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ON THE DEGREES OF FREEDOM IN
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For the problem of estimating a regression function, µ say, subject
to shape constraints, like monotonicity or convexity, it is argued that the
divergence of the maximum likelihood estimator provides a useful measure
of the effective dimension of the model. Inequalities are derived for the
expected mean squared error of the maximum likelihood estimator and
the expected residual sum of squares. These generalize equalities from the
case of linear regression. As an application, it is shown that the maximum
likelihood estimator of the error variance σ2 is asymptotically normal with
mean σ2 and variance 2σ2/n. For monotone regression, it is shown that the
maximum likelihood estimator of µ attains the optimal rate of convergence,
and a bias correction to the maximum likelihood estimator of σ2 is derived.

1. Introduction. In shape-restricted regression problems, there are
observations of the form

yk = µ�xk� + σεk	 k = 1	 
 
 
 	 n	(1)

where ε1	 
 
 
 	 εn are independent, standard normal errors, −∞ < x1 < · · · <
xn <∞ are design points and the regression function µ is known to possess a
qualitative property such as monotonicity or convexity. Let � denote the set
of possible regression functions and suppose throughout the paper that � is
a convex set of functions. Next, let y = �y1	 
 
 
 	 yn�′	 θ = 	µ�x1�	 
 
 
 	 µ�xn�
′,
and ε = �ε1	 
 
 
 	 εn�′, where ′ denotes transpose. Then the model (1) may be
written as

y = θ+ σε	(2)

and the problem is to estimate θ, subject to the constraints imposed by the
properties of � . Typically, the latter constraints may be written in the form
θ ∈ , where  is a closed convex subset of �n. For example, if � is the
class of nondecreasing functions on the interval 	x1	 xn
, then the constraints
are θk+1 − θk ≥ 0 for k = 1	 
 
 
 	 n − 1	 and the set of θ which satisfy these
constraints is a closed convex set. In fact, this  is a closed convex polyhedron,
a set of the form  = ω ∈ �n� γ′kω ≥ 0	 k = 1	 
 
 
 	m�, where γ1	 
 
 
 	 γm ∈ �n.
Constraints like concavity and convexity in (1) lead to convex polyhedral 
in (2) too.
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For any closed convex subset  ⊆ �n, the maximum likelihood estimator
(MLE), θ̂ say, of θ in the model (2) minimizes �θ − y�2 with respect to θ ∈ .
It is well known that the unique minimizing vector θ̂ = θ̂�y� is the projection
of y onto . The latter is characterized by the conditions

θ̂ ∈  and �y− θ̂	 θ̂−ω� ≥ 0	(3)

for all ω ∈ . Moreover, if  is a convex cone, so that cω ∈  for all c ≥ 0 and
all ω ∈ , then (3) is equivalent to

θ̂ ∈ 	 �y− θ̂	 θ̂� = 0 and �y− θ̂	 ω� ≤ 0	(4)

for all ω ∈ , and the last inequality in (4) holds for all ω ∈ �n for which
θ̂+ εω ∈  for some ε > 0.

In this paper, we explore the role of the divergence for the MLE,

D = div�θ̂� =
n∑
i=1

∂

∂yi
θ̂i�y�(5)

and argue that D provides a measure of the effective dimension of the model.
To see how this conjecture generalizes simpler models, observe that if  is
a linear space of dimension d, say, then θ̂ = Qy, where Q is the projection
matrix onto , and D�y� ≡ tr�Q� = d for all y. Less transparently, D�y� is
the number of distinct values among θ̂1�y�	 
 
 
 	 θ̂n�y� for monotone regres-
sion, by an easy application of Proposition 1 below. Support for the interpre-
tation of D takes two forms. For convex polyhedral 	 θ̂�y� is the projection
of y onto a subspace of dimension D�y�, as described in Proposition 1. Fur-
ther, there are two inequalities that generalize equalities from the linear case:
Eσ	µ�θ̂ − θ�2 ≤ σ2Eσ	µ�D� and Eσ	µ�y − θ̂�2 ≤ σ2Eσ	µ�n −D�, where Eσ	µ

denotes expectation in the model (1). Both inequalities may be strict, however,
even asymptotically after renormalization, so that analogies with the linear
case are incomplete. Using these inequalities, it is shown that the MLE of
σ2 is asymptotically normal with mean σ2 and variance 2σ4/n under a mild
growth condition on Eµ	σ�D�. This result is obtained for a class of estimators
that allows for bias reduction of the MLE: for the important special case of
monotone regression, it is shown thatEσ	µ�D� ≤ Cn1/3, where C depends only
on � = 	µ�xn� − µ�x1�
/σ , and it follows easily from this that θ̂ attains the
optimal rate of convergence. Under additional regularity conditions, it is also
shown that there are constants c0 ≈ 0
5 and c1 ≈ 1
5 for which Eσ	µ�θ̂−θ�2 =
c0σ

2Eσ	µ�D� + o�n1/3� and Eσ	µ�y− θ̂�2 = n− c1σ2Eσ	µ�D� + o�n1/3�. In this
sense, c0D and n− c1D are better candidates for the terms “effective dimen-
sion” and “residual degrees of freedom” than D and n−D. These results have
implications for variance estimation. It is shown that σ̃2 = �y− θ̂�2/�n−c1D∗�
is asymptotically unbiased to order n−2/3, where D∗ denotes a truncated ver-
sion of D. The bias corrected MLE σ̃2 has a smaller asymptotic variance than
the omnibus estimators of Gasser, Sroka and Jennen-Steinmetz (1986) and
Rice (1984), though still a larger bias. The moderate sample size properties of
the estimators are compared in a simulation study.
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The term “effective dimension” is adapted from Hastie and Tibshirani
(1990), who propose three different possible definitions for linear smoothers (of
which the first is equal to the divergence of the estimator). They too find that
the expected residual sum of squares may differ from σ2 times n minus the
effective dimension. There is precedent for the use of D as degrees of freedom
in monotone regression. For testingH0� µ�x� ≡ c in monotone regression with
a known σ2, the null distribution of the chi-squared statistic is a mixture of
chi-squared distributions and the mixing distribution is the null distribution
of D. See Theorem 2.3.1 of Robertson, Wright and Dyskstra (1988).

2. Shape restricted regression.

The divergence. For this section suppose that is a closed convex set in (2).
Then θ̂ is determined by (3). The first item of business is to show that D is
well defined. Recall from Stein (1981) that a function f� �n → � is said to be
almost differentiable if there is a function g� �n → �n for which

f�x+ y� − f�x� =
∫ 1

0
y′g�x+ ty�dt(6)

for a.e. x ∈ �n for each y ∈ �n. Then g is essentially unique; g is called the
gradient of f and denoted by g = ∇f or g�y� = 	∂f�y�/∂y1	 
 
 
 	 ∂f�y�/∂yn
′.
It is not difficult to see that any Lipschitz continuous function f is almost
differentiable with a bounded gradient. A simple proof is to convolve f with
a normal density with mean 0 and covariance matrix h2In and then show
that the gradients of the convolutions are uniformly bounded in L∞��n� and,
therefore, have a weak limit point as h → 0. The details may be found in
Meyer and Woodroofe (1998).

Proposition 1. The components of θ̂ are almost differentiable, and ∇θ̂i is
an essentially bounded function for each i = 1	 
 
 
 	 n
 If  is a convex poly-
hedron, say

 = ω ∈ �n� γ′iω ≥ 0	 i = 1	 
 
 
 	m�	
where γ1	 
 
 
 	 γm ∈ �n, then θ̂�y� is the projection of y onto the linear space,

Ky = ω ∈ �n� γ′iω = 0 for all i for which γ′iθ̂�y� = 0�
and D�y� = dim�Ky� for a.e. y ∈ �n.

Proof. To show almost differentiability and essential boundedness, it suf-
fices to show Lipschitz continuity; that is, if yi ∈ �n	 i = 1	2	 then �θ̂�y2� −
θ̂�y1�� ≤ �y2−y1�. To see this, let θ̂i = θ̂�yi�	 i = 1	2. Then it follows from (3)
that �y1− θ̂1	 θ̂2− θ̂1� ≤ 0 and �y2− θ̂2	 θ̂1− θ̂2� ≤ 0. Adding these two inequal-
ities leads to ��y1 − y2� − �θ̂1 − θ̂2�	 θ̂2 − θ̂1� ≤ 0, which implies �θ̂2 − θ̂1�2 ≤
�y2−y1	 θ̂2− θ̂1� ≤ �θ̂2− θ̂1�×�y2−y1� and, therefore, �θ̂2− θ̂1� ≤ �y2−y1�.

For subsets J ⊆ 1	 
 
 
 	m�, let KJ be the linear subspace KJ = ω ∈
�n� γ′iω = 0	 for all i ∈ J�; let � be the collection of distinct subspaces of
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this form, and let QK denote the projection operator onto K. Thus, each QK

is an n × n matrix for which QKy ∈ K and �y −QKy	 ξ� = 0 for all ξ ∈ K
for each y ∈ �n. Let Jy = i ≤m� γ′iθ̂�y� = 0�, and write Ky and Qy for KJy

and QKy , as in the statement of the proposition. It is clear that θ̂ ∈ Ky and
therefore suffices to show that �y− θ̂	 ξ� = 0 for all ξ ∈Ky. This follows easily
from (4). For if ξ ∈ Ky, then γ′i�θ̂ ± εξ� = 0 for all i ∈ Jy, and γ

′
i�θ̂ ± εξ� > 0

for all i �∈ Jy for all sufficiently small ε, since γ′iθ̂ > 0 for all i �∈ Jy. That is,
θ̂± εξ ∈  for all sufficiently small ε > 0, so that �y− θ̂	 ξ� = 0, by (4).

Now let BK = y ∈ �n� Ky = K� for K ∈ � , and let �BK and Bo
K denote

the closure and interior of BK. Then it is clear that D = dim�Ky�, for a.e.
y ∈ Bo

K. So, it remains to show that the boundary of each BK has measure
zero, and for this it suffices to show that �BK ∩ �BL has measure zero for all
K �= L, since � is finite. This is clear, however; for if y ∈ �BK ∩ �BL, then
QKy = θ̂�y� = QLy and therefore �QK −QL�y = 0. ✷

For monotone regression, the maximum likelihood estimator of θ is

θ̂k = max
j<k

min
l≥k

ȳj	 l	(7)

where ȳj	 l = �yj+1 + · · · + yl�/�l − j�. See Robertson, Wright, and Dykstra
[(1989), page 23]. For a given y ∈ �n, let 1 ≤ r1 < · · · < rm ≤ n be the
values of k for which θ̂rk > θ̂rk−1, where θ̂0 is to be interpreted as −∞. Then
Jy = 1	 
 
 
 	 r1 − 1	 r1 + 1	 
 
 
 	 r2 − 1	 
 
 
 	 rm + 1	 
 
 
 	 n�, and D�y� = m, the
number of distinct values of θ̂1	 
 
 
 	 θ̂n.
Risk inequalities. Recall that expectation in the model (1) is denoted by

Eσ	µ. Then it follows from Proposition 1 and Stein’s (1981) identity that

Eσ	µ	�y− θ	 θ̂�
 = σ2Eσ	µ�D�	(8)

for any µ ∈ � and σ > 0, where θ = 	µ�x1�	 
 
 
 	 µ�xn�
′, as in (2). The next
result provides an unbiased estimator of the risk for the case in which σ is
known.

Proposition 2.

Eσ	µ�θ̂− θ�2 = Eσ	µ�U�	(9)

where

U = �y− θ̂�2 + 2σ2D− nσ2


Further,

Eσ	µ�θ̂− θ�2 ≤ σ2Eσ	µ�D�
(10)

Proof. Clearly,

�y− θ̂�2 = �y− θ�2 − 2�y− θ	 θ̂− θ� + �θ̂− θ�2
(11)
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Using (8), the expectations of the first two terms on the right side of (11) may
be computed as Eσ	µ�y − θ�2 = nσ2 and Eσ	µ	�y − θ	 θ̂ − θ�
 = σ2Eσ	µ�D�,
and (9) then follows from substitution. For (10), observe that 0 ≤ �y−θ̂	 θ̂−θ� =
�y− θ	 θ̂ − θ� − �θ̂ − θ�2, by (3). So 0 ≤ Eσ	µ	�y− θ	 θ̂ − θ�
 −Eσ	µ�θ̂ − θ�2 =
σ2Eσ	µ�D� −Eσ	µ�θ̂− θ�2
 ✷

If σ2 were known, or could be estimated well, then Proposition 2 could be
used to assess the quality of a fit, but this is not the primary use here. Rather,
interest centers on the inequalities in (10) and Corollary 1 below.

Corollary 1. nσ2 − 2σ2Eσ	µ�D� ≤ Eσ	µ�y− θ̂�2 ≤ nσ2 − σ2Eσ	µ�D�.

Proof. By (9), Eσ	µ�y − θ̂�2 = nσ2 − 2σ2Eσ	µ�D� + Eσ	µ�θ̂ − θ�2, and
0 ≤ Eσ	µ�θ̂− θ�2 ≤ σ2Eσ	µ�D�, by (10). ✷

Corollary 2. Let 0 ⊆ 1 be two closed convex subsets of �n, and let θ̂0
and θ̂1 be the maximum likelihood estimators for the parameter spaces 0 and
1. If θ ∈ 0, then Eσ	µ�D0� ≤ 2Eσ	µ�D1�, where Di = div�θ̂i�.

Proof. Let ri = Eσ	µ�θ̂i − θ�2	 i = 1	2
 Then

r1 − 2σ2Eσ	µ�D1� = Eσ	µ�y− θ̂1�2 − nσ2

≤ Eσ	µ�y− θ̂0�2 − nσ2 = r0 − 2σ2Eσ	µ�D0�
by Proposition 1 and the assumption 0 ⊆ 1. So, using (10), 2Eσ	µ�D0� ≤
�r0 − r1�/σ2 + 2Eσ	µ�D1� ≤ Eσ	µ�D0� + 2Eσ	µ�D1�. ✷

Variance estimation. The MLE of σ2 is σ̂2 = �y − θ̂�2/n, and one may
ask whether σ̂2 is asymptotically normal and efficient. Since

√
n�σ̂2 − σ2� =

��y − θ�2 − nσ2�/√n + R/
√
n, where R = �y − θ̂�2 − �y − θ�2 = −2�y − θ̂	

θ̂−θ�−�θ̂−θ�2, normality and efficiency would follow fromR = op�
√
n�. If  is

a linear subspace of dimension k, then �y− θ̂	 θ̂−θ� = 0 and Eσ	µ�θ̂−θ�2 = k.
So, one may expect that R = op�

√
n� whenever  can be suitably approx-

imated by linear subspaces of dimension kn = o�√n�. This is the essence
of Proposition 3 below, though the use of Stein’s identity avoids any explicit
approximation. It also avoids explicit smoothness assumption on µ.

To allow for bias reduction, consider estimators of the form

σ̃2 = �y− θ̂�2
n−CD

	(12)

where 0 ≤ C = C�y� < n/D is a measurable function. The choice of C is
discussed in the next section. The following simple result is valid for any
choice of C. Write θ̂n	 Cn	 Dn and σ̃2

n for θ̂	 C	 D and σ̃2 to emphasize the
dependence on n and suppose that

Eσ	µ�Dn� = o�nα�(13)
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as n→∞ for appropriate α. It is shown below that (13) holds for any α > 1/3
for monotone regression, and it then follows from Corollary 2 that (13) holds
whenever � consists entirely of monotone functions.

Proposition 3. Suppose that Cn ≥ 0, that CnDn < n w.p.1 and that Cn are
stochastically bounded. If (13) holds with α = 1, then σ̃2

n → σ2 in probability,
and if (13) holds with α = 1/2, then

√
n�σ̃2

n − σ2� is asymptotically normal
with mean 0 and variance 2σ4.

Proof. First consider σ̂2
n and write σ̂

2
n−σ2 = ��yn−θn�2�/n+Rn/n, where

Rn = �yn − θ̂n�2 − �yn − θn�2, as above. Then, from (10) and the definition
of θ̂n,

#Rn# = �yn − θn�2 − �yn − θ̂n�2

= 2�yn − θn	 θ̂n − θn� − �θ̂n − θn�2 ≤ 2�yn − θn	 θ̂n − θn�
and

Eσ	µ	�yn − θn	 θ̂n − θn�
 = σ2Eσ	µ�Dn� = o�nα�	
by (13). Thus, #Rn# = op�nα� as n→ ∞. The proposition follows for σ̂2

n, since
��yn − θn�2 − nσ2�/√n is asymptotically normal with mean 0 and variance
2σ4. For σ̃2

n,

σ̃2
n − σ̂2

n =
�yn − θ̂n�2
n�n−CnDn�

CnDn	

which is op�nα−1�, under the conditions of the proposition. ✷

Rice (1984) suggested two simple and general ways to estimate the resid-
ual variance following a nonparametric regression, one based on differences of
successive points and one based on the residuals from straightline fits to suc-
cessive triples, and Rice’s suggestions were studied further by Gasser, Sroka,
and Jennen-Steinmetz (1986). These estimators are

1
2�n− 1�

n∑
i=2
�yi − yi−1�2(14)

and

1
2�n− 2�

n−1∑
i=2

�aiyi+1 + biyi−1 − yi�2
a2i + b2i + 1

	(15)

where ai = �xi − xi−1�/�xi+1 − xi−1� and bi = �xi+1 − xi�/�xi+1 − xi−1� for i =
2	 
 
 
 	 n−1. Compared to these estimations, the estimator σ̃2 of Proposition 3
has a smaller asymptotic variance, though a larger bias. For example, the
asymptotic variance of (14) is 3σ3/n and, for equally spaced x1	 
 
 
 	 xn, the
asymptotic variance of (15) is �35/9n�σ4. The bias of σ̃2 is considered in more
detail in the next section, and a bias-corrected MLE is compared to (14), (15)
and the MLE in Section 4. Preliminary versions of the Propositions 2 and 3
appear in Meyer (1996).
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3. Monotone regression. In this section suppose that � is the class of
nondecreasing functions on the interval [0, 1] and that 0 ≤ x1 < · · · < xn ≤ 1.

Approximations and bounds for Dn. Recall the expression (7) for the MLE
in the case of monotone regression and that D is the number of distinct value
of θ̂1	 
 
 
 	 θ̂n in this case. The following result is proved in Section 5, using (7)
and some properties of random walks.

Theorem 1. There are absolute constants κ0	 κ1 and κ2 for which

Eσ	µ�Dn� ≤ κ0	�+ log�n�
 + κ1�
2/3n1/3(16)

and

Eσ	µ�D2
n� ≤ κ22	�2 + �1+ ��4/3n
(17)

for all n ≥ 3, where

� = µ�1� − µ�0�
σ




The following corollary shows that the maximum likelihood estimator
attains the optimal rate of convergence, as described by Donoho and Johnstone
(1995) and Efromovich (1997). The result itself is known; it appears in the
unpublished manuscript of Donoho (1990) and a closely related result appears
in Van der Geer (1990). The proof given here is quite different from earlier
ones, however. Consider a sequence of regression problems, as in (13). Then
(10) and Theorem 1 combine as follows.

Corollary 3. For any K > 0, Eσ	µ�θ̂n − θn�2 = O�n1/3� as n → ∞, uni-
formly with respect to µ for which µ�1� − µ�0� ≤K.

The last corollary does not require any smoothness of µ. More detailed con-
clusions are possible when µ is smooth. Let Fn denote the design distribution
function

Fn�s� =
#k ≤ n� xnk ≤ s�

n
	 0 ≤ s ≤ 1


Further, let � denote a standard two-sided Brownian motion; let

W�t� = ��t� + 1
2t

2	 −∞ < t <∞$(18)

let W̃ denote the greatest convex minorant of W and let a = −E	W̃�0�
 and
b = E	W̃′�0�2
. Then 0 < a	 b <∞. See Groeneboom (1985, 1989). Let

�0 = σ4/3
∫ 1

0
ν′�s�2/3 ds
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Theorem 2. Suppose also that there is a continuous strictly increasing dis-
tribution function F on 	0	1
 for which

6n �= sup
0≤s≤1

#Fn�s� −F�s�# = o�n−1/3�(19)

as n → ∞. Let ν�s� = µ ◦ F−1�s�	 0 ≤ s ≤ 1
 Suppose that ν has a positive

continuous derivative on 	0	1
 and let �0 = σ4/3
∫ 1
0 ν

′�s�2/3 ds. Then

Eσ	µ	�θn	 yn − θ̂n�
 ∼ −a�0n1/3(20)

and

Eσ	µ�θ̂n − θn�2 ∼ b�0n
1/3(21)

as n → ∞, where ∼ means that the ratio of the two sides approaches one as
n→∞.

The theorem is proved in Section 6 by finding the asymptotic distributions
of θ̂n and y− θ̂n, suitably normalized, and establishing uniform integrability.
Here are some consequences.

Corollary 4. Under the conditions of Theorem 2,

σ2Eσ	µ�Dn� ∼ �a+ b��0	
Eσ	µ�θ̂n − θ�2 = c0σ

2Eσ	µ�Dn� + o�n1/3�	
Eσ	µ�yn − θ̂n�2 = nσ2 − c1σ

2Eσ	µ�Dn� + o�n1/3�	

where

c0 =
b

a+ b
and c1 =

2a+ b

a+ b

(22)

Proof. Since �yn−θn�2 = �yn− θ̂n�2−2�yn− θ̂n	 θ�+�θ̂n−θn�2, it follows
directly from the theorem that

Eσ	µ�yn − θ̂n�2 = nσ2 − �2a+ b��0n1/3 + o�n1/3�

as n→∞, and since �θ̂n − θn�2 + �yn − θ̂n	 θ̂n − θn� = �y− θn	 θ̂n − θn�,

σ2Eσ	µ�Dn� = Eσ	µ	�y− θn	 θ̂n − θn�
 = �a+ b��0n1/3 + o�n1/3�

as n → ∞. The corollary follows directly from these two observations, (20)
and (21). ✷
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Bias reduction in variance estimation. Let

D∗
n = min

[
Dn	

n

2c1

]
and

σ̃2
n =

�yn − θ̂n�2
n− c1D

∗
n




Then σ̃2
n is of the form (12) with Cn = c1D

∗
n/Dn.

Proposition 4. Under the conditions of Theorem 2,Eσ	µ�Dn−D∗
n� = O�1�,

and

Eσ	µ�σ̃2
n − σ2� = o�n−2/3�
(23)

Proof. For the first assertion,

0 ≤ Eσ	µ�Dn −D∗
n� ≤ nPσ	µ

{
Dn >

n

2c1

}

≤ n

(
2c1
n

)2

Eσ	µ�D2
n� = O�1�	

as n→∞, by (17). For (23),

σ̃2
n − σ2 = �yn − θ̂n�2 − �n− c1D

∗
n�σ2

�n− c1D
∗
n�

= In + IIn	

where

In =
�yn − θ̂n�2 − �n− c1D

∗
n�σ2

n

and

IIn =
�yn − θ̂n�2 − nσ2 + c1D

∗
nσ

2

n�n− c1D
∗
n�

c1D
∗
n


Clearly, Eσ	µ�In� = o�n−2/3�, by Corollary 4. Since n − c1D
∗
n ≥ n/2,

Proposition 4 then follows from

E#IIn# ≤
2c1
n2

√
E	��yn − θ̂n�2 − nσ2�2
√E�D2

n� +
2c21σ

2

n2
E�D2

n�	
(20) and

Eσ	µ	��yn − θ̂n�2 − nσ2�2
 ≤ Eσ	µ	�yn − θn�4
 − 2nσ2Eσ	µ	�yn − θ̂n�2

+n2σ4

= O�n4/3�	
where Corollary 1 and the relation Eσ	µ�yn− θn�4 = n�n+ 2�σ4 were used to
obtain the final equality. ✷
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Fig. 1. An example of the simulated Brownian motion with parabolic drift.

4. Simulations. A simulation study was conducted to determine the con-
stants c0 and c1 described in Section 3, assess the quality of normal approx-
imation to σ̃2, and compare several estimators of σ2, all in the context of
monotone regression. The results are reported in this section.

To use σ̃2, the value of c1 must be computed, and this was done by simula-
tion. A simulated Brownian motion with parabolic drift is shown in Figure 1
with the greatest convex minorant marked. The step size in this simula-
tion was 0.0001. From this simulation, it is possible to determine the val-
ues of W̃�0� and W̃′�0�. Repeating the simulation 100,000 times then leads
to confidence intervals for a = −E	W̃�0�
 and b = E	W̃′�0�2
. These were
�0
637	0
642� for a and �0
644	0
655� for b; a and b were taken to be the
midpoints of these intervals, and c0 = 0
504 and c1 = 1
496 were computed
from (22).

The bias corrected MLE (BCMLE) was compared to the MLE and the esti-
mators (14) and (15) for three possible regression functions,

µ1�x� = x	

µ2�x� = e16x−8/�1+ e16x−8�	
µ3�x� = �2x− 1�3 + 1	

and the values σ = 0
25	0
5	1
0	2
0 and n = 25	50	100	250	500. Selected
results are reported in Tables 1–3. Reported in these tables are the rela-
tive biases, standard deviations and mean squared errors, Eσ	µ�σ̌2�/σ2 − 1,
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Varσ	µ�σ̌2�/σ2, and Eσ	µ	�σ̌2−σ2�2
/σ4 for each of the four estimators σ̌2 =

σ̃2	 σ̂2	 �14� and (15), along with the risk and Kolmogorov–Smirov distance
described below. Each entry was approximated by 2500 Monte Carlo runs.

There were several consistent patterns in the tables. The bias corrections to
the MLE overcorrected in the cases considered, leaving σ̃2 with a positive bias
that was smaller than the absolute bias of the MLE, but larger than the biases
of (14) and (15). Unsurprisingly, the BCMLE had a larger variance than the
MLE and a smaller variance than (14) and (15) for larger n�n ≥ 100 in all cases
considered and n ≥ 50 for σ ≥ 0
50�. The total mean squared errors of the
BCMLE and MLE were quite similar, though the BCMLE appears to do better
for larger n. Mean square error, however, is suspect for variance estimation,
because it penalizes overestimation much more severely than underestima-
tion. For that reason, another possible loss function was included in the study,
K�σ̌2/σ2�, where

K�x� = x− 1− log�x�

The row labelled “risk” containsEσ	µ	K�σ̌2/σ2�
. In terms of risk, the BCMLE
outperforms the MLE for the cases considered. There are two other consis-
tent relations in the cases considered: the estimator (14) consistently outper-
forms (15) in terms of variance, mean squared error, and risk, and BCMLE
was consistently better (respectively, worse) than (14) for large (respectively,
small) n. For n ≥ 100, BCMLE had smaller mean square error and risk
than (14) in all but one of the cases considered; for n = 25 �14� had smaller
mean square error and risk than BCMLE in all but one of the cases consid-
ered. For n = 50, there was not much difference between the two. These con-
sistent relations seem intuitive. Both (14) and (15) have small bias, and (14)
has smaller asymptotic variance. Further, (14) is simpler and not dependent
on asymptotic approximations, while BCMLE is asymptotically efficient, but
highly dependent on asymptotic approximations.

The speed of convergence to normality was also considered in the simula-
tions. To reduce the effect of skewness, we considered the distributions of√

Cn 	log�σ̌2� − log�σ2�
	(24)

where Cn = 0
5�n − c1D
∗� for σ̃2	 Cn = 0
5n for σ̃2, Cn = n/3 for (14) and

Cn = 9n/35 for (15). The distribution of (24) appears to converge much faster
for the BCMLE than for the MLE, but even for the BCMLE the convergence
is slow in absolute terms. The convergence is faster for (14) and (15) though
still not terribly fast. With such a large Monte Carlo sample size, all values
of the Kolmogorov–Smirov statistic are significant at the 5% level.

5. Proof of Theorem 1. It suffices to prove Theorem 1 in the case that
σ = 1 and � = µ�1�−µ�0� > 0, since σ may be absorbed into µ and the result
is known for � = 0. See Robertson, Wright and Dykstra [(1988), pages 81, 82].
Since n is fixed throughout this section, it is omitted from the notation. Recall
the expression (7) for the maximum likelihood estimator of θ and let Ao

k be
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Table 1
Comparison of estimators for µ1�x� = x

� n Measure BCMLE MLE (14) (15)

0.25 50 bias 0.0779 −0
3004 0.0037 −0
0008
sd 0.2588 0.1663 0.2443 0.2784
mse 0.0731 0.1179 0.0597 0.0775
risk 0.0317 0.0854 0.0296 0.0385
Ks 0.0976 0.6167 0.0407 0.0575

100 bias 0.0368 −0
2004 0.0031 0.0017
sd 0.1632 0.1263 0.1726 0.1965
mse 0.0280 0.0561 0.0298 0.0386
risk 0.0131 0.0358 0.0149 0.0193
Ks 0.0782 0.5678 0.0292 0.0395

250 bias 0.0153 −0
1146 0.0019 0.0011
sd 0.0970 0.0850 0.1110 0.1259
mse 0.0097 0.0204 0.0123 0.0159
risk 0.0047 0.0117 0.0061 0.0079
Ks 0.0505 0.5042 0.0275 0.0306

0.50 50 bias 0.0597 −0
2179 0.0013 −0
0008
sd 0.2386 0.1767 0.2443 0.2784
mse 0.0605 0.0787 0.0597 0.0775
risk 0.0272 0.0536 0.0297 0.0385
Ks 0.0771 0.4644 0.0461 0.0575

100 bias 0.0292 −0
1417 0.0025 0.0017
sd 0.1568 0.1312 0.1726 0.1965
mse 0.0254 0.0373 0.0298 0.0386
risk 0.0121 0.0229 0.0149 0.0193
Ks 0.0582 0.4166 0.0304 0.0395

250 bias 0.0130 −0
0787 0.0018 0.0011
sd 0.0950 0.0869 0.1110 0.1259
mse 0.0092 0.0137 0.0123 0.0159
risk 0.0045 0.0077 0.0061 0.0079
Ks 0.0491 0.3632 0.0380 0.0306

1.00 50 bias 0.0529 −0
1634 0.0007 −0.0008
sd 0.2304 0.1836 0.2443 0.2784
mse 0.0559 0.0604 0.0597 0.0775
risk 0.0254 0.0393 0.0298 0.0385
Ks 0.0694 0.3596 0.0476 0.0575

100 bias 0.0266 −0
1033 0.0023 0.0017
sd 0.1535 0.1345 0.1726 0.1965
mse 0.0243 0.0288 0.0298 0.0386
risk 0.0116 0.0171 0.0149 0.0193
Ks 0.0650 0.3057 0.0305 0.0395

250 bias 0.0129 −0
0556 0.0017 0.0011
sd 0.0941 0.0881 0.1110 0.1259
mse 0.0090 0.0109 0.0123 0.0159
risk 0.0044 0.0060 0.0061 0.0079
Ks 0.0502 0.2651 0.0281 0.0306

Relative bias, standard deviation, mean squared error and risk for several estimators. Lowest

values of mean squared error and risk are italicized.
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Table 2

Comparison of estimators for µ2�x� = e16x−8/�1+ e16x−8�

� n Measure BCMLE MLE (14) (15)

0.25 50 bias 0.0987 −0
2703 0.0092 −0
0008
sd 0.2583 0.1713 0.2443 0.2784
mse 0.0765 0.1024 0.0598 0.0775
risk 0.0323 0.0727 0.0293 0.0385
Ks 0.1253 0.5651 0.0319 0.0573

100 bias 0.0481 −0
1772 0.0044 0.0017
sd 0.1628 0.1287 0.1726 0.1965
mse 0.0288 0.0480 0.0298 0.0386
risk 0.0133 0.0302 0.0149 0.0193
Ks 0.1064 0.5145 0.0274 0.0395

250 bias 0.0198 −0
0998 0.0021 0.0011
sd 0.0969 0.0861 0.1110 0.1259
mse 0.0098 0.0174 0.0123 0.0159
risk 0.0047 0.0099 0.0061 0.0079
Ks 0.0744 0.4463 0.0270 0.0306

0.50 50 bias 0.0763 −0
2090 0.0026 −0
0008
sd 0.2418 0.1788 0.2443 0.2784
mse 0.0643 0.0756 0.0597 0.0775
risk 0.0281 0.0512 0.0296 0.0385
Ks 0.1039 0.4450 0.0430 0.0574

100 bias 0.0387 −0
1329 0.0028 0.0017
sd 0.1571 0.1322 0.1726 0.1965
mse 0.0262 0.0351 0.0298 0.0386
risk 0.0123 0.0214 0.0149 0.0193
Ks 0.0913 0.3924 0.0298 0.0395

250 bias 0.0171 −0
0721 0.0018 0.0011
sd 0.0955 0.0875 0.1110 0.1259
mse 0.0094 0.0128 0.0123 0.0159
risk 0.0045 0.0072 0.0061 0.0079
Ks 0.0652 0.3346 0.0279 0.0306

1.00 50 bias 0.0631 −0
1649 0.0010 −0
0008
sd 0.2324 0.1840 0.2443 0.2784
mse 0.0580 0.0611 0.0597 0.0775
risk 0.0259 0.0398 0.0297 0.0385
Ks 0.0828 0.3602 0.0467 0.0574

100 bias 0.0331 −0
1022 0.0024 0.0017
sd 0.1546 0.1347 0.1726 0.1965
mse 0.0250 0.0286 0.0298 0.0386
risk 0.0118 0.0170 0.0149 0.0193
Ks 0.0746 0.3039 0.0305 0.0395

250 bias 0.0159 −0
0535 0.0018 0.0011
sd 0.0944 0.0884 0.1110 0.1259
mse 0.0092 0.0107 0.0123 0.0159
risk 0.0044 0.0058 0.0061 0.0079
Ks 0.0641 0.2566 0.0282 0.0306

Relative bias, standard deviation, mean squared error and risk for several estimators. Lowest

values of mean squared error and risk are italicized.
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Table 3

Comparison of estimators for µ3�x� = �2x− 1�3 + 1

� n Measure BCMLE MLE (14) (15)

0.25 50 bias 0.1134 −0
3529 0.0222 −0
0007
sd 0.2801 0.1602 0.2446 0.2783
mse 0.0913 0.1502 0.0603 0.0775
risk 0.0377 0.1132 0.0288 0.0385
Ks 0.13399 0.7023 0.0202 0.0575

100 bias 0.0483 −0
2464 0.0078 0.0017
sd 0.1689 0.1226 0.1726 0.1965
mse 0.0309 0.0758 0.0298 0.0386
risk 0.0141 0.0498 0.0148 0.0193
Ks 0.0955 0.6718 0.0231 0.0395

250 bias 0.0202 −0
1460 0.0026 0.0011
sd 0.1002 0.0835 0.1110 0.1259
mse 0.0105 0.0283 0.0123 0.0159
risk 0.0050 0.0166 0.0061 0.0079
Ks 0.0689 0.6256 0.0244 0.0306

0.50 50 bias 0.0688 −0
2580 0.0060 −0
0008
sd 0.2477 0.1720 0.2444 0.2783
mse 0.0661 0.0961 0.0598 0.0775
risk 0.0292 0.0674 0.0295 0.0385
Ks 0.0896 0.5376 0.0372 0.0573

100 bias 0.0311 −0
1742 0.0037 0.0017
sd 0.1603 0.1288 0.1726 0.1965
mse 0.0267 0.0470 0.0298 0.0386
risk 0.0126 0.0295 0.0149 0.0193
Ks 0.0624 0.4983 0.0284 0.0395

250 bias 0.0146 −0
1000 0.0020 0.0011
sd 0.0965 0.0857 0.1110 0.1259
mse 0.0095 0.0174 0.0123 0.0159
risk 0.0046 0.0099 0.0061 0.0079
Ks 0.0520 0.4468 0.0268 0.0306

1.00 50 bias 0.0532 −0
1900 0.0019 −0
0008
sd 0.2335 0.1804 0.2443 0.2784
mse 0.0574 0.0686 0.0597 0.0775
risk 0.0261 0.0456 0.0297 0.0385
Ks 0.0693 0.4597 0.0439 0.0574

100 bias 0.0274 −0
1243 0.0026 0.0017
sd 0.1550 0.1329 0.1726 0.1965
mse 0.0248 0.0331 0.0298 0.0386
risk 0.0118 0.0200 0.0149 0.0193
Ks 0.0550 0.3672 0.0300 0.0395

250 bias 0.0122 −0
0693 0.0018 0.0011
sd 0.0944 0.0873 0.1110 0.1259
mse 0.0091 0.0124 0.0123 0.0159
risk 0.0044 0.0069 0.0061 0.0079
Ks 0.0433 0.3246 0.0276 0.0306

Relative bias, standard deviation, mean squared error and risk for several estimators. Lowest

values of mean squared error and risk are italicized.
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the event that θ̂k−1 < θ̂k	 k = 2	 
 
 
 	 n. Then D is one plus the sum of the
indicators of Ao

k	 k = 2	 
 
 
 	 n. An upper bound is sought for Eµ�D� = 1 +
Pµ�Ao

2� + · · · + Pµ�Ao
n�. The bound is obtained by bounding Pµ�Ao

k� for each
k. If 0 ≤ jk < k and k < lk ≤ n are integers, to be specified later, then

Ao
k =

{
max
j<k

ȳj	 k < min
l>k

ȳk	 l

}
⊆

{
max
jk≤j<k

ȳj	 k < min
k<l≤lk

ȳk	 l

}
= Ak	

say, where ȳj	 l = �yj+1+· · ·+yl�/�l−j�. Observe that θ̄j	 l = 	θj+1+· · ·+θl
/
�l− j� is nondecreasing in l = k+ 1	 
 
 
 	 n and nonincreasing in j = 1	 
 
 
 	 k.
So θ̄k	 l ≤ θ̄k	 lk for all l = k + 1	 
 
 
 	 lk and θ̄j	 k ≥ θ̄jk	 k for j = jk	 
 
 
 	 k − 1
and k = 2	 
 
 
 	 n. So, since ȳj	 l = ε̄j	 l + θ̄j	 l for 0 ≤ j ≤ k ≤ l ≤ n,

Ak ⊆
{
max
jk≤j<k

ε̄j	 k − min
k<l≤lk

ε̄k	 l < θ̄k	 lk − θ̄jk	 k

}

(25)

This leads to the following side problem: given i.i.d standard normal random
variables X1	X2	 
 
 
 	Y1	Y2	 
 
 
 and positive integers m and n, find bounds
for

Hm	n�z� �= P

{
max
j≤m

�Xj +max
k≤n

�Yk ≤ z

}
(26)

for real z. Let Pz denote a probability distribution under which X1	X2	 
 
 
 	
Y1	Y2 
 
 
 are i.i.d. normally distributed random variables with common
mean z and unit variance, so that P = P0. Further, let Sk =X1+· · ·+Xk	k =
1	2	 
 
 
 	 and let τ denote the first ladder epoch τ = infk ≥ 1� Sk > 0�. Some
properties of τ and Sτ are needed. From Feller [(1971), Chapter 12], it is known
that

P0τ > n� =
(
2n
n

)
4−n ≤ 1√

n

for all n, and E0�Sτ� = 1/
√
2 and Ez�Sτ� = z exp	∑∞

k=1 k
−1?�−z√k�
 from

Feller [(1971), Chapter 18]. Moreover, from Klass (1983) or direct analysis,
limz→0Ez�Sτ� = E0�Sτ�. So there is a c > 0 for whichEz�Sτ� ≤ c for 0 ≤ z ≤ 1.
From Woodroofe [(1982), page 33], this holds with c = 1
5.

Proposition 5. For all z > 0,

Hm	n�z� ≤ 18z2 + 9
m
+ 9
n



Proof. It suffices to prove the proposition for 0 < z ≤ 1. First, observe
that P0maxj≤m �Xj ≤ −z� = Pzmaxj≤m �Xj ≤ 0� = Pzτ > m�. So, since
τ > m implies Sm ≤ 0,

P0

{
max
j≤m

�Xj ≤ −z
}
=

∫
τ>m�

ezSm−�1/2�mz2dP0

≤ e−�1/2�mz
2
P0τ > m� ≤ 1√

m
e−�1/2�mz

2



(27)
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Continuing, P00 < maxj≤m �Xj ≤ z� = P−zmaxj≤m �Xj ≤ 0� − P0maxj≤m
�Xj ≤ 0� = P−zτ > m� − P0τ > m� = P0τ ≤ m� − P−zτ ≤ m�. So since
P0τ ≤m� ≤ Pzτ ≤m�,

P0

{
0 < max

j≤m
�Xj ≤ z

}
≤ Pzτ ≤m� −P−zτ ≤m�

≤
∫
τ≤m�

	1− e−2zSτ 
dPz ≤ 2zEz�Sτ� ≤ 3z

(28)

In the remainder of the proof, write X = maxj≤m �Xj and Y = maxk≤n �Yk,
and let F and G denote the distribution functions of X and Y, respectively.
Then, since X+Y ≤ z implies min�X	Y� ≤ z,

PX+Y ≤ z� ≤ PX ≤ z	Y ≤ z−X� +PY ≤ z	X ≤ z−Y�

Here

PX ≤ z	Y ≤ z−X� ≤ 1√
m
e−�1/2�m +P−1 < X ≤ z	Y ≤ z−X�

= 1√
m
e−�1/2�m +

∫ z

−1
G�z− x�dF�x�

≤ 1√
m
e−�1/2�m +

∫ z

−1

[
1√
n
+ 3�z− x�

]
dF�x�

≤ 1√
m
e−�1/2�m + 1√

n
F�z� + 3

∫ z

−1
F�y�dy	

by (27) and (28) for 0 ≤ z ≤ 1 and, since e−�1/2�m ≤ 1/m, the last line is at
most

1√
m
e−�1/2�m + 1√

n

[
1√
m
+ 3z

]
+ 3

∫ 0

−1
1√
m
e−�1/2�my

2
dy+ 3

∫ z

0

[
1√
m
+ 3y

]
dy

≤ 1√
mn

+ 3z√
n
+ 5
m
+ 3z√

m
+ 9
2
z2


A similar bound may be obtained for PY ≤ z	X ≤ z−Y�, and the proposition
then follows by collecting terms and using the inequality 2ab ≤ a2 + b2. ✷

Proof of (16). Recall that θ = 	µ�x1�	 
 
 
 	 µ�xn�
′ and let K = k� 2 ≤
k ≤ n − 1� θk+1 − θk−1 ≤ 1�. Then, clearly, #Kc ≤ 2�, where #Kc denotes the
number of elements that are not in K. So,

Eµ�D� ≤ 2+ 2�+ ∑
k∈K

P�Ak�


Let R be the least integer that exceeds �−2/3n2/3. For k ∈ K, let lk be the
largest l for which k < l ≤ n	 l − k ≤ R and θ̄k	 l − θk ≤ 1/

√
l− k, and let jk

be the smallest j for which 0 ≤ j < k	k − j ≤ R and θk − θ̄j	 k ≤ 1/
√
k− j.
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Further, let mk = k− jk and nk = lk − k. Then jk and lk are well defined by
definition of K, and θ̄k	 lk − θ̄jk	k ≤ 1/

√
mk+ 1/

√
nk for all k = 2	 
 
 
 	 n− 1. By

(25) and Proposition 5,∑
k∈K

Pµ�Ak� ≤
∑
k∈K

[
18�θ̄k	 lk − θ̄jk	 k�2 + 9

(
1
mk

+ 1
nk

)]

≤ 45
∑
k∈K

(
1
mk

+ 1
nk

)



Let Jr = k ∈K� nk < r� for r ≥ 1. Then∑
k∈K

1
nk

=
n−1∑
r=1

1
r

[
#Jr+1 − #Jr

] ≤ 1+
n∑
r=2

1
r�r− 1�#Jr	

If k ∈ Jr, where r ≤ R	 then either k > n−r or k ≤ n−r and θk+r−θk > 1/
√
r.

So

#Jr ≤ r+√
r

∑
k∈Jr	 k≤n−r

	θk+r − θk


= r+√
r

∑
k∈Jr	 k≤n−r

r∑
j=1

�θk+j − θk+j−1� ≤ r+ �r3/2	

for r ≤ R, where the last inequality follows by reversing the order of summa-
tion. Since #Jr ≤ n for r > R,

n∑
r=2

1
r�r− 1�#Jr ≤

n∑
r=2

1
r− 1

+
R∑
r=2

1
r�r− 1��r

3/2 +
n∑

r=R+1

1
r�r− 1�n

≤ 1+ log�n� + 2�
R−1∑
r=1

1√
r
+ n

R

≤ 1+ log�n� + 5�2/3n1/3


Of course, a similar bound may be obtained for
∑n−1

k=2 1/mk, and (16) then
follows by collecting terms.

Proof of (17). For the proof of (17), letR be the least integer that exceeds
�1+ ��−2/3n2/3. Then D ≤ 1+ 1A1

+ · · · + 1An
, and since Aj and Ak are inde-

pendent when #j− k# > 2R,

Eµ�D2� ≤ 2+ 2

[ ∑
#j−k#≤2R

+ ∑
#j−k#>2R

]
Pµ�Aj ∩Ak�

≤ 2R
n∑
j=2

Pµ�Aj� + 2

[
n∑
j=2

Pµ�Aj�
]2



The summation
∑n

j=2Pµ�Aj� may be bounded as in the proof of (16), and (17)
results. ✷
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6. Proof of Theorem 2. As in the last section, it suffices to prove
Theorem 2 when σ = 1. Recall that 6n = sup0≤x≤1 #Fn�x� − F�x�# and sup-
pose that 6n = o�n−1/3�	 as in (19).

Lemma 1. If 0 ≤ a < b ≤ 1, then∣∣∣∣ ∫ b

a
	µ�x� − µ�a�
dFn�x� −

∫ b

a
	µ�x� − µ�a�
dF�x�

∣∣∣∣ ≤ 26n	µ�b� − µ�a�



Further, if ν′�x� ≤ C for 0 ≤ x ≤ 1, then∫ xm+k

xm

	µ�x� − µ�xm�
dFn�x� ≤ 2C
k2

n2
+ 9C62n(29)

for all m and k, and if ν′�x� ≥ 6δ > 0, then∫ xm+k

xm

	µ�x� − µ�xm�
dFn�x� ≥ δ
k2

n2
(30)

for k ≥ n2/3 and sufficiently large n.

Proof. The first assertion follows from a transparent integration by parts.
For the second, let I = ∫ xm+k

xm
	µ�x� − µ�xm�
dFn�x�. Then

I ≤
∫ F�xm+k�

F�xm�
ν�x� − ν	F�xm�
�dx+ 26nν	F�xm+k�
 − ν	F�xm�
�

≤ 1
2C	F�xm+k� −F�xm�
2 + 2C6n	F�xm+k� −F�xm�



Now, #F�xk� − k/n# = #F�xk� −Fn�xk�# ≤ 6n for all k. So,

I ≤ 1
2
C

[
k

n
+ 26n

]2
+ 2C6n

[
k

n
+ 26n

]

≤ C

{[(
k

n

)2

+ 462n

]
+ 26n

k

n
+ 462n

}
≤ 2C

k2

n2
+ 9C62n	

establishing (29). Relation (30) may be established similarly. ✷

In the proof of (21) use is made of the following inequalities: if Z1	Z2	 
 
 
 	
are i.i.d. standard normal random variables, then

P

(
max
k≤n

Z1 + · · · +Zk > z

)
≤ 2

[
1−?

(
z√
n

)]
	

PZ1 + · · · +Zk ≥ a+ bk	 for some k ≥ 1� ≤ e−2ab	

which may be proved by comparison with Brownian motion. See, for example,
Breiman [(1968), pages 258, 289].
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Proof of (21). It follows from Wright (1981) that if m = mn → ∞ and
m/n→ x0 ∈ �0	1�, then

n1/3
(
θ̂nm − θnm

)⇒ ν′�x0�1/3W̃′�0�	

where ⇒ denotes convergence in distribution. Uniform integrability is estab-
lished below, along with bounds for small and large m. It follows that
Eσ	µ	�θ̂nm − θnm�2
 ∼ bν′�x0�2/3n−2/3 as n → ∞, if m/n → x0 ∈ �0	1�
 Rela-
tion (21) then follows from Eσ	µ�θ̂n − θn�2 = ∑n

m=1Eσ	µ	�θ̂nm − θnm�2
. Let
lnm = min�m	n − m	 )n2/3*�	 where )x* denotes the greatest integer that is
less than or equal to x. It is first shown that there is a sequence γn	 n ≥ 1, for
which γn = o�n1/3� and[√

lnm#θ̂nm − θnm# −
γn√
lnm

]
+
	

1 ≤m ≤ n− 1	 are uniformly square integrable	

(31)

where a+ = max�0	 a�. Relation (21) is a consequence of (31). For if ε > 0,
then (31) implies that Eµ

[(
θ̂nm − θnm

)2] ∼ bν′�m/n�2/3n−2/3 uniformly in εn ≤
m ≤ �1− ε�n as n→∞ and therefore that

∑
εn≤m≤�1−ε�n

Eµ

[(
θ̂nm − θnm

)2]
∼ bn1/3

∫ 1−ε

ε
ν′�x�2/3dx

as n→∞. Moreover, (31) implies that lnmEµ
[(
θ̂nm − θnm

)2]− γ2n/l
n
m is bounded

in m = 1	 
 
 
 	 n− 1 and n ≥ 2. Since Eµ

[(
θ̂nm− θnm

)2] is also (easily seen to be)

bounded, there is a 0 < K <∞ for which Eµ

[(
θ̂nm − θnm

)2] ≤ Kmin
[
1	1/lnm +(

γn/l
n
m

)2]. So, for any 0 < δ < ε and sufficiently large n,

n−
1
3

∑
m≤εn

Eµ

[(
θ̂nm − θnm

)2]

= n−
1
3

( ∑
m≤δn 1

3

+ ∑
δn

1
3 <m≤n 2

3

+ ∑
n
2
3 <m≤εn

)
Eµ

[(
θ̂nm − θnm

)2]

≤Kδ+Kn−1/3
∑

δn1/3<m≤n2/3

[
1
m
+ γ2n
m2

]
+ 2Kε

≤Kδ+ 2Kn−1/3 log�n� + 2K
δ
n−2/3γ2n + 2Kε	

which approaches zero as n→∞, δ→ 0 and ε→ 0 in that order. Of course, the
right endpoint may be handled similarly, and relation (21) follows from (31).
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To prove (31) it will be shown that[√
lnm

[
θ̂nm − θnm

]
+
− γn√

lnm

]
+
	

1 ≤m ≤ n− 1 are uniformly square integrable.

(32)

The assertion (31) follows from this and a dual argument for the negative
parts. To begin, fix a 1 ≤m ≤ n−1 and recall that θ̂nm = maxj<m mink≥m ȳ

n
j	k	

where ȳnj	 k =
(
ynj+1 + · · · + ynk/�k− j� for 0 ≤ j < k ≤ n. Thus,

{
θ̂nm − θnm > z

}
=

m−1⋃
j=0

n⋂
k=m

{
ȳnj	 k − θnm > z

}
for 0 < z <∞. Next, fix n for the moment and let Sk = yn1+· · ·+ynk, 1 ≤ k ≤ n.
S′j = Sm − Sm−j − θnmj for j ≤ m and S′′k = Sm+k − Sm − θnmk for k ≤ n−m.
Then

{
θ̂nm − θnm > z

} = ⋃m
j=1

⋂n−m
k=0

{
S′j +S′′k > z�j+ k�} and, therefore,

Pµ

{
θ̂nm − θnm > z

}
≤ Pµ

{
S′j +S′′l > �j+ l�z	 for some j ≤m

}
≤ Pµ

{
S′′l >

1
2zl

}
+Pµ

{
S′j >

1
2z�j+ l�	 for some j ≤m

}
for every l = 0	 
 
 
 	 n −m. Let M′

j = Eµ�S′j� and M′′
k = Eµ�S′′k� denote the

means and let C denote an upper bound for ν′. Then M′
j are nonpositive so

that

Pµ

{
S′j >

1
2z�j+ l�	 for some j ≤m

} ≤ P0
{
Sj >

1
2z�j+ l�	 for some j ≤m

}
≤ exp

[− 1
2 lz

2]	
by the second boundary crossing probability. Let C denote an upper bound for
ν′. Then M′′

k ≤ 2Ck2/n + 9Cn62n for all k = 0	 
 
 
 	 n −m, by Lemma 3. Let
γn = 9C62n, so that γn = o�n1/3� as n→∞, by (19). Then

P

(
S′′l >

1
2
zl

)
= �1−?�

( 1
2zl−Ml√

l

)
≤ �1−?�

(
1
2
z
√
l− 2C

l3/2

n
− 9Cn

62n√
l

)



Now let l = min�)n2/3*	 n−m
 ≥ lnm. Then

Pµ

(√
l
(
θ̂nm − θnm

)
> z+ γn√

l

)
≤ �1−?�

(
1
2z− 2C

)
+ e−�1/2�z

2

for all z ≥ 0. Relation (32) follows, completing the proof of (21). ✷

Proof of (20). For (20), let Sk = y1 + · · · + yk, k = 1	 
 
 
 	 n, and let S̃k

denote the greatest convex minorant of Sk. That is, S̃k = S̃�k�, where S̃ is the
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greatest convex minorant of the continuous piecewise linear function S with
knots at 0	 
 
 
 	 n and values S�k� = Sk. Then

�yn − θ̂n	 θn� =
n−1∑
m=1

(
S̃m −Sm

)[
µ�xn	m+1� − µ�xn	m�

]



It is implicit in the proof of (21) that n1/3
(
S̃m − Sm

) ⇒ ν′�x0�−1/3W̃�0�, if
m/n→ x0 ∈ �0	1�. Relation (20) then follows by showing that

n−1/3
(
S̃m −Sm

)
	1 ≤m ≤ n	 are uniformly integrable.(33)

and summing over m, as above. For any fixed m, S̃k ≥ �k − m�µ�xm� +
min0≤j≤n	Sj − �j −m�µ�xm�
, so that 0 ≥

(
S̃m − Sm

) ≥ inf−m≤k≤n−m Sm+k −
Sm − kµ�xm�. Let S′k = Sm+k − Sm − kµ�xm�, and M′

k = Eµ�S′k�, and l =
min�n−m	 )n2/3*�. Then M′

k ≥ 0 for all k = 1	 
 
 
 	 n, so that

Pµ

{
n−1/3 min

0≤k≤l
S′k ≤ −z

}
≤ P0

{
min
0≤k≤l

Sk ≤ −zn1/3
}
≤ 2?�−z�
(34)

Let 6δ = inf 0≤x≤1 ν′�x� > 0. If l < n −m, then M′
l ≥ δl2/n2 for sufficiently

large n and therefore,

Pµ

(
n−1/3 min

k>l
S′k ≤ −z

)
≤ Pµ

{
S′k −M′

k ≤ −
[
n1/3z+ M′

l

l
k

]
	 for some k ≥ 1

}
≤ exp

[
− 2

M′
l

l
n1/3z

]
for all z ≥ 1. Combining (34) and (35) with dual arguments for k ≤ 0, it follows
that

max
1≤m≤n

Pµ

(
min

−m≤k≤n−m
n−1/2Sm+k −Sm − µ�xm�k ≤ −z

)
≤ 4?�−z� + 2e−z

for all z ≥ 0 for all sufficiently large n, establishing (33). It follows easily that

Eµ

{ n−1∑
k=1

(
S̃k −Sk

)}(
θnk − θnk−1

)

= −an1/3
n−1∑
k=1

[
ν′
(
k

n

)]−1/3[
µ�xn	k−1� − µ

(
xn	k

)]+ o�n1/3�	

and the sum on the right is
∫ 1
0 ν

′�x�2/3dx+ o�1�, by (19). ✷
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