θi�
〈
v

�v� � ui
〉2

�ui� ξ��1+ op�1��
]−1/2

= 1+ 1
2n3/2

n∑
i=1

b�3��θi��s�x�� ui�2�ui� ξ� + op�n−1/2�
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Hence, from (A.2) again,

Wn�x� =
〈
s�x��Bn

√
n�β̂− β�〉σ�x�
σ̂�x� = �s�x�� ξ�

+ 1
2n3/2

n∑
i=1

b�3��θi�
[�s�x�� ui�2�ui� ξ��s�x�� ξ�

− �ui� s�x���ui� ξ�2
]+ op�n−1/2��

which is (21). Equations in (22) then easily follow from (A.3). ✷

Proof of Proposition 4.1. By the inverse Edgeworth expansion (23),

Pl�c� ≈ pr
(

sup
x∈�

�W�x� +R�x�� > c
)
≤ pr

(
sup
x∈�

W�x� +R > c

)
�

where R = Op�n−1/2� and Pl is in (24). Let rn be positive constants for which
P�Rn ≥ rn
 = o�α� as n → ∞. Then, similar to establishing the first level
approximation (35) to the basic SCR, we have

Pl�c� ≤ pr
{
sup
x∈�

W�x� > c− r
}
+ o�α�

≈ κ0

2π
exp

(
−�c− r�

2

2

)
+ �1−��c− r�� + o�α�


Setting the right-hand side equal to α gives the first equation of (38). This is
a conservative confidence band, but the nominal level will be closely approxi-
mated if r is close to R and α is small. An approximate lower bound to Pl�c�
can be obtained similarly, which leads to (38). ✷

Proof of Proposition 4.2. This is similar to that of Proposition 4.1. The
main differences are as follows. For the upper bound approximation, we
note that

P�c� = pr
(

sup
x∈�

��W�x�� − p2�x�W�x��
 > c
)
+ o�α�

≤ pr
(

sup
x∈�

�W�x�� +R′
p > c

)
+ o�α�

≤ 2 pr
{
sup
x∈�

W�x� > c− r′p
}
+ o�α�


Setting the last formula equal to α gives the first equation of (41). For the
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lower bound approximation, note that for c′ = c− r′p,

P�c� ≥ pr
(

sup
x∈�

�W�x�� −R′
p > c

)
+ o�α�

≥ pr
{
sup
x∈�

�W�x�� > c′
}
+ o�α�

=
∫ ∞
c′

pr
{
sup
x∈�

��s�x��U�� ≥ c′

y

}
g�y�n�dy+ o�α��

where g�y�n� is the density of a χ random variable with n degrees of freedom
and U is a uniform random variable on the unit sphere Sn−1.

Let � �r�� � be a tube of � = �s�x�� x ∈ � 
 with radius r (by abusing the
notation r used earlier to indicate another constant: radius),

� �r�� � = �u� u ∈ Sn−1� inf
x∈�

�u− s�x�� ≤ r



Then, in the one-sided case,

P

{
sup
x∈�

�s�x��U� ≥ c′

y

}
= P�U ∈ � �r�� �


by the simple equality �a − b�2 = 2 − 2�a� b� where a� b ∈ Sn−1 and r =√
2�1− c′/y�. In the two-sided case,

P

{
sup
x∈�

��s�x��U�� ≥ c′

y

}
= P�U ∈ �� �r�� � ∪ � �r� −� �




The probability on the right-hand side is equal to the ratio of the volume of the
tubular neighborhood � �r�� �∪� �r�−� � and the volume of the unit sphere
Sn−1. By applying Weyl’s (1939) formula, as in Sun (1993), for the volume of
the tubular neighborhood and ignoring boundary effects, we have∫ ∞

c′
pr
{
sup
x∈�

��s�x��U�� ≥ c′

y

}
g�y�n�dy ≈

∫ ∞
c′
�2κ0 − κ1�y��J0

(
c′

y

)
g�y�n�dy

≈ 2κ0 − κ1

2π
exp

(
−c

′2

2

)
�

where κ0 is in (34) and

J0�w� =
G�n/2�

G��n− 2�/2�π
∫ 1

w
�1− t2��n−4�/2t dt�

κ1 = π exp
(
c′2

2

) ∫ ∞
c′
κ1�y�J0

(
c′

y

)
g�y�n�dy�

κ1�y� =
∫
�1�y�

�s′�x��dx�

�1�y� = �x ∈ � � � �r�� � ∩ � �r� −� ��� r = 2�1− c′/y�
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If κ1�y� is independent of y for y ≤ C, some constant, then

κ1 =
∫
�1

�s′�x��dx� �1 = �s�x�� x ∈ � 
 ∩ �−s�x�� x ∈ � 



This is true for most regression problems. Also recall the discussion on com-
puting κ1 in Section 4. In summary, the addition of κ1 is to make sure that
the intersection of � and −� is only counted once in computing the volume.
Finally, adding the boundary correction 2δ�1−��c�� as that in Sun and Loader
(1994) leads to the liberal formula (41). ✷

Notation.

n sample size
xi ith predictor
� domain of interest about xi
yi or Yi ith response variable
g link function, g�η�xi�� = E�Yi�xi�
f density of Yi; see (1)
a�y� component of f; see (1)
b�θ� component of f; see (1)
θ natural parameter; see (1)
θi� zi 
 
 
 subscripted functions, denoting functions evaluated at xi,

e.g., zi = z�xi�� θi = θ�xi�
η�x� linear predictor, η�x� = z�x�Tβ
β unknown q-dimensional parameter
z�x� known q-dimensional covariate
ˆ denote estimate or estimator, e.g., β̂ is an

estimator of β
l or lc�x� two-sided basic SCR in (2)
lu�x� one-sided basic upper SCR in (4)
ll�x� one-sided basic lower SCR in (4)
σ̂2�x� estimated variance of η̂; see (7)
In�β� q× q Fisher information matrix; see (8)
X n× q design matrix: XT = �z1� 
 
 
 � zn�; see (8)
" n× n covariance matrix; see (8)
Bn upper Cholesky triangle, BTnBn = An

An An = An�β� = In�β�/n
wi wi = A−1

n zi
ui ui = �BTn �−1zi
Sd−1 unit sphere, Sd−1 = �v ∈ �d� �v� = 1

� · � Euclidean norm, �v�2 =∑d

i=1 v
2
i

d−→ convergence in distribution; see the second paragraph
in Section 3
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d= equality of distributions; see the second paragraph
in Section 3

ξ normalized vector; see (12)
µ or µn bias; see (13)
τn skewness; see (14)
Tn�ν� lattice term; see (15)
λn eigenvalues of An; see Proposition 3.1
h or H periodic function; see (15)
Wn�x� Wn�x� = �η̂�x� − η�x��/σ̂�x�; see (17)
P�c� P�c� = pr�supx∈� �Wn�x�� > c
; see (24)
Pl�c� Pl�c� = pr�supx∈� Wn�x� > c
; see (24)
Pu�c� Pu�c� = pr�inf x∈� Wn�x� < −c
; see (24)
W�x� limit process of Wn�x�; see (18)
s�x� s�x� = limn→∞ sn�x�
sn�x� sn�x� = �BTn �−1z�x�/�√nσ�x��; see (19)
��·� standard normal cumulative distribution
κ0 volume of �s�x�� x ∈ � 
; see (34) and (42)
W∗

n�x� W∗
n�x� = �η̂�x� − η�x��/σ�x�; see (20) and

compare it with Wn�x�
µ′n bias of Wn; see (22)
τ′n skewness of Wn; see (22)
W

A
n�x� see (36)

lu�1�x� one-sided corrected upper SCR; see (37)
ll�1�x� one-sided corrected lower SCR; see (37)
R or R�x� see Proposition 4.1
r� r̂ see Proposition 4.1 and (43)
κ1 see the paragraph before (43)
p2�x� z� see (27)
κi�x� i = 1� 
 
 
 �4; see (28)
C1 
 
 
 C9 see (29)
W
�1�
n �x� W

�1�
n �x� = �Wn�x�� + p2�x�Wn�x��; see (39)

W
�2�
n �x� W

�2�
n �x� = �W�0�

n �x�� + q2�x�W�0�
n �x��; see (39)

W
�0�
n �x� W

�0�
n �x� = �Wn�x� − κ̂1�x��/

√
κ̂2�x�; see (30)

q2�x� z� see (32)
κs2�2� κ

s
3�1 see (33)

κs4�1 see (33)
l�1��x� see (40)
l�2��x� see (40)
l�3��x� see Remark 2
R′� r′� r̂′ see Proposition 4.2 and (44)
r′′� r̂′′ see Remark 2
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