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ROBUST FITTING OF THE BINOMIAL MODEL

By A. F. Ruckstuhl and A. H. Welsh

Zürich University of Applied Sciences and University of Southampton

We consider the problem of robust inference for the binomial�m�π�
model. The discreteness of the data and the fact that the parameter and
sample spaces are bounded mean that standard robustness theory gives
surprising results. For example, the maximum likelihood estimator (MLE)
is quite robust, it cannot be improved on form = 1 but can be form > 1. We
discuss four other classes of estimators:M-estimators , minimum disparity
estimators, optimal MGP estimators, and a new class of estimators which
we call E-estimators. We show that E-estimators have a non-standard
asymptotic theory which challenges the accepted relationships between ro-
bustness concepts and thereby provides new perspectives on these concepts.

1. Introduction. Suppose that we have n observations Y1� � � � �Yn which
are independent, take on values in the set �0�1� � � � �m� and have a distribu-
tion which is plausibly close to the binomial�m�π� distribution with probabil-
ity function

pπ�k� =
(
m

k

)
πk�1− π�m−k� k = 0� � � � �m�

where m is known and 0 < π < 1 is an unknown parameter. In this pa-
per, we study different estimators of π and their robustness properties under
departures from the binomial model.
The problem of robust estimation of π in the binomial model has received

little attention. Robust estimation in logistic regression has been considered
by Pregibon [14], Stefanski, Carroll and Ruppert [18], Copas [4], Künsch, Ste-
fanski and Carroll [10], Carroll and Pederson [2], Bianco and Yohai [1], Christ-
mann [3], and Markatou, Basu and Lindsay [12] but has features which make
it very different from the simple binomial problem. The literature on robust
estimation for general models for independent identically distributed discrete
data which is relevant to the binomial model treats M-estimators (Simp-
son et al. [17]), minimum disparity estimators (Simpson [16], Lindsay [11],
and Markatou et al. [12]), and optimal MGP estimators of Victoria-Feser and
Ronchetti [19] (i.e., an optimal generalized MLE with grouped data). The min-
imum disparity estimators are not first order robust; optimal MGP estimators
are first order robust but have not been applied to the binomial model.
We propose to study robust estimation for the binomial model for indepen-

dent identically distributed data in its own right rather than as an illustration
of a general methodology. General methodologies for robustness are typically
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derived for problems with unbounded sample and parameter spaces so the in-
tuition, implicit assumptions and results do not always successfully translate
to the binomial model. We will show that robust estimation for the binomial
model is an interesting problem with features which throw light on robust-
ness concepts. Our study of this simple case allows us to clarify the issues and
establish a basic framework for approaching problems which allow unequal
m and incorporate covariates.
We discuss maximum likelihood estimation (MLE) under the binomial

model in Section 2. We introduce a “gross error” contamination model (which
can give rise to overdispersion) and study the robustness properties of the
binomial MLE when this contamination model holds. Let fn�k� denote the
proportion of observations equal to k in the sample of size n so

fn�k� = n−1
n∑
i=1
I�Yi = k�� k = 0� � � � �m�

with I the indicator function. In Section 3, we consider the class of E-estima-
tors π̂ of π which minimize H�π�fn�, where

H�π�fn� =
m∑
k=0

ρ

(
fn�k�
pπ�k�

)
pπ�k�(1.1)

and

ρ�x� =

�log�c1� + 1�x− c1� if x < c1,
x log�x�� if c1 ≤ x ≤ c2,
�log�c2� + 1�x− c2� if x > c2.

When c1 = 0 and c2 → ∞, π̂ is the minimum relative entropy estimator which
is identical to the MLE for the binomial model. We are particularly interested
in the choice c2 = 1 which leads to attractive robust estimators. In Section 4,
we explore the relationship of E-estimators to M-estimators, minimum dis-
parity estimators, and optimal MGP estimators. The asymptotic properties
of E-estimators are presented in Section 5. We compute the influence func-
tion and show that the choice c1 < c2 = 1 improves on the robustness of the
available estimators under “gross error” contamination. Then we derive the
asymptotic distribution of E-estimators.

2. Maximum likelihood estimation and contamination. Suppose
first that we have a sample of n independent and identically distributed obser-
vations Y1� � � � �Yn which are generated by a binomial�m�π� model with true
parameter π =π∗. The log-likelihood is n−1∑n

i=1log�pπ�yi��=
∑m
k=0 log�pπ�k��

×fn�k� so the estimating equation is

0 = n−1
n∑
i=1
s�yi� π̂MLE� =

m∑
k=0

s�k� π̂MLE�fn�k��(2.1)

where

sπ�k� = s�k�π� = �k−mπ�/�π�1− π��
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is the score function for the binomial model. The MLE is π̂MLE = ȳ =
1/m

∑m
k=0 kfn�k�, and the Fisher information at the binomial�m�π� model is

I�π� =∑m
k=0 sπ�k�2pπ�k� =m/π�1− π�.

Next, suppose the observations Y1� � � � �Yn do not follow a binomial model
exactly. The usual approach in robustness is to assume that the underlying
distribution has a probability function f�k� which is close to a binomial dis-
tribution in the sense that for some 0 < π∗ < 1,

f�k� = �1− γ�pπ∗�k� + γ q�k�� k = 0� � � � �m�(2.2)

where q is an arbitrary probability function on �0� � � � �m� and 0 ≤ γ ≤ 1. Con-
tamination models like (2.2) can give rise to overdispersion: if q is conditionally
binomial�m�u� given u, where u has a beta�π∗�1/τ2 − 1�� �1− π∗��1/τ2 − 1��
distribution, the mean and variance under f are

Ef�Y� =mπ∗�

Varf�Y� = �1− γ + γ�m− 1�τ2�mπ∗�1− π∗��
which is similar to the beta-binomial model for overdispersion (see McCullagh
and Nelder [13], Section 4.5 and page 140). From a robustness point of view,
overdispersion results from a special form of contamination in which there is
no bias and only an effect on the variance. Model (2.2) allows for more general
forms of contamination (inflation of arbitrary classes, in the tails or otherwise)
so we cannot treat all contaminated binomial data by the simple expedient of
incorporating an overdispersion parameter into the model. We will focus on
the contamination model (2.2) but note that other types of “contamination”
not covered by model (2.2) (such as censoring leading to an unobserved zero
class) can occur.
An important point is that there can be no contamination (and hence no

overdispersion) when m = 1. In this case q must be a binary distribution so
the linear combination f of pπ∗ and q is also binary. This also means that all
reasonable estimators are identical to the MLE when m = 1.
One way to study the stability of an estimator under contamination is to

determine the breakdown point ([6], [8]). The MLE breaks down when it is at
the edge of the parameter space (i.e. equals zero or one) and this occurs only
when all the observations equal 0 orm. It follows that the MLE has breakdown
point bounded by 1 − max�fn�0�� fn�m��. For large m, and π∗ ≈ 1/2, the
bound tends to one. While at first impressive, this high breakdown property
can be quite misleading. In particular, if the data are actually generated by an
equal mixture of two binomial distributions, the MLE estimates the average
�π1+π2�/2 which can be far from a sensible answer even though the estimator
has not broken down.
Under the contamination model (2.2), the MLE is estimating

πo =
1
m

m∑
k=0

kf�k� = �1− γ�π∗ + γ
µq

m
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so is a biased estimator of π∗ whenever γ > 0 and µq �= mπ∗. For general
estimators the bias is nonlinear, but when q�k� in the contamination model
(2.2) is chosen to be the pointmass 1 at any x, we can approximate the bias
by the influence function of the estimator. The influence function of the MLE
for the binomial model at x is

IF�x� π̂MLE� pπ∗� = I�π∗�−1sπ∗�x� =
x

m
− π∗� x = 0�1� � � � �m�(2.3)

The gross error sensitivity is

max
x

∣∣IF�x� π̂MLE� pπ∗�
∣∣ = max�π∗�1− π∗� <∞

(see [8], Section 2.1). Thus the MLE has bounded influence and can be re-
garded as a robust estimator. However, simply having bounded influence (in
this case, because the sample space is bounded) does not imply that the es-
timator is a good robust estimator or cannot be improved on. The robustness
problem for the binomial model is one of trying to find a robust estimator
which improves on the MLE in the sense, say, of having smaller bias under
contamination or smaller gross error sensitivity.

3. E-estimators. A central idea in the development of methodology to
handle gross-error contamination is to modify the log-likelihood to reduce the
effect of observations in the tails of the distributions. However, we are con-
cerned with the effects of distributional contamination which is not restricted
to the tails and which may tend to deflate as well as inflate various classes in
arbitrary ways. This suggests that it is more sensible to work on the frequency
scale than on the scale of the individual observations. The most natural way
to decide which classes to control is through relating the relative frequencies
to the probability function of the assumed binomial model, an insight which
leads us toward minimum distance estimation on the relative frequency scale.
The choice of divergence or disparity to work from is initially rather arbi-

trary though ultimately is confirmed by the properties and performance of the
estimator. It makes sense to work from a disparity which produces the MLE
when the binomial model holds. We will work with the likelihood disparity
H�π�fn�, where

H�π�fn� =
m∑
k=0

ρ

(
fn�k�
pπ�k�

)
pπ�k��

with ρ�x� = x log�x�. (Note that the likelihood disparity is the relative entropy
of fn with respect to pπ and is one of the forms of Kullback-Leibler divergence.)
The likelihood disparity is minimized by the MLE π̂MLE for the binomial model
and hence bears the same relationship to the log-likelihood as least squares
to maximum likelihood in Gaussian models. Just as Huber [9] replaced the
quadratic function away from the turning point by a linear function, we replace
x log�x� by a linear function away from one. This has the effect of reducing the
rate at which ρ�x� tends to infinity and reduces the effect of classes for which
fn�k�/pπ�k� is large. We can also act on classes for which fn�k�/pπ�k� is small
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by preventing x log�x� from tending to zero as x decreases to zero. That is, we
also replace x log�x� by a linear function when x is smaller than one. Imposing
the requirement that the modified ρ has a continuous derivative, we are led
to the objective function (1.1).
Since fn → f almost surely and H�π�f� is continuous at f, the objective

function H�π�fn� is estimating H�π�f�. The precise shape of H�π�f� de-
pends on both f and the values of c1 and c2. When c2 < ∞, H is a bounded
function of π but otherwise is unbounded at zero and/or one. The objective
function H is also generally nonconvex in π and, as we will show below, for
c1 > 0 and/or c2 <∞ not smooth in the sense that the second derivative does
not exist for all π.
When c1 = 0 and c2 = ∞, the MLE can be obtained explicitly so H always

has a unique minimum. However H can have multiple local minima when
0 ≤ c1 < 1 and/or c2 < ∞ and γ �= 0 in (2.2). In particular, if c1 = 0 and
c2 < ∞, γ = 0�5 and q is a different binomial distribution from pπ∗ , then H
has two minima, showing that the “breakdown point” of the estimator with
c2 <∞ is at most 1/2. Multiple minima suggest that an underlying binomial
model is too simple for the observed data. We will focus on cases in which the
contamination q is such that H�π�f� has a unique global minimum. That is,

πo = πo�f� = argmin
π

H�π�f�(3.1)

is a unique, interior point of 0 ≤ π ≤ 1 and H�π�f� is convex in a neighbor-
hood of πo. Since we have a bounded univariate parameter π, it is simple to
plot H�π�f� and we can obtain the minimum by direct searching. Clearly π̂
is estimating πo which identifies the binomial distribution which best approx-
imates f when closeness is measured by H. The bias of the estimator π̂ is
given by πo�f� − π∗ = πo�f� − πo�pπ∗�. The bias is zero when f = pπ∗ which
occurs under model (2.2) when γ = 0. Generally, we have a nonzero bias so
good procedures will be ones for which in the first instance πo is close to π∗
and in the second produce estimators with small variability.
With the weight function

w�x� = ρ′�x� − ρ�x�/x = I�c1 ≤ x ≤ c2� +
c1
x
I�x < c1� +

c2
x
I�x > c2��(3.2)

the estimating equation for π is

0 = η�π̂� fn��(3.3)

where

η�π�fn� = −
m∑
k=0

w

(
fn�k�
pπ�k�

)
sπ�k�fn�k��

Observed frequencies which are greater than c2pπ�k� are downweighted while
observed frequencies which are smaller than c1pπ�k� are given additional
weight. This is natural on the frequency scale and represents exactly what
we intuitively require in our weight function. For m = 1, the E-estimator is
identical to the MLE.
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Note that the estimating function η�π�fn� is continuous in π but differen-
tiable only at the values of π for which fn�k�

pπ�k� �= c1 or c2 for any k = 0�1 � � � �m.
That is, the estimating function is differentiable except possibly at a finite set
of points.

4. Relationship to other approaches.

4.1. M-estimation. The earliest approach to robustness for binomial data
was presented by Hampel [7], page 95. He noted that the influence function
of the MLE is bounded but argued that better estimators should be available
for moderate or large m. In this case, working on the observation scale, he
applied his Lemma 5 to obtain theM-estimator which satisfies

0 =
n∑
i=1
ψb

(
Yi −mπ√
π�1− π�/m − a�π�

)

=
m∑
k=0

ψb

(
k−mπ√
π�1− π�/m − a�π�

)
fn�k��

(4.1)

where ψb�x� = xmin�1� b/�x�� is Huber’s ψ function, b is constant for all π
and the scalar a�π� is chosen to satisfy the consistency condition

0 =
m∑
k=0

ψb

(
k−mπ√
π�1− π�/m − a�π�

)
pπ�k�(4.2)

so that theM-estimator is Fisher-consistent. It makes sense to use a smooth
ψ-function such as the scaled logistic function in place of Huber’s ψ-function
in (4.1) (see [17]).
The influence function of the M estimator defined in (4.1) for any reasonable

ψ-function is

IF�x� π̂ψ�pπ∗� = c−1�π∗�ψ
(

x−mπ∗√
π∗�1− π∗�/m

− a�π∗�
)

with

c�π∗� =
m∑
k=0

ψ

(
k−mπ∗√
π∗�1− π∗�/m

− a�π∗�
)
s�k� π∗�pπ∗�k��

This function is shown for Huber’s ψ function in Figure 1. The gross error
sensitivity is c−1�π∗� supx �ψ�x�� which depends on π∗. Note that in contrast
to the E-estimator (and the estimates in Section 4.2–4.3), theM-estimator is
linear in fn.
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Fig. 1. Influence functions for maximum likelihood estimator �MLE�� Hellinger distance esti-
mator �HDE�� estimator with negative exponential RAF �NEE�� M-estimator and optimal MGP-
estimator using Huber’s ψ-function with b = 1 �ME� and with b = 0�252 �oMGP�� respectively,
and E-estimator with c1 = 0 and c2 = 1 �EE� at π∗ = 0�4 and m = 8.

4.2. Minimum disparity and weighted likelihood estimators. A large class
of estimators including the MLE, the minimum power divergence estima-
tors ([5] and [15]), the minimum disparity estimators (Lindsay [11]) and the
weighted likelihood equations estimators (Markatou et al. [12]) can be written
as the solution of

0 =
m∑
k=1

w

{
fn�k�
pπ�k�

}
sπ�k�fn�k��(4.3)

(Our notation is slightly different from that of Markatou et al. [12] because
they use as the argument of w the quantity �fn�k�/pπ�k� − 1� instead of
fn�k�/pπ�k�.)
Markatou et al. [12] apply the results of Lindsay [11] to show that the min-

imum disparity/weighted likelihood equations estimators are asymptotically
equivalent to the MLE when the binomial model holds. This means that these
estimators have the same influence function and hence, in the sense of influ-
ence, the same robustness properties. Lindsay [11] and Markatou et al. [12]
explore the next term in the von Mises expansion of the estimator. They show
that large negative values of w′′�0� lead to second order robustness and that if
w�x� ∼ x−0�5 as x→ ∞, the estimator has breakdown point 0.5 (see discussion
in Section 2).
Equation (4.3) is of the same form as the estimating equation (3.3) for

the E-estimator but with a different choice of weight function. Markatou
et al. [12] concentrated on the Hellinger distance estimator which has
w�x� = �2x1/2 − 1�/x and the negative exponential estimator with w�x� =
�3 − �1 + x� exp�1 − x��/x, which should be compared to (3.2). The negative
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Fig. 2. Weight functions w�x� for maximum likelihood estimator �MLE�� Hellinger distance es-
timator �HDE�� estimator with negative exponential RAF �NEE�� and E-estimator with c1 = 0�2
and c2 = 1 �EE�.M- and MGP-estimators cannot be represented by a graph w�x� versus x.

exponential estimator produces a weight function which is similar in spirit to
that of the E-estimator but, crucially, is much smoother and decreases more
slowly for large x (see Figure 2). The weight function for the E-estimator is
not smooth at x = 1 so the theory of Markatou et al. [12] does not apply.

4.3. Generalized maximum likelihood estimator for grouped data. Victoria-
Feser and Ronchetti [19] considered robust estimation of the parameters of a
continuous model from grouped data. The methodology can be viewed as a
general approach to robustness for models for discrete data. For simplicity, we
describe the methodology in the context of the binomial problem.
Starting from the class of minimum power divergence estimators, Victoria-

Feser and Ronchetti [19] introduced the class of MGP estimators (generalized
MLE for grouped data) which satisfy

0 =
m∑
k=0

{
fn�k�
pπ�k�

}λ+1
�ψπ�k�pπ�k�λ�pπ�k� =

m∑
k=0

ψπ�k�fn�k�λ+1�(4.4)

where −∞ < λ <∞ is fixed. Clearly, if we let w�k� = ψπ�k�fn�k�λ/sπ�k�, the
estimator is of the same form as the minimum disparity/weighted likelihood
equations estimators except that w�k� is no longer a function of fn�k�/pπ�k�
alone.
Victoria-Feser and Ronchetti [19] obtained the influence function of the

MGP estimators and showed that the optimal MGP estimator (the estima-
tor with smallest asymptotic variance subject to a bound on the gross error
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sensitivity) has

ψπ�k� =
(

1
pπ�k�

)λ
ψb�G�π��sπ�k� − a�π����

where ψb�x� = xmin�1� b/�x�� is the Huber ψ-function, with G�π� and a�π�
determined by the Fisher consistency condition

m∑
k=0

ψb�G�π��sπ�k� − a�π���pπ�k� = 0

and the normalization condition
m∑
k=0

ψb�G�π��sπ�k� − a�π���pπ�k�sπ�k� = 1�

The effect of the normalization condition is to make the influence function of
the optimal MGP equal to the ψb-function and consequently the gross error
sensitivity independent of the parameter π∗. This means also that the influ-
ence function of the optimal MGP estimator does not depend on λ and hence
the optimal MGP estimators are asymptotically identical to the B-optimal es-
timator ([8], pages 243–244).
Victoria-Feser and Ronchetti [19] showed that the optimal MGP estimators

have different small sample robustness properties with the optimally robust
Hellinger distance estimator (λ = −0�5) performing better than the optimally
robust MLE (λ = 0) in contaminated finite samples.

5. Some properties of the E-estimator. We derive the influence func-
tion and discuss the robustness properties of E-estimators in Subsection 5.1.
We then study the asymptotic distribution of the E-estimator in Subsection
5.2 and show that, under the model, it is, in general, non-Gaussian.

5.1. Influence function. The asymptotic bias of π̂ = πo�fn� under the
model f given by (2.2) is πo�f� − πo�pπ∗� = πo�f� − π∗. The “change-of-bias”
function can be obtained by dividing by γ and then letting γ → 0. That is

CoB�pπ∗� q� = lim
γ→0

πo�f� − π∗
γ

�

If c1 < c2 = 1, then for q�k� �= pπ∗�k� and γ sufficiently small f�k�/pπo�k� �=
c1 or c2 so the weight function w is differentiable with respect to γ. If c2 > 1,
then it is possible that f�k�/pπo�k� = c1 or c2; in this case choose a smaller
γ > 0 so that w is differentiable with respect to γ. Then differentiation of the
estimating equation

0 = −
m∑
k=0

w

(
f�k�
pπo�k�

)
sπo�k�f�k�
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with respect to γ yields

0 = −
m∑
k=0

w

(
f�k�
pπo�k�

)
sπo�k��q�k� − pπ∗�k�� −

m∑
k=0

w

(
f�k�
pπo�k�

)
s′πo�k�π ′

of�k�

−
m∑
k=0

w′
(
f�k�
pπo�k�

){
q�k� − pπ∗�k�

pπo�k�
− f�k�p′

πo
�k�π ′

o

pπo�k�2
}
sπo�k�f�k��

If c1 < 1 < c2, the functions w and w′ are continuous at 1 and satisfy w�1� = 1
and w′�1� = 0 respectively, so

CoB�pπ∗� q� =
m∑
k=0

IF�k� π̂MLE� pπ∗� q�k��

where IF is given by (2.3), is linear in q and the influence function at x under
the model (obtained by replacing q by the point mass at x) is also given by
(2.3), confirming that π̂ is fully efficient when c2 > 1 and the binomial model
holds. If c2 = 1, w′�1−� = 0 and w′�1+� = 1 so

CoB�pπ∗ q� =
∑m
k=0 sπ∗�k� �q�k� − pπ∗�k��I�q�k� ≤ pπ∗�k��
m

π∗�1−π∗� −
∑m
k=0 sπ∗�k�2pπ∗�k�I�q�k� > pπ∗�k��

(5.1)

which is nonlinear in q. Taking the supremum over all q, Künsch pointed out
that we obtain

sup
q

�CoB�pπ∗ q�� =
π∗�1− π∗�

min��mπ∗� −mπ∗� mπ∗ − �mπ∗��
�

where �x� is the largest integer strictly smaller than x and �x� is the smallest
integer strictly larger than x. The supremum is achieved by putting q�k� = 0
for k = �mπ∗� or k = �mπ∗� respectively and q�k� > p∗�k� for all other values
of k. This is (partial) truncation contamination which is the antithesis of point
contamination in the sense that an E-estimator with c1 = 1 and c2 > 1 rather
than with c1 = 0 and c2 = 1 should be used for this kind of contamination (see
discussion below).
If we consider point contamination at x and explore its effect, we obtain

IF�x� π̂�pπ∗� =
sπ∗�x�pπ∗�x�

m
π∗�1−π∗� − sπ∗�x�2pπ∗�x�

= π∗�1− π∗��x−mπ∗�pπ∗�x�
mπ∗�1− π∗� − �x−mπ∗�2pπ∗�x�

�

(5.2)

We still refer to (5.2) as the influence function although it does not satisfy
the relation supq �CoB�pπ∗� q�� = supx �IF�x� π̂�pπ∗�� which holds in standard
robustness theory.
The influence functions of the MLE, M-estimator with b = 1, and the E-

estimator with c1 = 0 and c2 = 1 at π = 0�4 and m = 8 are plotted in Figure
1 for comparison. If we plot the influence function at the binomial model as a
function of x for different choices of m, π, γ, c1 and c2, we see that the choice
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of c1 has no effect on the influence function and that c2 = 1 produces a more
robust estimator than any other choice. But note that the point contamination
is “the most favourable” contamination for anE-estimator with c1 < 1 and c2 =
1. In the worst case, which is identical to “the most favourable” contamination
for an E-estimator with c1 = 1 and c2 > 1, the absolute “change-of-bias” is
supq �CoB�pπ∗ q�� = 1�2.
The expression (5.2) is difficult to handle when computing the gross error

sensitivity (which measures the greatest effect of pointmass contamination).
An approximation to (5.2) can be achieved by replacing pπ∗�x� by the stan-
dard normal density function φ at �x−mπ∗�/

√
mπ∗�1− π∗�. Maximising the

numerator and minimising the denominator separately in the approximated
influence function results in the approximate upper bound:

�IFapprox�x� π̂�pπ∗�� ≤
φ�1�

1− 2φ�√2�

√
π∗�1− π∗�

m
= 0�343

√
π∗�1− π∗�

m
�

For the example used in Figure 1 we obtain a value of 0.06 which is in close
agreement with the maximum of the influence function of the E-estimator
plotted there. This result can be compared to the lower bound of the gross
error sensitivity of the optimal MGP estimators given in Proposition 4 of [19].
Calculating the lower bound for the binomial model we obtain

�IF�x� π̂oMGP�pπ∗�� ≥
{

m∑
k=0

�sπ∗�k��pπ∗�k�
}−1

≥
√
π∗�1− π∗�

m

using Cauchy-Schwarz inequality. Hence the lower bound of the gross error
sensitivity of the optimal MGP estimators is larger by a factor of almost 3 than
the approximate upper bound of the absolute value of the influence function
of E-estimators with c2 = 1.
The lack of effect of c1 in the influence function (5.2) is due to the fact that,

under point contamination, the ratio f�k�/pπ�k� is equal to 1−γ except when
k = x where we get 1−γ+γ/pπ�k� which is larger than one. This means that
the lower part of the weight function either has no effect or applies to nearly
all the terms according to whether 1− γ ≥ c1 or 1− γ < c1. Thus we might be
inclined to take c1 equal to or close to 0.
In other contamination models it makes sense to choose c1 close to 1

so that cells with too small observed frequencies are “up-weighted” (cf. Fig-
ure 2). Suppose we observe a binomial�m�π∗� distribution truncated at zero.
Then the relative frequency distribution will converge almost surely to

fo�k� =
(
pπ∗�k� − δ0�k�pπ∗�k�

)
/�1− pπ∗�0��

provided that pπ∗�0� < 1 and the E-estimator will estimate the parameter
πo which minimizes H�π�fo�. If there is no local maximum between π∗ and
πo, then we can study the slope of the tangent of H�π�fo� at π = π∗ to
show on which side of π∗ the parameter πo lies. Since fo�0�/pπ∗�0� = 0 and
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fo�k�/pπ∗�k� > 1 for any k > 0, for 0 ≤ c1 < 1 and c2 = 1 we can write the
slope as

H′�π∗� fo� =
∂

∂π
H�π�fo�

∣∣∣∣
π=π∗

= �c1 − 1�m �1− π∗�m−1�

Since H′�π∗� fo� is negative, the parameter πo is larger than π∗. That is,
using the E-estimator with 0 ≤ c1 < 1 and c2 = 1 for the binomial�m�π∗�
distribution truncated at zero, results in an estimate which is larger than
it should be. If the linearisation is a good approximation to H�π�fo� for π
between π∗ and πo, then a choice of c1 close to 1 results in a smaller bias than
a choice of c1 close to zero and we can consider choosing c1 = 1 and c2 > 1. This
is incompatible with choosing c1 < 1 and c2 = 1 and again shows the difficulty
of trying to deal with two different types of contamination simultaneously. The
analysis also shows that the MLE (c1 = 0, c2 = ∞) is less robust to truncation
and Figure 2 shows that the Hellinger distance estimator is not robust to
truncation (see also Section 7.2 in [11]).

5.2. Asymptotic distribution. We first establish that the E-estimator is
consistent.

Lemma 1. Suppose that 0 ≤ c1 < 1 and c2 ≥ 1, πo is the unique minimum
of H�π�f� in �0�1� and that πo is an interior point of �0�1�. Then π̂ → πo
almost surely.

The proof of this lemma is given in the Appendix.
The optimal MGP estimators minimize (the trace of) their asymptotic vari-

ances subject to a bound on the gross error sensitivity which, however, must
be larger than a lower limit (see [19]). We have argued in Subsection 5.1
that the E-estimator with c2 = 1 has a lower gross error sensitivity than
the lowest value possible for optimal MGP estimators. This indicates that the
E-estimator has an unusual asymptotic distribution.

Theorem 1. Suppose that 0 ≤ c1 < 1 and c2 ≥ 1, πo is the unique mini-
mum of H�π�f� in �0�1�, that πo is an interior point of �0�1� and that H is
convex in a neighborhood of πo. Let

v�µ� =
(
I

(
c1 ≤

f�0�
pµ�0�

≤ c2
)
sµ�0�� � � � � I

(
c1 ≤

f�m�
pµ�m� ≤ c2

)
sµ�m�

)T

and . = diag�f� − ffT with f = �f�0�� � � � � f�m��T. Then, for t �= 0,

Pr
(
n1/2

π̂ − πo
Vt

≤ t
)
→ 3�t�
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with

Vt =
 limµ↓πoV�µ� = V�πo+�� if t > 0,

lim
µ↑πo

V�µ� = V�πo−�� if t < 0�

where

V−1�µ� =
m∑
k=0

{
w′
(
f�k�
pµ�k�

)
f�k�
pπo�k�

sπo�k�2 −w
(
f�k�
pπo�k�

)
s′πo�k�

}
f�k�/σ�µ�

with σ2�µ� = v�µ�T.v�µ�. If in addition f�k�/pπo�k� �= c2 and, if c1 > 0,
f�k�/pπo�k� �= c1 for any k = 0�1� � � � �m, then

Pr
(
n1/2

π̂ − πo
V�πo�

≤ 0
)
→ 1

2
= 3�0��(5.3)

The proof of this theorem is also given in the Appendix.
The functions V�πo+� and V�πo−� for the E-estimator with c1 = 0 and

c2 = 1 are visualized in Figure 3 in case of a binomial model with m = 8.
They can be compared with V�πo� of the MLE which is equivalent to the
asymptotic standard deviation of the MLE. Before discussing the implications
of Theorem 1, we state an immediate but useful corollary.

Fig. 3. Functions V�πo+� and V�πo−� of the E-estimator with c1 = 0 and c2 = 1 (EE) in case
of a binomial model with m = 8. Superimposed is V�π� of the MLE, HDE, NEE and the oMGP-
estimator witb b = 0�252.
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Corollary 1. Suppose that 0 ≤ c1 < 1 and c2 ≥ 1, πo is the unique
minimum of H�π�f� in �0�1�, that πo is an interior point of �0�1� and that
H is convex in a neighborhood of πo. If f�k�/pπo�k� �= c2 and, if c1 > 0,
f�k�/pπo�k� �= c1 for any k = 0�1� � � � �m, then

Pr
(
n1/2

π̂ − πo
V�πo�

≤ t
)
→ 3�t��

The interpretation and implications of Theorem 1 and Corollary 1 are now
given in the following remarks.

Remark 1. If there is no contamination (γ = 0), we have

f�k�/pπo�k� = pπ∗�k�/pπ∗�k� = 1(5.4)

for all k. This means that:

1. When c2 > 1, we have that c1 < f�k�/pπo�k� = 1 < c2 so that the weight
function w is differentiable at f�k�/pπo�k� and Corollary 1 establishes the
central limit theorem. In this case, π̂ is asymptotically equivalent to the
MLE and hence fully efficient at the binomial model.

2. When c2 = 1, the limiting distribution is not Gaussian but can be approxi-
mated by the two Gaussian distributions given in the theorem. We cannot
apply (5.3) because the proof does not apply when (5.4) holds. The reason
for this is that in establishing (B.2), we need to expand w�fn/pπ∗� about
fn = f, a step which is impossible in this case because it involves expansion
at the point 1 = c2 at which w′ does not exist.

Remark 2. In the case c2 = 1, the influence function (5.2) (which is com-
puted under the binomial model) does not follow the usual relationship to the
asymptotic variance under the binomial model because the latter does not ex-
ist. However, the influence function retains a clear interpretation in terms of
the bias and it remains desirable to use an estimator with low gross error
sensitivity such as the E-estimator with c2 = 1. With this goal in mind, E-
estimators with c1 < 1 and c2 = 1 or with c1 = 1 and c2 > 1 are of interest
from a robustness point of view.

Remark 3. If there is contamination (γ > 0), then provided f�k�/pπo�k� �=
c2 and, if c1 > 0, f�k�/pπo�k� �= c1 for any k = 0�1� � � � �m, the corollary
establishes the central limit theorem. Otherwise, the limiting distribution is
not Gaussian but can be approximated by the two Gaussian distributions given
in the theorem.

Remark 4. Notwithstanding the possible lack of a Gaussian approxima-
tion to the asymptotic distribution under the model, the theorem always pro-
vides a useful basis for approximate inference. If we let V̂�πo+� denote an
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estimator of V�πo+� and V̂�πo−� denote an estimator of V�πo−�, then an ap-
proximate 100�1− α�% central (but not symmetric) confidence interval for πo
is given by[

π̂ − n−1/2V̂�πo+�1/23−1�1− α/2�� π̂ + n−1/2V̂�πo−�1/23−1�1− α/2�
]
�

On the other hand, it is simpler to assume that the data are contaminated (so
the binomial model does not hold) and that f�k�/pπo�k� �= c2 and, if c1 > 0,
f�k�/pπo�k� �= c1 for any k = 0�1� � � � �m because then we obtain the usual
asymptotic Gaussian confidence intervals.

Remark 5. The confidence interval in Remark 4 is not necessarily con-
tained within the parameter space. An interval with this property can be
obtained by setting a confidence interval on the logistic scale and back-trans-
forming the endpoints.

Remark 6. One can obtain a Gaussian limit under the binomial model
when, for example, c2 = 1 is replaced by c2�n� = 1 + n−α a for a > 0 and
0 ≤ α < 0�5. Intuitively, because the relative frequencies fn converge to f at
n−1/2, this choice of c2�n� enables quantities like fn/pπ∗ to converge to one
faster than c2�n� does and so permits us to make the crucial expansions.

Finite-sample calculations show that, when fn is a finite-sample realisation
of a binomial distribution and c1 < c2 = 1, then E�η�π̂� fn�� �= 0. It follows
from (3.3) that the E-estimator is biased under the true model in finite sam-
ples. This unexpected feature of the E-estimator can be fixed, at least to first
order, by replacing c2 = 1 by c2�n� = 1+ n−α a for a > 0 and 0 ≤ α < 1. A de-
tailed discussion about a proper choice of c2�n� will be pursued in subsequent
work.

6. Discussion. The issues in robustness for the binomial model are differ-
ent from those in other models because the binomial model is discrete and has
bounded parameter and sample spaces. The bounded parameter and sample
space impact on the robustness properties of all reasonable estimators makes
the MLE robust. While no improvement on the MLE is possible when m = 1,
better estimators can be constructed when m > 1.
“Huberizing” a criterion function is a natural and powerful way to con-

struct robust estimators. We constructed E-estimators by “Huberizing” the
relative entropy. These estimators depend on tuning constants 0 ≤ c1 ≤ 1
and 1 ≤ c2 ≤ ∞. The choice c2 = 1 gives improved first order robustness
against “gross error” contamination and the choice c1 = 1 gives improved ro-
bustness against truncation. Since we must have c1 < c2, we cannot treat
both types of contamination simultaneously. Under the binomial model the
asymptotic distribution of the E-estimator is Gaussian for c1 < 1 < c2, and
non-Gaussian for c1 < c2 = 1. Consequently, for c2 = 1 the asymptotic vari-
ance under the binomial model does not exist, so cannot equal the expected
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value of the squared influence function. Under “gross error” contamination for
c1 < c2 = 1 the asymptotic distribution of the E-estimator is Gaussian and
hence standard Gaussian inference can be made. Formally, if fn�k�/pπ̂�k� �= 1
for all k = 0� � � � �m, we can make Gaussian inference while if fn�k�/pπ̂�k� = 1
for some k = 0� � � � �m, we can apply Theorem 1. This suggests that, in con-
trast with formal robustness theory, inference is simpler in practice under the
contamination model than under the binomial model.

APPENDIX

A. Proof of Lemma 1. Since πo is an interior point of �0�1�, there is a
δ > 0 such that πo is an interior point of Aδ = �δ�1− δ�. Notice that standard
arguments can be used to show that for n sufficiently large, π̂ ∈ Aδ. Then

sup
π∈Aδ

�H�π�fn� −H�π�f�� → 0 almost surely.

which implies that H�π̂� f� → H�πo� f� almost surely and the result ob-
tains. ✷

B. Proof of Theorem 1. AsH�π�f� is convex in a neighborhood of πo,
the estimating function η�π�f� is non-decreasing as a function of π in this
neighborhood. Then

n1/2
π̂ − πo
V

≤ t⇔ η�πn�t�� fn� ≥ 0�

where πn�t� = πo + n−1/2Vt.
Let Zn�k� = n1/2�fn�k� − f�k�� and note that we can write

Zn = �Zn�0�� � � � �Zn�m��T = n−1/2
n∑
i=1

�Ii − f��

where Ii = �I�Yi = 0�� � � � � I�Yi = m��T are independent multinomial�1� f�
random variables. It follows immediately from the central limit theorem that
Zn → Z ∼N�0� .�.
We can write

n1/2η�πn�t�� fn� = −
m∑
k=0

w

(
fn�k�
pπn�t��k�

)
sπn�t��k�

{
Zn�k� + n1/2f�k�

}
= −

m∑
k=0

w

(
fn�k�
pπn�t��k�

)
sπn�t��k�Zn�k�(B.1)

−n1/2
m∑
k=0

w

(
fn�k�
pπn�t��k�

)
sπn�t��k�f�k��

Suppose that f�k�
pπo �k�

= c2 and, if c1 > 0, f�k�
pπo �k�

= c1. Then
f�k�

pπn�t��k�
�= c1� c2

because t �= 0 and the derivative of w exists at f�k�
pπn�t��k�

. On the other hand, if
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f�k�
pπo �k�

�= c2 and, if c1 > 0, f�k�
pπo �k�

�= c1, then there is a neighborhood of f�k�
pπo �k�

which excludes c1� c2 and for n sufficiently large, with probability tending to
one, f�k�

pπn�t��k�
is in this neighborhood so the derivative of w exists at f�k�

pπn�t��k�
. In

fact, the second derivative also exists at this point. Thus we can expand w
aboutfn = f to obtain

n1/2η�πn�t�� fn� = −
m∑
k=0

w

(
f�k�

pπn�t��k�

)
sπn�t��k�Zn�k� + n1/2η�πn�t�� f�

−
m∑
k=0

w′
(

f�k�
pπn�t��k�

)
f�k�

pπn�t��k�
sπn�t��k�Zn�k� + op�1��

Next, applying w′�x�x = −w�x� + I�c1 ≤ x ≤ c2�, we obtain

n1/2η�πn�t�� fn� = −
m∑
k=0

I

(
c1 ≤

f�k�
pπn�t��k�

≤ c2
)
sπn�t��k�Zn�k�

+ n1/2η�πn�t�� f� + op�1��
Set

n1/2ψ�πn�t��Zn� = −
m∑
k=0

I

(
c1 ≤

f�k�
pπn�t��k�

≤ c2
)
sπn�t��k�Zn�k�

= −n−1/2
n∑
i=1
v�πn�t��T�Ii − f�

so that

n1/2η�πn�t�� fn� = n1/2ψ�πn�t��Zn� + n1/2η�πn�t�� f� + op�1��(B.2)

Now suppose that t > 0. Then

Pr�n1/2η�πn�t�� fn� ≥ 0� −3�t�
= 1− Pr�η�πn�t�� fn� ≤ 0� −3�t�

= 3

(
−n1/2η�πn�t�� f�

σ�πo+�
)
− Pr�η�πn�t�� fn� ≤ 0�

+3
(
n1/2

η�πn�t�� f�
σ�πo+�

)
−3�t��

Applying (B.2), we have therefore that∣∣Pr�η�πn�t�� fn� ≥ 0� −3�t�∣∣
≤ sup

x

∣∣∣3�x� − Pr
{
n1/2ψ�πn�t��Zn�/σ�πo+� ≤ x} ∣∣∣(B.3)

+
∣∣∣∣3(n1/2η�πn�t�� f�σ�πo+�

)
−3�t�

∣∣∣∣ �
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Now

Var

(
n−1/2

n∑
i=1
v�πn�t��T�Ii − f�

)
= v�πn�t��T.v�πn�t�� → σ�πo+�2

and, by Minkowski’s inequality,

E
[∣∣v�πn�t��T�Ii − f�∣∣3]

≤
[
m∑
k=0

{∣∣sπn�t��k�∣∣3f�k��1− f�k����1− f�k��2 + f�k�2�}1/3
]3
�

We can apply the Berry-Esseen theorem to show that

sup
x

�3�x� −Pr�n1/2ψ�πn�t��Zn�/σ�πo+� ≤ x�� → 0�

The same argument applies when t < 0 with σ�πo+� replaced by σ�πo−�.
Next, write

n1/2η�πn�t�� f� = n1/2�η�πn�t�� f� − η�πo� f��

= −n1/2
m∑
k=0

{
w

(
f�k�

pπn�t��k�

)
−w

(
f�k�
pπo�k�

)}
sπn�t��k�f�k�

−n1/2
m∑
k=0

w

(
f�k�
pπo�k�

)
�sπn�t��k� − sπo�k��f�k��

The function sπ�k� is differentiable so the second term converges to

−tV
m∑
k=0

w

(
f�k�
pπo�k�

)
s′πo�k�f�k��

The first term can be written as

−tV
m∑
k=0

w
(

f�k�
pπn�t��k�

)
−w

(
f�k�
pπo �k�

)
f�k�

pπn�t��k�
− f�k�

pπo �k�




f�k�
pπn�t��k�

− f�k�
pπo �k�

n−1/2tV

 sπn�t��k�f�k�

which converges to
tV

m∑
k=0

w′
(

f�k�
pπo+�k�

)
f�k�
pπo�k�

sπo�k�2f�k�� when t > 0 and

tV
m∑
k=0

w′
(

f�k�
pπo−�k�

)
f�k�
pπo�k�

sπo�k�2f�k�� when t < 0.

In order that the second term in (B.4) converges to zero, V must assume the
form stated in the theorem.
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When t = 0, we have πn�t� = πo so (B.2) becomes n1/2η�πo� fn� = n1/2

ψ�πo�Zn� + op�1�, because η�πo� f� = 0 by definition of πo. Provided that
f�k�/pπo�k� �= c1� c2 for any k, it follows that

Pr�η�πo� fn� ≥ 0� ≈ Pr�n1/2ψ�πo�Zn�/σ�πo� ≥ 0� → 3�0�
which proves the theorem. ✷
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