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TENSOR PRODUCT SPACE ANOVA MODELS

By Yi Lin

University of Wisconsin, Madison

To deal with the curse of dimensionality in high-dimensional nonpara-
metric problems, we consider using tensor product space ANOVA models,
which extend the popular additive models and are able to capture interac-
tions of any order. The multivariate function is given an ANOVA decom-
position, that is, it is expressed as a constant plus the sum of functions
of one variable (main effects), plus the sum of functions of two variables
(two-factor interactions) and so on. We assume the interactions to be in
tensor product spaces. We show in both regression and white noise set-
tings, the optimal rate of convergence for the TPS-ANOVA model is within
a log factor of the one-dimensional optimal rate, and that the penalized
likelihood estimator in TPS-ANOVA achieves this rate of convergence. The
quick optimal rate of the TPS-ANOVA model makes it very preferable in
high-dimensional function estimation. Many properties of the tensor prod-
uct space of Sobolev–Hilbert spaces are also given.

1. Introduction. Much progress has been made in the nonparametric
estimation of univariate functions. When it comes to multivariate function
estimation, however, extra difficulties are encountered. One major difficulty
is the curse of dimensionality caused by the fact that even a reasonably large
number of data points can be sparse in a high-dimensional space. It requires
far more data to get a decent estimate in high-dimensional problems. This is
reflected in the optimal rate of convergence: it is generally much slower for
high-dimensional problems than for one- (low-) dimensional problems. Fur-
thermore, a general multivariate function is hard to visualize and does not
usually give a good idea of the effect of each covariate. Hence it poses prob-
lems for interpretation.

Several different models have been proposed to bypass these difficulties.
The additive models, proposed by Stone (1985) and developed by Hastie and
Tibshirani (1990), are one popular choice. Additive models assume the high-
dimensional function to be a sum of one-dimensional functions. By doing so,
additive models effectively reduce the “working dimension” of the problem to
one. Stone (1985) showed that the optimal convergence rate for additive mod-
els is the same as that for univariate function estimation problems. Thus,
in a sense, the additive models overcome the curse of dimensionality. Addi-
tive models are also easy to interpret since they give a direct description
of the effect of each covariate. The fitting of additive models is manageable.
Hastie and Tibshirani (1990) gave a detailed discussion of the application of
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the backfitting algorithm in fitting additive models. There are also other feasi-
ble methods to fit additive models. Because of these reasons, additive models
are successful in a variety of problems.

In order to increase the flexibility of additive models to accommodate situa-
tions where interactions among the covariates may be present, it is desirable
to extend the additive methodology by considering functional ANOVA models,
the analogues of parametric ANOVA models. The functional ANOVA mod-
els assume that the high-dimensional function to be estimated is a sum of
one-dimensional functions (main effects), two-dimensional functions (two-way
interactions), and so on. That is, we decompose the d-dimensional function f as

f�x1� x2� � � � � xd� = constant +
d∑

i=1

fi�xi� +
∑
i<j

fij�xi� xj� + · · · �

where the components satisfy side conditions that guarantee uniqueness, and
the series is truncated in some manner.

Different strategies have been adopted to model the interactions in func-
tional ANOVA models. We will consider the tensor product space strategy.
After determining the function space of each main effect, this strategy models
an interaction as lying in the tensor product space of the function spaces of
the interacting main effects. That is, if we assume f1�x1� to be in a Hilbert
space E1 of functions of x1 and f2�x2� to be in a Hilbert space E2 of functions
of x2, then we can model f12 as in E1 ⊗ E2, the tensor product space of E1
and E2. Higher order interactions are modeled similarly.

For a Hilbert space E1 of functions of x1 and a Hilbert space E2 of functions
of x2, E1 ⊗E2 is defined as the completion of the class of functions of the form

k∑
i=1

fi�x1�gi�x2�� fi ∈ E1� gi ∈ E2� k is any positive integer

under the norm induced by the norms in E1 and E2. The norm in E1 ⊗ E2
satisfies

�f1�x1�g1�x2�� f2�x1�g2�x2�	E1⊗E2
= �f1�x1�� f2�x1�	E1

�g1�x2�� g2�x2�	E2
�

For an introduction to the basics of tensor product space of general Hilbert
spaces, see Kadison and Ringrose (1993), or Section 1 of Appendix A in Lin
(1998).

The TPS-ANOVA strategy for modeling interactions can be motivated by
the ideas used in parametric problems. In multiple linear regression, we often
use the product of two variables, xixj, to model the interaction between the
two variables, and use the product of three variables to model three-way inter-
action and so on. In the semiparametric case, the usual model without inter-
action assumes

f�x1� x2� � � � � xd� = f1�x1� + a2x2 + · · · + adxd

and we can use xig�x1� to model the interaction between xi and x1, where
we assume g and f1 lie in the same function space. The varying coefficient
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model considered in Hastie and Tibshirani (1993) is an example of this type
of structure. Notice in both cases we are actually assuming that the function
space for interaction is the tensor product space of the function spaces for
main effects.

The tensor product space ANOVA modeling is capable of dealing with inter-
actions of all orders in a flexible way, thus vastly extending the additive
methodology. Wahba and her colleagues have successfully applied the TPS-
ANOVA models in many practical situations. They considered fitting the mod-
els with the penalized likelihood method, also known as the smoothing spline
method. In fact, when it was originally proposed in the nonparametric set-
tings, the TPS-ANOVA model was motivated by the use of the smoothing
spline method and was called by Wahba and her colleagues the smoothing
spline ANOVA model. Reproducing kernel Hilbert space (RKHS) plays an
essential role in the smoothing spline methods. “The idea behind smoothing
spline ANOVA model is to construct an RKHS of functions so that the com-
ponents of the ANOVA decomposition represent an orthogonal decomposition
of f in the RKHS. (Then RKHS methods can be used to find the smoothing
spline estimator)” [quoted from Wahba, Wang, Gu, Klein and Klein (1995)].
Tensor product structure achieves this goal naturally, and the fact that the
reproducing kernel of a tensor product space of RKHSs is simply the product
of the reproducing kernels of the component spaces makes the computation of
the estimator via the smoothing spline method straightforward.

Wahba, Wang, Gu, Klein and Klein (1995) gave an extensive discussion
about many aspects of the fitting of the TPS-ANOVA model via penalized
likelihood method. They proposed methods for model selection and for making
confidence statements, developed practical algorithms, and provided public
software. They pointed out that

� � � it is tantalizing to conjecture the circumstances under which
Stone’s convergence rates could be obtained in the smoothing
(spline) context � � � .

Chen (1991) proved in the regression setting that, for the smoothing spline
estimator, when the data form an equidistant grid, the expected squared error
averaged over the data points, which is an approximation to the integrated
squared error, goes to zero at the rate O�n−2m/�2m+1��. It needs to be pointed
out that there is a small error in that paper; the rate actually differs from
O�n−2m/�2m+1�� by a log factor. Since this result was proved for a very special
design, it was not clear whether a similar result is valid under general condi-
tions. Our results include a corrected version of Chen (1991) as a special case.

In this paper, we study the optimal rate of the TPS-ANOVA model and the
rate of convergence of the penalized likelihood estimator in fitting the TPS-
ANOVA model under general conditions. We concentrate on regression and
white noise settings. The rate of convergence of the penalized likelihood esti-
mator in fitting TPS-ANOVA in other settings (such as generalized regression,
density estimation and hazard regression) will be established in a separate
paper.
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We show that the minimax mean integrated squared error for the TPS-
ANOVA model goes to 0 at a rate that is within a log factor of the one-
dimensional optimal rate. This quick optimal rate for TPS-ANOVA makes
the TPS-ANOVA model very preferable in high-dimensional function estima-
tion. We also show that the penalized likelihood estimator in TPS-ANOVA
achieves this rate. This means that the penalized likelihood method has very
good statistical properties.

Now let us explain intuitively how it can be that the TPS-ANOVA model
includes higher order interactions and still has an optimal rate that is close to
the one-dimensional optimal rate. For this, let us introduce some concepts first.

For a nonnegative integer m, the Sobolev–Hilbert space of univariate func-
tions with order m and domain [0, 1], denoted by Hm��0�1��, is defined by

Hm��0�1�� = f�f�ν� abs. cont�� ν = 0�1� � � � �m− 1�f�m� ∈ L2��
In the nonparametric estimation, it is typical to impose the mth order

smoothness condition on a univariate function by assuming it is in Hm��0�1��.
In TPS-ANOVA, when we assume that the main effects are in Hm��0�1��,
the kth order interactions lie in ⊗kHm��0�1��, the tensor product space of
kHm��0�1�� spaces. Since any function in ⊗kHm��0�1�� has one derivative
of order km (order m in each direction), we can see that TPS-ANOVA puts
higher order smoothness conditions on interactions than on main effects, and
the order of the smoothness condition imposed on an interaction increases
with the order of the interaction. The resulting models enjoy an optimal rate
that is very close to the optimal rate of one-dimensional problems. This reveals
an intuitively appealing aspect of the tensor product strategy in nonparamet-
ric function estimation: starting from an additive model, when we make the
model more complex by throwing in higher order interaction terms, we assume
appropriately stronger smoothness conditions on the new terms to keep the
model manageable, yet do not change the smoothness conditions on existing
terms. The resulting model retains a favorable optimal rate.

The main body of the paper is in the next three sections. In Section 2, the
tensor product space of Sobolev–Hilbert spaces and the function space for the
TPS-ANOVA model are studied. This lays the groundwork for further study of
TPS and TPS-ANOVA models. (The TPS model can be seen as a special case
of the TPS-ANOVA model, the saturated TPS-ANOVA model.) Sections 3 and
4 are based on Section 2 and are the more statistical parts.

Many nonparametric function estimation problems have white noise coun-
terparts. Brown and Low (1996) showed the asymptotic equivalence between
a regression problem and its corresponding white noise problem. Nussbaum
(1996) showed the asymptotic equivalence between a density estimation prob-
lem and its corresponding white noise problem. These results suggest the
importance of considering white noise problems: the treatments in the white
noise problem often illustrate the treatments in other types of nonparametric
problems. Section 3 establishes the exact rate of the minimax mean inte-
grated squared error for the TPS-ANOVA white noise model, and shows that
the penalized likelihood estimator achieves this rate.
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In the white noise TPS-ANOVA model, we observe a surface zx represented
as [x stands for the d-dimensional vector �x1� � � � � xd�]

dzx = f0�x�dx + n−1/2ω�x�dBx(1)

where Bx is the d-dimensional Brownian motion, ω�x� is defined on �0�1�d,
and 0 < c1 < ω�x� < c2 < ∞ on �0�1�d. Here f0 is the unknown function of
interest. We assume f0 has a TPS-ANOVA structure, the main effects are in
Hm�0�1�, and the highest order of interaction is r.

Note. A list of the notation that may not be defined explicitly in the paper
is at the end of the paper.

The main result of Section 3 is the theorem.

Theorem 1.1. For the TPS-ANOVA white noise model, the rate of the mini-
max mean integrated squared error is �n�log n�1−r�−2m/�2m+1� and the penalized
likelihood estimator achieves this rate.

Notice this optimal rate is very close to the optimal rate for one-dimensional
model. Due to the close relationship of regression models and white noise mod-
els [see Brown and Low (1996)], Theorem 1.1 proves that the rate of minimax
mean integrated squared error for the TPS-ANOVA regression model is also
�n�log n�1−r�−2m/�2m+1� when the errors are Gaussian and m > d/2.

Since the optimal rate is a property of the model itself and does not depend
on the method used to fit the model, and the formulation of the TPS-ANOVA
models actually does not depend on the penalized likelihood method, we may
also fit the model with nonparametric schemes other than the penalized like-
lihood method, and it is reasonable to hypothesize that some other nonpara-
metric methods can also perform well in this model.

Section 4 establishes the rate of convergence of the penalized likelihood
estimator in the TPS-ANOVA regression model. In this model we observe

yi = f0�x1i� x2i� � � � � xdi� + εi� i = 1� � � � � n(2)

�x1i� x2i� � � � � xdi�, i = 1� � � � � n iid with density p�x�. The εi’s are independent
of the xi’s and independent of each other. Eεi = 0, and var εi = σ2. The re-
gression function f0 has a TPS-ANOVA structure, the main effects are in
Hm�0�1�, and the highest order of interaction is r. We further assume that x
takes values only in the unit cube �0�1�d and that the density, p�x�, is bounded
away from zero and infinity in the unit cube, that is, 0 < C1 ≤ p�x� ≤ C2 < ∞.

The main result in Section 4 can be stated as Theorem 1.2.

Theorem 1.2. Suppose m > 1� then in the TPS-ANOVA regression model,
the (uniform) rate of convergence of the penalized likelihood estimator and its
component functions for estimating the regression function f0 and its compo-
nent functions is �n�log n�1−r�−2m/�2m+1� when λ, the smoothing parameter for
the roughness penalty, is appropriately chosen.

Similar results on the rate of convergence of related estimates of derivatives
of f0 are also obtained.
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The proof of Theorem 1.2 follows an approach commonly used in the study of
the rateof convergenceof thepenalized likelihoodestimators.Thisapproachwas
first utilized in Silverman (1982). Cox and O’Sullivan (1990) provided a gen-
eral framework for this approach. Their examples include (one-dimensional)
density estimation, hazard estimation, and nonparametric logistic regression.
O’Sullivan (1993) applied this framework to the proportional hazards model.
Gu and Qiu (1993, 1994) and Gu (1996) provided a simpler analysis in the
same line under strong assumptions. They considered the rate of conver-
gence of the penalized likelihood estimators in density estimation, (general-
ized) regression and hazard estimation. If we combine Gu and Qiu (1994) and
the argument in Example 3 of Gu (1996), we get that in the two-dimensional
tensor product space regression models, the rate of convergence of the penal-
ized likelihood estimator is Op�nε−4/5�, ∀ ε > 0 (in their analysis m = 2).
One drawback of the analysis in Gu and Qiu (1993, 1994) and Gu (1996) is
that it makes an assumption on eigenfunctions that is almost impossible to
check. Theorem 1.2 represents a sharper result on the rate of convergence of
the penalized likelihood estimator in high-dimensional tensor product space
ANOVA regression models under general conditions.

2. The parameter space.

2.1. Tensor product space of Sobolev–Hilbert spaces. For any nonnegative
integer m, the Sobolev–Hilbert space of univariate functions with order m and
domain [0, 1], denoted by Hm��0�1��, is defined by

Hm��0�1�� = f�f�ν� abs. cont�� ν = 0�1� � � � �m− 1�f�m� ∈ L2�
with the Sobolev norm

∫ 1

0
�f�u��2 du+ · · · +

∫ 1

0
�f�m��u��2 du�

We can see H0��0�1�� is just the L2 space on [0, 1].

Remark. The above definitions are only for integer m. The extensions to
fractional m is possible through interpolation. See Oden and Reddy (1976).

Let ⊗d Hm denote the completed tensor product space of Hm��0�1�� with
itself d times. For simplicity, the norm on ⊗d Hm induced by the Sobolev norm
on Hm��0�1�� will be called the Sobolev norm on ⊗d Hm. In later writing, we
will denote the Sobolev norms by �·� with subscripts. The subscript shows
which space the Sobolev norm is on. The corresponding inner product will be
denoted �·� ·	 with subscripts. The following two lemmas extend the properties
of the univariate Sobolev spaces to the tensor product space of univariate
Sobolev spaces. For a proof of these two lemmas, see Lin (1998).

Lemma 2.1. For any s > 1/2� and any f ∈ ⊗dHs� there exists a constant C
not depending on f� such that sup�f�x1� x2� � � � � xd�� ≤ C�f�⊗dHs .
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Lemma 2.2. For any s > 1/2� there exists a constant C depending only on
s� such that for any f�g ∈ ⊗dHs�

�fg�⊗d Hs ≤ C�f�⊗d Hs�g�⊗d Hs �

2.2. ANOVA decomposition. With the Sobolev norm, Hm��0�1�� can be
decomposed as the direct sum of two orthogonal Hilbert subspaces,

Hm��0�1�� = 1� ⊕Hm
0 ��0�1���

where 1� is the space of scalars. Hm
0 ��0�1�� is the subspace (orthogonal to 1��

satisfying
∫ 1
0 f�x�dx = 0. Thus we have

d⊗
Hm =

d⊗ [1� ⊕Hm
0 ��0�1��]�

Identify the tensor product of 1� with any Hilbert space with that Hilbert
space itself, then ⊗dHm is the direct sum of all the subspaces of the form
Hm

0 �xj1
�⊗Hm

0 �xj2
�⊗· · ·⊗Hm

0 �xjk
� and 1�, where j1� j2� � � � � jk� is a subset

of 1�2� � � � � d�, and the subspaces in the decomposition are all orthogonal to
each other.

We can now study the TPS-ANOVA structure with this decomposition. In
the TPS-ANOVA models we represent a d-dimensional function as

f�x1� x2� � � � � xd� = constant +
d∑

i=1

fi�xi� +
∑
i<j

fij�xi� xj� + · · · �(3)

Let r be the highest order of interaction in the model. We will impose the
smoothness condition on the main effects by assuming fi�xi� ∈ Hm

0 �xi� for i =
1�2� � � � � d. Due to the TPS structure, this assumption effectively determines
the function space for the function f. Denote this function space by F. Then F
is the direct sum of some set of the orthogonal subspaces in the decomposition
of ⊗dHm. Let F0 be the direct sum of the corresponding set of subspaces in
the corresponding decomposition of ⊗dH0. The restriction of the Sobolev norm
on ⊗dHm �⊗dH0� to F �F0� will be called the Sobolev norm on F �F0�, and
will be denoted by �·�F ��·�F0

�.

2.3. Eigensystem. Consider the spaces of univariate functionsHm
0 ��0�1�� ⊂

H0
0��0�1��. In Hm

0 ��0�1��, the quadratic form �f�f	H0 is completely continuous
with respect to �f�f	Hm . Apply the theory in Weinberger [(1974), Section 3.3],
and denote the eigenvalues and eigenvectors of the Rayleigh quotient of the
two quadratic forms by µi� and

{
µ

1/2
i ϕi

}
� i = 2�3� � � � � Then 1 ≥ µ2 ≥ µ3 ≥ · · ·

and �ϕi� ϕj	Hm = µ−1
i δij� �ϕi� ϕj	H0 = δij.

Since �f�f	H0 is positive definite, by Section 3.3 of Weinberger (1974), ϕi�
actually form an orthogonal basis in Hm

0 ��0�1��. Therefore, ϕ1 = 1� ϕ2� � � � form
an orthogonal basis in Hm��0�1�� = 1� ⊕ Hm

0 ��0�1��, and 1 = µ1 ≥ µ2 ≥ · · ·
are the eigenvalues of the Rayleigh quotient �·�2

H0/�·�2
Hm in Hm��0�1��. Since

Hm��0�1�� is dense in H0��0�1��, and since ϕ1� ϕ2� � � � form an orthonormal
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system in H0��0�1��, we know that ϕ1� ϕ2� � � � also form an orthonormal basis
in H0��0�1��.

From Silverman [(1982), Section 5] or Cox (1988), µi ∼ i−2m.
Denoteϕi1

�x1�ϕi2
�x2� · · ·ϕid

�xd�byϕi1i2···id andµi1
µi2

· · ·µid
byµi1i2···id . Since

ϕi� is an orthogonal basis in Hm, and an orthonormal basis in H0� ϕi1i2···id�
form an orthogonal basis in ⊗dHm, and an orthonormal basis in ⊗dH0. It is
easy to see that µi1i2···id�, where ij goes from 1 to ∞, j = 1�2� � � � � d� are the
eigenvalues of the Rayleigh quotient �f�f	⊗dH0/�f�f	⊗dHm in ⊗dHm.

By the decomposition of F and F0, a subset of ϕi1i2···id� forms an orthogonal
basis in F and an orthonormal basis in F0. Order the corresponding subset of
µi1i2···id� from large to small, write them as νi�. Then νi� is the eigenvalues
of the Rayleigh quotient �f�f	F0

/�f�f	F in F.

2.4. A norm related to the penalized likelihood estimator. The penalized
likelihood method augments the negative log-likelihood with a roughness
penalty, and minimizes the penalized negative log-likelihood. The roughness
penalty is a quadratic functional on F.

Definition 2.1. A standard roughness penalty is a quadratic functional
J�·� such that

∫
f2 +J�f� is a norm equivalent to the Sobolev norm.

Most of the commonly used penalties are standard. Later we will restrict
our attention to standard penalties.

Note. The most commonly used roughness penalty is introduced in Wahba
(1990). It can be shown that this roughness penalty is standard. See Lin
(1998).

Let p�x� be a function supported on the unit cube �0�1�d and bounded away
from zero and infinity in the unit cube, that is, 0 < c1 ≤ p�x� ≤ c2. Given any
standard penalty J�·�, we can define a new norm on F:

�f�2 =
∫
f2�x�p�x�dx +J�f� ∀ f ∈ F�

The corresponding inner product is denoted by �·� ·	.

Note. The notation for the norms are a little confusing. While �·� without
any subscript is the new norm on F defined above, �·� with subscripts are the
Sobolev norms, with the subscripts indicating the space which the Sobolev
norms are on. However, since �·� and the Sobolev norm �·�F are equivalent
norms on F, and are largely interchangeable in later developments, the risk
of a confusion is not serious. From now on, we will be mainly using the new
norm �·� on F, and will state clearly each time the Sobolev norm is used.

Similarly, we can define a new norm on F0,

�f�2
0 =

∫
f2�x�p�x�dx ∀ f ∈ F0�

The corresponding inner product is denoted by �·� ·	0. This new norm �·�0 is
equivalent to the Sobolev norm �·�F0

on F0.
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Denote the eigenvalues and eigenvectors of the Rayleigh quotient �f�f	0/
�f�f	 in F by �1+ρk�−1� and �1+ρk�−1/2φk�� k = 1�2� � � � . Then �φi�φj	 =
�1 + ρi�δij� �φi�φj	0 = δij. Since �·� ∼ �·�F, and �·�0 ∼ �·�F0

, by the mapping
principle [or Theorem 3.8.1 in Weinberger (1974)], we have �1 + ρi�−1 ∼ νi.

The following quantity plays an important role in determining the rate of
convergence of penalized likelihood type estimators and will appear frequently
in later derivation:

Nb�λ� =
∞∑
i=1

�1 + ρi�b�1 + λρi�−2�

Lemma 2.3. For any b ∈ �0�2 − 1/2m�� we have Nb�λ� = O
[
λ−�b+1/2m�×(

log �1/λ�)r−1] as λ goes to zero. Here r is the highest order of interaction in
the TPS-ANOVA model.

The proof of the lemma is deferred to the Appendix.

3. The TPS-ANOVA white noise model. We now consider the white
noise TPS-ANOVA model defined at (1). To obtain uniform results, we consider
only functions satisfying �f0� < B.

Let θfi be the coefficients when we expand f ∈ F in terms of the basis φi�
of F defined in Section 2.4 with p�x� = ω−2�x�, the TPS-ANOVA white noise
model is equivalent to the following Gaussian shift model:

yi = θf0i
+ εi� i = 1�2� � � � �

where εi ∼ N�0�1/n� are independent noises, θf0i
’s are parameters of interest,

satisfying
∑�1 + ρi�θ2

f0i
= �f0�2 < B2.

3.1. Penalized likelihood estimator. For any f ∈ F, we have J�f� = �f�2−
�f�2

0 = ∑
ρiθ

2
fi. Hence the penalized likelihood estimator for θf0i

is the mini-
mizer of the following: ∑�yi − θi�2 + λ

∑
ρiθ

2
i �

Solving the minimization problem, we get the penalized likelihood estimator
θ̂i = �1 + λρi�−1yi. Therefore,∑�Eθ̂i − θf0i

�2 = ∑
λ2ρ2

i �1 + λρi�−2θ2
f0i

≤ 1
4λ

∑
ρiθ

2
f0i

≤ 1
4λB

2�

∑
var θ̂i = 1/n

∑�1 + λρi�−2 = N0�λ�/n ≤ Cn−1λ−1/2m
(

log
1
λ

)r−1

�

Hence we have

E
∫
�f̂− f0�2 dx ∼ E

∑�θ̂i − θf0i
�2 ≤ C

(
λ+ n−1λ−1/2m

(
log

1
λ

)r−1)
�

The constant C here is uniform for all �f0� < B. If λ ∼ �n�log n�1−r�−2m/�2m+1�,
then E

∫ �f̂ − f0�2 dx ≤ C�n�log n�1−r�−2m/�2m+1�. This shows that the
penalized likelihood estimator achieves a uniform rate of convergence
�n�log n�1−r�−2m/�2m+1�.
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3.2. The minimax rate. We now show that �n�log n�1−r�−2m/�2m+1� is the
rate of minimax mean integrated squared error for the TPS-ANOVA white
noise model. Since the penalized likelihood estimator can achieve this rate,
all we need to show is that the minimax rate of the TPS-ANOVA white noise
model is at least �n�log n�1−r�−2m/�2m+1�. For this we only need to show the
minimax rate for the r-dimensional full TPS white noise model is at least
�n�log n�1−r�−2m/�2m+1�. In the following we consider the r-dimensional full TPS
white noise model.

Again consider the Gaussian shift model. In this situation, νi� i = 1�2� � � ��
is the same set as µi1

· · ·µir
� ij = 1�2� � � � �j = 1� � � � � r�. Since �1 + ρi�−1 ∼

νi, and µi ∼ i−2m, without loss of generality, we can assume the set 1 +
ρi� i = 1�2� � � �� is the same as the set

{
i2m
1 · · · i2m

r � ij = 1�2� � � � �j = 1� � � � r
}
,

and B = 1.
By Lemma 6, Theorem 7 and the proof of Theorem 7 in Donoho, Liu and

MacGibbon (1990), the difficulty (the minimax risk) of the r-dimensional full
TPS Gaussian shift model, is larger than 80% of the difficulty, for linear esti-
mates, of the hardest rectangle subproblem, and the latter difficulty, which we
will denote by R∗, is

max
[∑

n−2
(
π2
i + 1

n

)−2

π2
i + 1

n
π4
i

(
π2
i + 1

n

)−2]

or

max
[∑ 1

n
π2
i

(
π2
i + 1

n

)−1]
�

The maximization is taken over π under the constraint
∑�1 + ρi�π2

i = 1.
For notational simplicity, we will write π2

i as γi. We use the Lagrange mul-
tiplier method to find nonnegative γ̄i that maximize �∑�1/n�γi�γi + �1/n��−1�
under the constraint ∑�1 + ρi�γi = 1�(4)

Let

A = ∑
γi

(
γi +

1
n

)−1

− a�1 + ρi�γi�

where a is a scalar. Then

∂A

∂γi

= n−1
(
γi +

1
n

)−2

− a�1 + ρi��

Maximizing A under the constraint γi ≥ 0, ∀ i, we get

γ̄i =
[
b�1 + ρi�−1/2 − 1

n

]
+
�

where b = �na�−1/2 is a scalar.
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By (4), we have
∑�1 + ρi�

[
b�1 + ρi�−1/2 − 1

n

]
+
= 1�

That is,
∑

i1� i2�����ir

i2m
1 i2m

2 · · · i2m
r

[
bi−m

1 i−m
2 · · · i−m

r − 1
n

]
+
= 1�

From now on we will use multiindex notation. For example, the expression
ik1i

k
2 · · · ikr will be written as ik. We have

∑
im≤�nb�

i2m
[
bi−m − 1

n

]
= 1�

∑
i1≤�nb�1/m

bim − 1
n
i2m = 1�

From this, we can see that nb → ∞. Using the integral approximation,
we have ∫

x1≤�nb�1/m� xi≥1� i=1�����r
bxm − 1

n
x2mdx ∼ 1

Changing the variable in the integral, zi = 2j≤ixj, i = 1�2� � � � � r, we get
∫ �nb�1/m

1

[ ∫ zr

1
· · ·

∫ z2

1

(
bzmr − 1

n
z2m
r

)
z−1

1 · · · z−1
r−1 dz1 · · ·dzr−1

]
dzr ∼ 1�

that is,
∫ �nb�1/m

1

[(
bzmr − 1

n
z2m
r

)(
log zr

)r−1]
dzr ∼ 1�

Integrating by parts, since nb → ∞, the left-hand side can be shown to
be of the order n�m+1�/mb�2m+1�/m�log�nb��r−1. Then from n�m+1�/mb�2m+1�/m×
�log�nb��r−1 ∼ 1, we get

b ∼ n−�m+1�/�2m+1��log n�−m�r−1�/�2m+1��(5)

Now we have

R∗ = ∑ 1
n
γi

(
γi +

1
n

)−1

= ∑
i1≤�nb�1/m

1
n

[
bi−m − 1

n

]/
�bi−m�

= ∑
i1≤�nb�1/m

1
n

[
1 + 1

nb
im

]

∼
∫
x1≤�nb�1/m� xi≥1� i=1�����r

1
n

[
1 + 1

nb
xm

]
dx�
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Again changing variables in the integral, and then integrating by parts, we get
R∗ ∼ n−�m−1�/mb1/m�log�nb��r−1. By (5), we get R∗ ∼ �n�log n�1−r�−2m/�2m+1�.

To summarize, from the results above, we get Theorem 1.1 as stated in
Section 1.

4. The penalized likelihood estimator in the TPS-ANOVA regression
model. We now consider the TPS-ANOVA regression model as defined in (2).

To obtain uniform results, we consider the regression functions satisfying
�f0� < B for some positive constant B.

The penalized likelihood estimator for the regression function is the mini-
mizer of ln� λ�f� = ln�f� + λJ�f� in F, where

ln�f� =
1
n

n∑
i=1

�f�x1i� � � � � xdi� − yi�2

and J�·� is a standard roughness penalty. The smoothing parameter λ depends
on n, that is, λ = λ�n�.

For large n, with probability 1, ln� λ�f� is a positive definite quadratic form
of f; it has a unique minimizer in F, which we denote by f̂. We have

Dln�λ�f̂� = 0(6)

here D is the notation for the Fréchet derivative. For a definition of the Fréchet
derivative, see Huber (1981), for example.

Let l∞�f� = ∫ �f�x� − f0�x��2p�x�dx + σ2, l∞� λ�f� = l∞�f� + λJ�f�. Since
l∞� λ�f� is a positive definite quadratic form in f, it has a unique minimizer
in F, which we denote by f̄. We have

Dl∞� λ�f̄� = 0�

Notice, f̄−f0 is the deterministic part of the estimation error, and f̂− f̄ is
the stochastic part. We will study them separately.

4.1. Intermediate spaces. In order to study the estimation of the deriva-
tives of the unknown function, and for some technical reasons, we need to
introduce the intermediate spaces between F and F0. The proof of the follow-
ing proposition is in the Appendix.

Proposition 4.1. The natural injection from F with norm �·� to F0 with
norm �·�0 is continuous and dense.

This proposition makes sure that the concept of intermediate spaces applies
for F and F0. By Section 4.8 of Oden and Reddy (1976), we can define the
intermediate spaces between F0 and F as follows.

For b ∈ �0�1�, and θ ∈ F0, let

�θ�b =
{ ∞∑

i=1

�1 + ρi�b�θ�φi	2
0

}1/2

�
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Let 5b be the normed linear space θ ∈ F0: �θ�b < ∞�, with �·�b norm, then
5b, 0 ≤ b ≤ 1, is the intermediate spaces between F0 and F. 51 is the same
as F, and 50 is the same as F0. 5b, 0 ≤ b ≤ 1, is a Hilbert space with inner
product

�θ� ξ	b =
∞∑
i=1

�1 + ρi�b�θ�φi	0 �ξ�φi	0�

If b ≤ a, then 5a ⊂ 5b, and 5a has a stronger norm.

Proposition 4.2. For any b ∈ �0�1�� we have 5b ⊂ ⊗d Hmb��0�1��� Also,
for any f ∈ F� and its component functions defined by (3), we have

�f�2
b ∼ c2 +∑

i

�fi�2
Hmb��0�1�� +

∑
i<j

�fij�2⊗2 Hmb��0�1�� + · · · �

Here Hmb��0�1�� is the (fractional) Sobolev space of order mb, �·�Hmb��0�1�� and
�·�⊗2 Hmb��0�1�� are Sobolev norms. The proof of this proposition is given in the
Appendix.

4.2. The deterministic error. Let af1� af2� � � � be the coefficients when we
expand f ∈ F in terms of φi, i = 1�2� � � �; then

f0 =
∞∑
i=1

af0 i
φi�

f =
∞∑
i=1

afiφi�

l∞� λ�f� =
∫
�f�x� − f0�x��2p�x�dx + σ2 + λJ�f�

= σ2 +
∞∑
i=1

�afi − af0i
�2 + λ

∞∑
i=1

ρia
2
fi�

so the minimizer f̄ has af̄i = af0i
/�1 + λρi�. Hence,

�f̄− f0�2
b =

∞∑
i=1

�af0i
− af0i

�1 + λρi�−1�2�1 + ρi�b

≤ λ1−b
∞∑
i=1

�1 + ρi�a2
f0i

= λ1−b�f0�2 ≤ λ1−bB2�

Therefore we have the following lemma.

Lemma 4.1. �f̄− f0�b ≤ λ�1/2��1−b��f0� < λ�1/2��1−b�B ∀ 0 ≤ b ≤ 1.
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4.3. The stochastic error. Direct calculation yields the following deriva-
tives. Lemma 2.1 shows that evaluation is a continuous linear functional in
5b for b > 1/2m. Hence these derivatives are bounded linear functionals:

Dl∞�f�g = 2
∫
�f− f0��x�g�x�p�x�dx�

Dln�f�g = − 2
n

n∑
i=1

��yi − f�x1i� � � � � xdi��g�x1i� � � � � xdi���

D2l∞�f�gh = 2
∫
g�x�h�x�p�x�dx = 2�g�h	0�

D2ln�f�gh = 2
n

n∑
i=1

�g�x1i� � � � � xdi�h�x1i� � � � � xdi���

By Oden and Reddy (1976), there exists a bounded linear operator U from
F0 into F, such that, �f�Ug	 = �f�g	0, ∀ f ∈ F, g ∈ F0. The restriction of U
to F is self-adjoint and positive definite.

Since J�f� = �f�f	 − �f�f	0, we have

D2l∞� λ�f�gh = 2��U+ λ�I−U��g�h	�
Since F is a Hilbert space with inner product �·� ·	, the conjugate space of

F can be identified with F. We will not distinguish the two in later writing.
Let Gλ = U+ λ�I−U�. The equation above implies, for any g ∈ F,

Gλg = �1/2�D2l∞� λ�f̄�g�
By Theorem 3.1.1 of Weinberger (1974), we have Uφi = �1+ρi�−1φi. Hence

Gλφi = �1+ρi�−1�1+λρi�φi. By the Lax–Milgram theorem [see Aubin (1979)],
Gλ as an operator from F → F has a bounded inverse on F. We have G−1

λ φi =
�1 + ρi��1 + λρi�−1φi, and for any θ ∈ F,

�G−1
λ θ�2

b =
∞∑
i=1

�1 + ρi�b�1 + λρi�−2�θ�φi	2�

For notational purpose, let f̃ = f̄− 1
2G

−1
λ Dln�λ�f̄�. This is an approximation

of f̂: Since ln� λ�f� is a quadratic form of f, a Taylor expansion of Dln�λ�f̂�
around f̄ shows that (6) is equivalent to

Dln�λ�f̄� +D2ln� λ�f̄��f̂− f̄� = 0�(7)

and by definition f̃ satisfies a similar equation,

Dln�λ�f̄� +D2l∞� λ�f̄��f̃− f̄� = 0�(8)

We will study f̃− f̄ first, then f̂− f̃.

Lemma 4.2. �f̃− f̄�2
b = Op�n−1λ−�b+1/2m��log�1/λ��r−1� ∀ b ∈ �0�1�.
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Proof. Notice Dln�λ�f̄� = Dln�λ�f̄�−Dl∞� λ�f̄� = Dln�f̄�−Dl∞�f̄�. Direct
calculation gives, for any nonrandom g ∈ F,

E
( 1

2Dln�λ�f̄�g
)2

= E

(
1
2Dln�f̄�g − 1

2Dl∞�f̄�g
)2

= 1
n

var��Y− f̄�X1� � � � �Xd��g�X1� � � � �Xd��

≤ 1
n
E��f0�X1� � � � �Xd� − f̄�X1� � � � �Xd��2g2�X1� � � � �Xd��

+ σ2Eg2�X1� � � � �Xd��

≤ 1
n
E�C2�f0 − f̄�2g2�X1� � � � �Xd�� + σ2Eg2�X1� � � � �Xd��

�by Lemma 2.1�

≤ 1
n
E�C2B2g2�X1� � � � �Xd�� + σ2Eg2�X1� � � � �Xd��

�by Lemma 4.1�
< Cn−1�g�2

0�

Thus we have

E�f̃− f̄�2
b = E

∥∥∥∥1
2
G−1

λ Dln�λ�f̄�
∥∥∥∥

2

b

= E

[ ∞∑
i=1

�1 + λρi�−2
(

1
2
Dln�λ�f̄�φi

)2

�1 + ρi�b
]

≤
∞∑
i=1

�1 + λρi�−2�1 + ρi�bE
(

1
2
Dln�λ�f̄�φi

)2

≤ C

n

∞∑
i=1

�1 + λρi�−2�1 + ρi�b

= Cn−1Nb�λ�

≤ Cn−1λ−�b+1/2m�
(

log
1
λ

)r−1

�

which implies �f̃− f̄�2
b = Op�n−1λ−�b+1/2m��log�1/λ��r−1�. ✷

Proposition 4.3.

f̂− f̃ = G−1
λ �1/2D2l∞�f̄��f̂− f̄� − 1/2D2ln�f̄��f̂− f̄���
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Proof. By (7) and (8), we have 1/2D2l∞� λ�f̄��f̃−f̄� = 1/2D2ln� λ�f̄��f̂−f̄�,
and therefore

Gλ�f̂− f̃�
= 1/2D2l∞� λ�f̄��f̂− f̃�
= 1/2D2l∞� λ�f̄��f̂− f̄� − 1/2D2ln� λ�f̄��f̂− f̄�
= 1/2D2l∞�f̄��f̂− f̄� − 1/2D2ln�f̄��f̂− f̄�

and the conclusion follows. ✷

Lemma 4.3. If n−1λ−�2b+1/2m��log�1/λ��r−1 → 0 and 1 ≥ b > 1/2m, then for
a ∈ �0� b�,

�f̂− f̃�2
a = op

[
n−1λ−�a+1/2m�

(
log

1
λ

)r−1]
�(9)

Proof. First notice that (9) follows from the following: for any a ∈ �0� b�,

�f̂− f̃�2
a = Op

[
n−1λ−�a+b+1/2m�

(
log

1
λ

)r−1]
�f̂− f̄�2

b�(10)

This is because once (10) is established, we have, by plugging a = b in (10),

�f̂− f̃�2
b = Op

[
n−1λ−�2b+1/2m�

(
log

1
λ

)r−1]
�f̂− f̄�b = op�1��f̂− f̄�2

b�

By the triangle inequality, we have

�f̃− f̄�b ≥ �f̂− f̄�b − �f̂− f̃�b = �1 − op�1���f̂− f̄�b�

�f̂− f̄�2
b = Op��f̃− f̄�2

b� = Op

[
n−1λ−�b+1/2m�

(
log 1

λ

)r−1]
�

(11)

The second equality follows from Lemma 4.2. Combining (10) and (11),
we get (9).

Now we set out to prove (10). By Proposition 4.3,

�f̂− f̃�2
a =

∥∥G−1
λ �1/2D2l∞�f̄��f̂− f̄� − 1/2D2ln�f̄��f̂− f̄��∥∥2

a

=
∞∑
i=1

�1 + ρi�a�1 + λρi�−2

×
[
1
2
D2ln�f̄��f̂− f̄�φi −

1
2
D2l∞�f̄��f̂− f̄�φi

]2

=
∞∑
i=1

�1 + ρi�a�1 + λρi�−2

×
[

1
n

n∑
j=1

�f̂− f̄��xj�φi�xj� −
∫
�f̂− f̄��x�φi�x�p�x�

]2

�

(12)

Let g = �f̂− f̄�φi. By Lemma 2.2,

�g�⊗dHmb��0�1�� ≤ C�f̂− f̄�b�φi�b�
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Now recall ϕi1···id and µi1···id from Section 2.3. Let Qgi1···id be the coefficients
in the expansion of g in terms of ϕi1···id . We will use the multiindex notation
in the following (write i1 · · · id as i):

g = ∑
i

Qgiϕi�

Then we have[
1
n

n∑
j=1

�f̂− f̄��xj�φi�xj� −
∫
�f̂− f̄��x�φi�x�p�x�

]2

=
[

1
n

n∑
j=1

g�xj� −
∫
g�x�p�x�

]2

=
[∑

i

(
Qgi

1
n

n∑
j=1

ϕi�xj�
)
−∑

i

(
Qgi

∫
ϕi�x�p�x�

)]2

=
[∑

i

Qgi

[
1
n

n∑
j=1

ϕi�xj� −
∫
ϕi�x�p�x�

]]2

≤
[∑

i

Q2
giµ

−b
i

][∑
i

µb
i

[
1
n

n∑
j=1

ϕi�xj� −
∫
ϕi�x�p�x�

]2]

= �g�2
⊗dHmb��0�1��

[∑
i

µb
i

[
1
n

n∑
j=1

ϕi�xj� −
∫
ϕi�x�p�x�

]2]

≤ C�f̂− f̄�2
b �φi�2

b

[∑
i

µb
i

[
1
n

n∑
j=1

ϕi�xj� −
∫
ϕi�x�p�x�

]2]

= C�1 + ρi�b�f̂− f̄�2
b

[∑
i

µb
i

[
1
n

n∑
j=1

ϕi�xj� −
∫
ϕi�x�p�x�

]2]

(13)

We also have

E

[∑
i

µb
i

[
1
n

n∑
j=1

ϕi�xj� −
∫
ϕi�x�p�x�

]2]

≤ ∑
i

µb
iE

[
1
n

n∑
j=1

ϕi�xj� −
∫
ϕi�x�p�x�

]2

≤ ∑
i

µb
i

[
1
n

∫
ϕ2
ip

]

≤ C

n

∑
i

µb
i

∫
ϕ2
i

= C

n

∑
i

µb
i =

C

n

∑
i

µb
i1
· · ·µb

id
= C

n

(∑
i1

µb
i1

)d

= C

n
�

(14)

The last step follows from b > 1/�2m�, and µi1
∼ i−2m

1 .
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Combining (12), (13), (14), we get

�f̂− f̃�2
a = Op

[
n−1�f̂− f̄�2

bNa+b�λ�
]
�

and (10) follows. Hence the lemma is proved. ✷

It is easily seen by examining the above proof that the conclusion of the
lemma holds uniformly for all f0 satisfying �f0� < B.

4.4. Rate of convergence of the penalized likelihood estimator in regression.
Combining Lemmas 4.1, 4.2 and 4.3, we get the theorem.

Theorem 4.1. If 1 ≥ b > 1/2m and n−1λ−�2b+1/2m��log�1/λ��r−1 → 0� then
for a ∈ �0� b��

�f̂− f0�2
a = O�λ1−a� +Op

[
n−1λ−�a+1/2m�

(
log

1
λ

)r−1]

uniformly over any f0 satisfying �f0� < B.

Many results can be derived from Theorem 4.1. Setting b = 1/2m+ε/2 and
a = 0 in Theorem 4.1, it is easy to get one corollary.

Corollary 4.1. If n−1λ−�3/2m+ε� → 0 for some ε > 0. Then

∫
�f̂− f0�2p = O�λ� +Op

[
n−1λ−1/2m

(
log

1
λ

)r−1]
�

Proof of Theorem 1.2. When m > 1, let λ ∼ �n�log n�1−r�−2m/�2m+1�, then
the condition of the above corollary is satisfied. Hence by Corollary 4.1 we have
�f̂− f0�2

0 = Op��n�log n�1−r�−2m/�2m+1��. Recalling the ANOVA decomposition
defined by (3) in Section 2.2, and by Proposition 4.2, we know that

∫ 1

0
�f̂i − f0i�2 dxi = �f̂i − f0i�2

H0��0�1�� = Op��n�log n�1−r�−2m/�2m+1���
∫ 1

0

∫ 1

0
�f̂ij−f0ij�2 dxi dxj = �f̂ij−f0ij�2

⊗2H0��0�1�� =Op��n�log n�1−r�−2m/�2m+1��

and so on. These mean the integrated squared errors of estimating f0 and its
component functions by f̂ and its component functions go to 0 at a rate of

Op��n�log n�1−r�−2m/�2m+1���
and the rate is uniform for all f0 satisfying �f0� < B. Summing up, we get
Theorem 1.2 as stated in Section 1. ✷

Setting b = a = k/m in Theorem 4.1, we get the corollary.
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Corollary 4.2. For positive integer k < m� if

n−1λ−�4k+1�/2m�log�1/λ��r−1 → 0�

then

�f̂− f0�2
k/m = O�λ1−k/m� +Op�n−1λ−��2k+1�/2m��log�1/λ��r−1��

When k < m/2, let λ ∼ �n�log n�1−r�−2m/�2m+1�, the condition of the above
corollary is satisfied. Hence by Corollary 4.2 we have

�f̂− f0�2
k/m = Op��n�log n�1−r�−2�m−k�/�2m+1��

By Proposition 4.2, we know that

�f̂i − f0i�2
Hk��0�1�� = Op��n�log n�1−r�−2�m−k�/�2m+1���

�f̂ij − f0ij�2
⊗2Hk��0�1�� = Op��n�log n�1−r�−2�m−k�/�2m+1��

and so on. But we also know that
∫ 1
0 ��dk/dxk

i ��f̂i�xi� − f0i�xi���2 dxi ≤ �f̂i −
f0i�2

Hk��0�1��, so we have the theorem.

Theorem 4.2. For positive integer k < m/2� let λ ∼ �n�log n�1−r�−2m/�2m+1��
then

∫ 1

0

[
dk

dxk
i

�f̂i�xi� − f0i�xi��
]2

dxi = Op��n�log n�1−r�−2�m−k�/�2m+1���

Obviously we can obtain similar results for derivatives of the interaction
terms.

APPENDIX

Proof of Lemma 2.3. Since �1 + ρi�−1 ∼ νi, νi� is a particular subset of
µi1i2···id�, with at most r of i1� i2� � � � � id not equal to 1, and µi ∼ i−2m, we
have

Nb�λ� ∼
∞∑

i1=1

· · ·
∞∑

ir=1

�i2m
1 · · · i2m

r �b�1 + λi2m
1 · · · i2m

r �−2

∼
∫ ∞

1
· · ·

∫ ∞

1
�x2m

1 · · ·x2m
r �b�1 + λx2m

1 · · ·x2m
r �−2 dx1 · · ·dxr

∼
∫ ∞

1
· · ·

∫ ∞

1
�1 + λy

β
1 · · ·yβ

r �−2 dy1 · · ·dyr�
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where β = 2m/�2mb+ 1�. Set zi = 2j≤iyj, i = 1�2� � � � � r, we get
∫ ∞

1
· · ·

∫ ∞

1
�1 + λy

β
1 · · ·yβ

r �−2 dy1 · · ·dyr

=
∫ ∞

1

[∫ zr

1

[∫ zr−1

1
· · ·

∫ z2

1
�1 + λzβr �−2z−1

1 · · · z−1
r−1 dz1 · · ·dzr−2

]
dzr−1

]
dzr

=
∫ ∞

1
�1 + λzβr �−2

[∫ zr

1
· · ·

∫ z2

1
z−1

1 · · · z−1
r−1 dz1 · · ·dzr−1

]
dzr

=
∫ ∞

1
�1 + λzβr �−2��r− 1�!�−1�log zr�r−1 dzr

∼ λ−1/β
∫ ∞

λ1/β
�1 + xβ�−2

[
log x+ 1

β
log

1
λ

]r−1

dx

= λ−1/β
[
O

(
log

1
λ

)r−1

+O

(
log

1
λ

)r−2

+ · · · +O

(
log

1
λ

)
+O�1�

]

= λ−1/βO

(
log

1
λ

)r−1

= O

[
λ−�b+1/2m�

(
log

1
λ

)r−1]
� ✷

Proof of Proposition 4.1. Since �·� ∼ �·�F and �·�0 ∼ �·�F0
, we only need

to show the injection from F with �·�F to F0 with �·�F0
is continuous and

dense. That the injection is continuous is obvious, because F has a stronger
norm. With the aid of the decomposition of F and F0, we see that the injection
is dense follows easily from the following two statements:

1. ⊗rHm
0 is dense in ⊗rH0

0.
2. If A1 is a dense subset in Hilbert space B1, A2 is a dense subset in Hilbert

space B2, and B1 and B2 are orthogonal to each other. Then A1 + A2 is
dense in B1 +B2.

With the fact that Hm
0 ��0�1�� is dense in H0

0��0�1��, the proofs of the two
statements are straightforward. ✷

Proof of Proposition 4.2. We can introduce the intermediate space 5Fb

with norm �·�Fb
between F0 with �·�F0

and F with �·�F. Since �·� ∼ �·�F and
�·�0 ∼ �·�F0

, we have 5b = 5Fb
and �·�b ∼ �·�Fb

. Now the proposition follows
from Proposition 2.3.1 in Lin (1998) and the discussion preceding it. ✷

Notation and conventions. By a constant C, we denote a generic finite
positive constant. It does not depend on the sample size n in any way, and it
does not depend on the unknown function being estimated. The same is true
for constants C1 and C2. Even successive appearances of such constants may
not denote the same number.
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A d-dimensional vector �x1� x2� � � � � xd� is also written as x, and dx =
dx1dx2 · · ·dxd when we write expressions like

∫
f�x�dx.

ai ∼ bi means the ratio of ai and bi is bounded away from zero and infinity,
that is, the ratio is between two positive constants not depending on i.

�·�1 ∼ �·�2 means that the two norms on the same Hilbert space are equiv-
alent, that is, the ratio of �f�1 and �f�2 is between two positive constants not
dependent on f.

For two Hilbert spaces A1 and A2, A1 = A2 means that the two spaces are
the same as sets and have equivalent norms.

A sequence fn� of estimators for f0 is said to achieve a (uniform) rate of
convergence rn� for some positive sequence rn� if

lim
a→∞ lim sup

n
sup

�f0�≤B

Pf0

( ∫
�fn − f0�2 > arn

)
= 0�

See Stone (1980, 1982).
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