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SELF ANNIHILATING BRANCHING PROCESSES!

By K. BRUCE ERICKSON ,
Stanford University

In this paper criticality-limit theorems are proved for a two-type
branching process in which cancellation of particles of opposite type occurs
after reproduction.

1 Introduction. In this paper we derive the criticality-limit behavior of a
stochastic growth process whose probabilistic description is the same as for an
ordinary two-type Galton-Watson process with this difference: immediately after
reproduction a one-to-one annihilation occurs between offspring of opposite type.
Thus if Z,(i) is the number of particles of type i, i = 1, 2, active in the nth gen-
eration, then, since only those particles remaining after annihilation are counted
as active, we have min{Z,(1), Z,(2)} = 0 for all n. Given that Z,(i) > 0 and
Z,(i"y = 0, each of these Z,(i) type i particles independently of each other pro-
duces particles of both types according to a fixed distribution F,. The original
Z,(i) particles then die. Assume that a total of £,(1), &,(2) particles of each type
have been produced; then annihilation takes place between as many pairs as
possible, viz. min{,(1), £,(2)}, and thus

(1.1) Z,.,(l) = &) — min{&,(1), £,2)}, 1=1,2.

The data for the process are the distributions F, and F,.

This process and similar others originated with Professor Peter Ney as a model
for the antigenic behavior of Lymphoma cell populations and it should be ap-
plicable to a variety of antibody reactions. Many other writers have considered
branching type processes which allow particle interactions in various ways; for
a general survey with an extensive bibliography see Kesten [3]. See also Karlin
and Kaplan [2]. (We have followed Kesten in the description of the self-anni-
hilating process just given, see [3] page 500.) Unlike these other processes the
interactions we are considering here are of a negative character. For example,
increasing the production of a given type can result in a decrease in over-all
growth rate (see Section 3).

I wish to express my thanks to Professor Kesten for a very instructive exchange
of correspondence on this and other problems; The proof in Section 8 of sure
extinction for critical, symmetric processes is due to him.

2. Redefinition of the process. The symmetric case. Let {Z,},., be defined
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as in Section 1. Define a sequence {W,} of integer valued random variables by
W, = Z(1) — Z,(2).
Then, since min{Z,(1), Z,(2)} = 0,
Wo=2,) and W,"=Z,Q)

where W* = L(|W| = W). Thus Z, +— W, is one-to-one on the state space of
Z, and we have:

PROPOSITION. The sequence {W,} is a Markov chain on the integers with

pij:P(W,,:j|W_1:i)=gj'“*, when i < 0;
2.1) = 0y, , when i = 0 (0 is absorbing) ,
= f;*, when i > 0;j=0, +1, ...

where f = { f;}7. . and g = {9,};-_.. are the probability distributions

f; = 204 Pla single type 1 particle produces j+ k type 1, k type 2 particles}
= 2B+ k k),
g, = 2., Pla single type 2 particle produces j + k type 1, k type 2 particles}
= L FJ + k. k)
and fT*, g* denote their r-fold convolutions.

Given the distributions f and g we can easily construct a chain {W,} satisfying
(2.1). Here is one such construction. (We give another in Section 5.) Let {X,™}
and {Y,"}, n, i = 0, be two doubly indexed sequences of independent random
variables with

PX™ =)=/ PY"=jl=9;, =01, %2, ...
and put §,» = T\'" = 0,
S, M =X"™ 4 ... 4+ X", T.W=Y™+ ... + Y™, r=1.
Let W, be any integer (random variable) and define {W,},., inductively from
(2.2) W, =S+ + Ty, n=1,2 ...

One easily sees that {W,} is a Markov chain with transition probabilities (2.1).
Note that at most one of the two partial sums in (2.2) is nonzero. In terms of
the {Z,} process of Section 1, the X’s (¥’s) denote the excess number of type 1

particles over type 2 produced by a single type 1 (type 2); a negative excess
indicates more type 2.

2 To be perfecily accurate one should interpret (2.2) in a distributional sense: if {Wn};‘:;l isany
chain with transition probabilities (2.1) and if {W,};_, is the chain defined by (2.2) and if
P{(Wy = k} = P(W, = kj for all i then P{4} = P{A} for any event A defined on {W,}*_, and A
the corresponding event ofA{ W, n=o- For example P{W, = 0 eventually} = P{ W, = Oeventually},
P{Wa/p™ converges} = P{W./p™ converges}, etc.
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Symmetric self-annihilating process. This is the process which arises when the
distributions fand g are the same: f; = g, for all j. Then (2.1) becomes

(2.3) P(W, = j| Wy = 1) = f%, SRR
= 0y, » i=0;j=0,=+x1, ...
and (2.2) simplifies to
(2.4) W, — arbitrary integer (rv)
W, =S ., n=1,2, ...

Observe that (2.3)/(2.4) reduces exactly to the definition of ordinary Galton-
Watson process whenever f; = 0 for j < 0, see [1]. Our seemingly slight gener-
alization, allowing negative as well as positive values of numbers of offspring,
immediately forces one to abandon the use of generating functions and functional
iteration so prominent in the classical set up. Aside from curiosity, principal
justification for treating the symmetric process separately is Theorem 3 below;
the criticality problem is essentially solved for (2.3)/(2.4) but not for (2.1)/(2.2).
(Also the results in the symmetric case will be needed in the general case [see
1° in Section 6 and 5° in Section 7].)

3. Statements of results. We define “extinction” to be the event {W, =0
ultimately}, “non-extinction” = {W, = 0 all n}. Throughout this paper we
assume

(A) For every i, P(W,=0|W,=i}>0 for some n.

LEMMA 1. If (A), then for every i

Plextinction| W, = i} = P{liminf, . |W,| < oo| W, = i}
= lim,_, P{W, = 0|W,=1i} > 0

and Yo, P(1 < |W,| < k| W, =i} < oo for every finite k > 0, i + 0.

Proor. {W,}is a Markov chain with 0 an absorbing state which by (A) can
be reached from every state i. Hence every i = 0 is transient.

RemARK. To ensure (A) it suffices to assume f, = 3,5 Fy(k, k) > 0 and g, =
e Fy(k, k) > 0, or, more generally, that min (lim inf f;"*, lim inf g,"*) > 0.

CoNvVENTION. In this paper we interpret statements such as E|W,| — 0,
P{A} =1, P{A} # 0, etc., to mean E(|W,||W,=1i)—0, P{A|W,=i=1
P{A| W, = i} # 0, etc. for all initial W, = i # 0.

Criticality limit theorems for the symmetric self-annihilating processes (2.3)/(2.4).
The Malthusian parameter for (2.3)/(2.4) is |p| where

p=EW,|W,=x1)=EX," = %= jf;.

THEOREM 1. If || < 1, then Plextinction} = 1 and 37 E|W,| < oo, while if
|2l > 1 (including possibly y@ = =+ oo), then P{non-extinction} > 0 and

3.1y lim, o W (W + Wi + - + W) = (e — 1) sign (1),

a.s. on {non-extinction}.
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CoROLLARY. If || > 1 then lim (log |W,|)/n = log|y| a.s. on {non-extinction}.

THEOREM 2. If |p| > 1 and E(|W|"| W, = +1) < oo for some y > 1, then
W.[|1|" converges a.s. and in mean of order y to a non-degenerate random variable
V.

THeOREM 3. If |p| = 1 and E(|W,*| W, = £1) < co then P{extinction} = 1.
(The assumption E|W\]* < oo can be weakened slightly; see Section 8.)

Criticality limit theorems for the general self-annihilating process (2.1)/(2.2). Let
us put
= EW,|W,=1) = EX" = 2=, jf,
A= E(Wll WO = —1) = EYi(") = Z":mjg]
or in terms of the Z, (1), Z,(2) process,
p=my — my, and A= My — my,

where m,; = E{# type j particles produced by a single type i}. The Malthusian
parameter p turns out to be the largest nonnegative eigenvalue of the matrix

(G )
At A
where Q* = (|Q| + Q) for any quantity Q. Considering cases easily gives
p = max {p*, 27, (1~ A%)H .

The gist of the next three theorems is that p < 1 implies sure extinction while
p > 1, implies P{non-extinction} > 0 and W, = O(p") a.s.

For Theorem 5 (second part) and Theorem 6 (but not Theorem 4), we need
the quantity

o* = max {Var (W,| W, = 1), Var (W, | W, = —1)} = max {0/ 0%} .
For Theorem 5 only we will need to assume
(B) PW, <0|Wy=1} >0 and P(W,>0|W,=—1}>0.
Assumption (A) remains in force throughout.
THEOREM 4. If p < 1, then Plextinction} =1 and Y2, E|W,| < oo (hence
E|W,| —0as n— oo).

THEOREM 5. Assume (B). If 1 > 0or 2 < 0(or both) but p = max {p*, 27} > 1,
then P{non-extinction} > 0 and a.s. on {non-extinction} lim W, = 4o orlim W, =
— oo, or, what amounts to the same thing,

(3.2) P{W, <0 and W,,, > 0 infinitely often} = 0.

Suppose also o> < co. Then p~"W, converges a.s. and in mean square to a non-
degenerate random variable; if both p > 1 and 2 < —1 then both W,*[u" and
W, [|A|" converges a.s. and in mean of order 1 to non-degenerate limits (of course
P{lim W, */p™ # 0 and lim W ,_~[|2]" # 0} = 0).
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THEOREM 6. Assume ¢° < oco. If 11 <0 and 2> 0 but p* = |pa| > 1, then
P{non-extinction} > 0, p~™(|p¢|*W,* + (X)}W,~) converges a.s. and in mean square
to a non-degenerate limit V', and on the event {V =+ 0} W, alternares in sign as
n— coj; l.e.,

(3.3) PIW, W, .. <O forall n sufficiently large|V + 0} = 1.

Notes.

(i) When p = 1 it is probably true that P{extinction} = 1. This is true in
special cases, see Section 9, but a complete theorem is lacking.

(ii) Assumption (B) is not necessary and in possibly biologically interesting
cases undesirable. For example, if type 1 particles can produce only type 1
particles then P(W, < 0| W, > 0) = 0; once W, becomes positive, type 2 par-
ticles will never reappear and W, is then an ordinary Galton-Watson process.
Here if 4 < —1and p2 < 1 we will have P{extinction | W, > 0} = 1 but P{W, —
—oo | W, < 0} > 0. Theorem 5 requires only trivial, but verbose, modifications
when (B) fails.

(iii) One can still get convergence of V, = (aW,* + bW,~)/p" in Theorems 5
and 6 when ¢ < co is weakened as in Theorem 2. Whether or not probability
1 convergence is true without any finite moments (other than the first) and the
corresponding question of limit degeneracy (the £Zlog Z < oo criterion in the
classical case) are open problems and likely quite difficult. (For an appreciation
of the difficulties in the classical case see [1] or [5]. In Theorem 6 one should
be able to prove P{non-extinction} > 0 without assuming ¢* < co.

(iv) The matrix (4% 47) arises in a natural way. Put V, = aW,* + bW, .
By looking for solutions p, a and b, to lim,_., E(V,|W,_, = r)/V,_, = p, one
immediately gets

pra + pmb = pa

Ata 4+ 27b = pb .
Clearly if the largest p is less than 1 one expects P{extinction} = 1, and if p > 1,
P{non-extinction} # 0.

(v) Independently of this author and by different methods, S. Karlin and N.
Kaplan [2] have also obtained the criticality criteria under a finite second moment
assumption, for (2.1)/(2.2). Their method does not apply to the critical case
p = 1; and they do not obtain the limit theorems of this paper. H. Kesten in [4]
(announced in [3]) has proved some very technical a.s. limit theorems applicable
to a wide variety of stochastic population growth models. As in [2] his results
also depend on more than a finite first moment and do not give mean convergence,
his method also does not appear to apply in critical cases.

4. Proof of Theorem 4. Let us assume for the moment the truth of the state-
ment: “Forevery ¢ > 0 thereare numbers d, = d,(¢) = Osuch that 12,4, < oo
and
(4.1) EWW,| =0, + (G + OE[W, i + (2 + o) E|W, |, nz?2,
where 7, = max {p*, 27} and 7, = p= - A+
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The partial sums Q, = E|W,| 4 ... + E| W,| must then satisfy
Q. =D +( + €)Qn1 + (72 + €)Qrss nz=3

where

A:A(5)=(72+5)E|Wol+E|W1|+Z?=25k<00, €>0.
Because min {y,, 7,} = 0, max{y,, r,} = max{p, p?} = p < 1, we may pre-choose
e > 0 so that

0=1—y,—7,—2¢>0.

Now note thatif M = max {A/6, Q,, Q,}, then Q; < A + (7, + €)Q, + (72 4+ )0, <
6M + (1 — 0)M = M and by induction Q, < M for all n. Consequently,
(4.2) Se L EW,| =1lim,_. 0, <M< oo.

From (4.2) E(lim inf |W,]) < lim E|W,| = 0 which, according to Lemma 1,
more than enough to conclude P{extinction} = 1. Therefore, except for (4.1),
the proof of Theorem 4 is done.

PrOOF OF (4.1). In calculations of conditional expectations, the superscript
n in (2.2) may be safely omitted. Thus
EW,= = 2w EWH [ Woss = PW,_, =1}
(4‘3) - Zr>0 (Esri)P{ Wn—l = r} + Zr>0 (ETri)P{Wn—l = _r}
< kaP{1 < |W, || < k)
+ 2ok (ESH)PWS_, = r} + (ET,*)P{W,_, = r})
where S, = X, 4+ --- + X, T, =Y, + .- + Y,,a = max{E|X1|, E|Y)}. Bya
slightly strengthened law of large numbers, S,/r and T,/r converge in mean (of
order 1), as well as a.s., to ¢ and 4, hence

(4.4) ES.* < (pu*r + ¢)r and ET * < (A% 4 ¢,)r for r> k
where
er = sup,zp max {| % — |, | T g
gsup@kmax{EST'—g,ETT—Zl —0 as k—oo.

(Recall that Q* + Q= = |Q|, Q* — Q™ = Q.) Applying (4.4) to (4.3) and writing
0,5 = kaP{l < |W,_|| < k}, we get
(4.5) EW,* < 0,, + ptEW}_, + ZEW;_, + ¢, E|W, || =z,

EW,” <0,,+ VEW;, + prEW;_, + ¢, E|W, || = z;_,.
In (4.5) replace the term A*EW;,_, by 2*z;_, and p~EW;_, by p~z}_, where z%_,
are the right hand sides of (4.5) when n is changed to n — 1. Add the two new
inequalities and simplify using Q* + Q- = |Q| and

prp= =2"2- =0, max {u*, 7} = 7,, HAt =7,.
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The result is

EW,| = 0, + (n + )EIWai| + (12 + EIW,

where

5” = 26” + 2+6,,_1,k + /J_an—l,k
s const X k X [P{1 < [W, | < k} + P(1 < |W,_| < k}]
¢ = 2¢,, e = (A" 4 p)e, .

On the one hand ¢’, ¢’ can be made as small as we please by taking k sufficiently
large; on the other, the series Y7, d, converges for each k by Lemma 1 in
Section 3. This completes the proof.

REMARK. If a = max {E|X}|, E|Y,|} < 1, Theorem 4 is almost trivial, for, as
one can easily check,

EW, | Z<aEW, || < - < aE|W.
We are saved from triviality because we can have p <1 while min {E|X,|, E|Y,[} > 1.

5. Proof of Theorem 1 and the corollary. That |x| <1 implies P{extinction}=1
and } 7 E|W,| < oo follows from Theorem 4 since p = |¢| in the symmetric
case.

To prove the remaining assertions of the theorem when [¢| > 1 we first give
a more useful representation of the symmetric process than (2.4). Let {X},
i =2 1 be independent random variables with common distribution

fj:P(X:j), j:O,il,-o-

and let S, = X, + --- + X,, S, = 0. Define two sequences {W,}, n = 0, and
{r,}, n = 1, of random variables as follows: W, = 0, constant, arbitrary integer;
7, =0, and for n > 1

(5°1) Tn:|W0|+|W1|+ +|W'n—l|
Wn = Sr” - Sr,n._ .

1

Clearly (5.1) defines a Markov chain with transition probabilities (2.3). Now
put X/ = X, — 1 and let {S,’}, n = 0, be the random walk S/ = W/,

(5.2) S, =8/ + X/ 4+ - £ X/ =W, + S, — k, k>1.
Then
(5-3) Wo=3S8, + Zia(Wil =Wy, nz1l,

and since |W,| — W, =0
(5.4) W,=S8:, forevery n> 1.

(Equality holds in (5.4) for some n if and only if W, > Oforall0 < k < n — 1.
This fact will be fully exploited in Section 8.)
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We can now finish proving Theorem 1. Let us assume

EW W, . =) =EX,=pu>1.

(If # < —1, replace W, by W, = —W,; {W,} is a symmetric self-annihilating
process with i = —u > 1.) Because the transition probabilities (2.3) are sym-

metric in i, we have
P(B|W, =i} = P{B| W, = —i}
for any event B defined on {W,, n = 1}, so we may also assume
Wy,=i>0.
Now the steps X;/ = X; — 1 of the random walk {S,’} have mean
EX/=p—1>0,
so §,’ drifts to +co and with positive probability S,” will lie to the right of S
for every n = 1. Noting (5.4) we conclude
(5.5) P{non-extinction} = P{W, > 0 forall n > 1}
> P{S,’ >0 forevery k= 1|S/ =i} >0.

It remains to prove (3.1). Put B = {non-extinction}. On B, r, = |W | 4 --- +

[W,_| = n— oo, so since B has positive probability

’

lim - =p—1 as.on B

Tn

by the strong law of large numbers. From (5.4) and S, — + o0, we also have
a.s. on B that W, > 0 for all n sufficiently large. Hence >3, (|W,] — W;) < oo
or
lim - Do (W —W;) =0 a.s.on B.
T

n

The limit (3.1) follows on dividing (5.3) by 7, and letting n — oo.

Proor oF THE COROLLARY. Let w = {W, }>_, be a sample point at which (3.1)
occurs. Then there is an M = M(w, ¢) so that

Uy < Uy — U,y < Col,_y, n=>M

where u, = [W,| 4 -+ + |[W,[and ¢, = (] — 1)1 — &), ¢, = (|| — D)1 + <).
Consequently (¢, + )u,_, < u, < (¢; + 1)u,_, and thus

(er + D" Muy < up, < (¢ + 1) Muy,, - n
Taking logarithms, dividing by » and letting n — co and then ¢ — 0 we get

M.

v

lim = log |y] .

n—00

log u,
n

Hence

lim, . 08 1Wsl _ nmw<log<| Wallta) 1ogu,,_l>
n

n— = IOglﬂl *
n n
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6. Proof of Theorems 2 and 5. We first prove Theorem 5. In (2.1)/(2.2) we
are assuming that either ¢ = EX, = E(W,/W,=1)=m,; — m,; >0, or 1 =
EY, = E(W,/W, = —1) = my; — my;, <0, (or both) and that p = max-(p*, 27) > 1.

By replacing, if necessary, W, by W, = — W, we can assume A~ < pu* = p or
equivalently
6.1) l<p=p=< oo and — <1< .

1°. P{non-extinction} > 0.
Proor. Onaccount of assumption (B) P{W, > 0 forsomen > 1| W, < 0} >0
so clearly we may assume
W,=i>0.

Now as long as W, remains positive, W, coincides with the symmetric self-
annihilating process

~

W'n+1 = SI(;;),,,I
for which E(W,| W, = +1) = ¢ > 1. So by (5.5)
(6.2) P(W, 0 forall n} > P(W,>0 forall n

= P{W,>0 forall n} >0.

2°. Letusprove (3.2). Again we may assume W, > 0. Define two sequences
{a;};20o and {B;};5, of possibly defective random variables as follows a, = 0,
B =min{n: n > a, W, < 0} and for j > 1
a; =min{n:n> B;, W, > 0}
Bjpp=min{n:n=a; W, < 0}.
From (6.2) and the random walk representation (5.2)—(5.4) for symmetric
processes we have for + > 0

P < 00| W, =ta; < 0o} = P(B, < oo| W, = 1}
= P{W, <0 forsome n>1|W,=1> 0}
< P{S,) <0 forsome m=1|S/ =1}.

Since the walk {S,’} has step mean ; — 1 > 0 the last written probabilities are
bounded away from 1 and tend to 0 as y — oco. Put

0 = supy; P{B,, < oo We=1ta; < o}
(independent of j). Then 6 < 1 and we have
Plfjn < oo} = Zar P{Bj < 00| W = 1, a; < 0}P(W,; =1, a; < oo}
= 0Pfa; < oo} < OP(B; < oo} .
Therefore, P{8; < co} < 677'P{B, < oo} — 0, j — oo, and consequently
P{W, changes sign i.0.} = P{8; < oo forall j}
= lim,_, P{B; < o0} = 0.
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3°. Put V, = W,/o" = W, [y, U, = W,"[|]A*. Then {V,} and {V,*} are
submartingales; {U,} is a submartingale provided 2 < 0 and in the special case
4~ = p* the V, form a martingale.

Proor. If r < Othen E(W,|W,_, =r) = ET, = Ar| = pr = pW,_, by (6.1)
(equality holds if —2 = x> 0) and E(W,*|W,_,=r) =0 =rt = pW;_; if
r > 0 then EW,|W,_.,=r)=ES, = pW,_, and EW, Y \W,_,=r)=ES,* =
ES, = pW;_;; divide all inequalities by p*. Similarly prove {U,} is a submar-
tingale if 2 < 0.

4°. The series 37, s"E|V,| converges for every |s| < 1. From (6.1) and (4.1):
given ¢ > 0 there is a ¢ < oo, independent of n, such that

El Wnl é ¢ + (‘Ll + S)El Wn—ll + €E| Wn—2l ’
or
E|V,| < ep® + (1 4+ )EV, | + <E|V, |

where ¢’ = max {¢/y, ¢/¢’}. Clearly E|V,_,| is also dominated by the right hand
side of this last inequality, so if we put

a, = max {E|V,|, E|V,_},

then a, < cp™ + (1 + 2¢')a,_,. Iterating and setting 6 = 1 + 2¢' we get
a, = cp" {w} + 0" ey < et 4 0"
Op — 1
for some numbers ¢,, ¢, independent of n. For a fixed positive s < 1, fs < 1
for ¢ > 0 sufficiently small, hence 37 a,s" and a fortiori 3,7 E|V,|s* converges.
From now on we assume
o* = max {Var (W,| W, = 1), Var (W,| W, = —1)} < oo .

5°. supEV,* < co. In what follows ¢’s denote finite positive constants in-
dependent of n and r.

Case 1. 2 = 0. From the estimates E(S,”)* = O(r), E(T,”)* = O(r) (see the
lemma at the end of this section) we obtain
E{(W, P | Waiy = 1} = E(S+ + Ti) = E(Sis)* + B(T=-y

St 4r)y=clr| = | Wi
and hence

(6.3) EW, < ElW,_|.
We also have
EWiL | W,=r)=ES} + ET
olrt 4 pA(rty 4 o rm + 2(ro)?
< o] 4 7 4 2()
= CW,| + 2 W,? + BV, ).
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Taking expectations and applying (6.3) we get

EW?,, < GE|W,| + PEW,? + 2c,E|W,_|
é CZAU”an + #ZEW”Z

(a, = max {E|V,|, E|V,_,|}), or since W, = u"V,
EV:,— EV,? < const X u~"a

Summing these inequalities immediately gives us sup EV,? < oo, for 1/p <1
implies 3} p~"a, < oo by 4°.

Case2. 2< 0, |2| < p. Here ET* < o’r + p*r*, so
E(W,:|W,_, =r) = ES%, + ET%:
< | 4 LY A+ ()] = | 4 et

Hence EW,? < ¢E|W,_)| + (*EW}_, and we finish up as in Case 1.
6°. If 2= < p then 11m EWV, ?=0.

Proo¥r. For suppose 4 > 0. Then (6.3) implies £(¥,”)* is dominated by the
nth term of a convergent series (namely Y5 #~"E|V,|), hence it must tend to 0.
If 2 <0, |4 < g, then E(S,7)* = O(r), E(T,”)* < cr + #r* and we have

E{(W, | W,o=r} < o'|r| + 2(r7)";
therefore,

E(Vnzg;f—nm 1|+—E< 1>2=o(1>+~E< )

But L = limsup E(V,”)* < oo by 5°, hence L < (4/¢)’L which is impossible
unless L = 0.

7°. V, and V,* converge a.s. and in mean square. If 2~ = p then {V,} is a
martingale by 3° with sup EV,? < oo by 5°. This implies the assertion by stand-
ard martingale theorems. Suppose 2~ < g. Then ¥, forms a submartingale with
supEV,? < oo so V, converges a.s. (and in mean of order y < 2) to a non-
degenerate random variable V. But V,* being a nonnegative submartingale with
sup E(V,*)* < sup EV,? < oo must also converge in mean square to *; V,~ must
also converge in mean square by Fatou and 6° to ¥~ = 0. It follows that V, =
V,* — V,~ must also converge in mean square. (Note that we have proved
slightly more than Theorem 5 asserts, viz. 4~ < p* implies limp="W,=V=0
a.s., 2= > p* implies limp=*W, = V' < 0 a.s.)

8°. If 2 < —1 (but |4 < p) then U, = W, ~/|4|" converges a.s. and in mean.

ProoF. We may suppose |4 < p. (If 2 < —1, [4] = p then W, ~[jA]" = V,~
converges a.s. and in mean square by the first part of 7°.) It suffices to prove

(6.4) S ElU,,,— U, < oo.

From Lemma 2 below there exists a constant ¢; < oo such that ES,~ < ¢, and
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ET,~ < ¢, + |4|r for all r. Hence
EW,™ = %0 (ES, VP, = 1} + oo (ET,)P{W,, = —1)
=G+ A Do ?PWass = —1) = ¢, + AEWL,,
or, EU, — EU,_, < ¢,|A]™™. Since |4| > 1, 3,5 ||~ < co and it follows that
sSupEU, = ¢, < o0
(At this point we could of course conclude a.s. convergence, since {U,} is a

submartingale.) From the obvious inequality |7, — r||| < |T, — rd] we get
forr >0
E(U, — U, || Wooy = —r} = [ATEIT,” — |Ar] < o]4]7(1)! = 274U, 0)* -
Also

E{|U, — U, ||| W,_,=7r >0} = |AT"ES,” < ¢4~
Hence

E\U, — U,_j| £ ¢)|A|7"2E(U, _))* + c)4™"
S GAITHEU, ) + a2 = 0(12]77)

and (6.4) follows since |4] > 1. This completes the proof of Theorem 5.
Proor oF THEOREM 2. For the process (2.3)/(2.4) we assume
EX, = E(W,|Wy=x1)=pnp>1
EIXJr = B(W\[' | Wy = £1) < 0.
If y = 2, Theorem 2 follows from the second part of Theorem 5. Foranyy > 1

all but one (Step 3 below) of the key steps are similar, though simpler, to the
latter steps in the proof of Theorem 5; so, we omit some details.

PutS, =X, + .-- 4+ X,and V, = W,/p"

Step 1. With respect to {B(W,, « -+, W)}z {Valuso is @ submartingale and
{|Vl’}uzo for 1 <6 <y is a nonnegative submartingale. Also, E|W,|" =
yE|\W,| — oo asn— co. Wy 0.

Proor. All assertions follow from the inequalities
E(|Va || Waer = 1) Z E(V,| W,y = 1) = (ES;,)[p"
= |rjg/p® = [Vodl Z Vasas
and the fact that ®(r) = |#|° is convex, 6 = 1.

Step 2.
E|V,[’

lim, -~ =
E\V,_|’

To see this note that because E|X,|” < co we have as r — oo, E|S,|’/r! — p’ by
the Laws of large numbers. So for |r| = K = K(¢), E(|W,)’|W,..=71) =
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ElS,|° < |rp|’(1 + ¢). This and Step 1 give us
El Vn—1|0 é El anﬁ é 57» + (1 + E)El Vn—l|0

where 6, = p~"KP{l < |W,_,| < K} — 0 as n — co. This does Step 2.

I7]

Step 3. sup,., E|V,|" < oco.

PRroOF. An inequality due to Marcenkiewicz and Zygmund (cf. [7] page 87)
gives
(6.5) EIS, — rpl" = e, B{Z (X — p)}”
where ¢, is a constant independent of r. For step 3 we consider two cases.

Casel. 1 <y <2. Inthiscasey/2 < Iso{Xi_,(X;— p) V2 < X0, | X — ¢
From this, (6.5), and Minkowskie’s inequality we obtain

ElSTlr é {(E|Sr —_ rﬂlr)l/r + ry}T
< (FVeV{E|X, — g+ rp)y < er? + (re),

where 0 = ¢ + y7' — 1 <y. Since E(|V,|"||W,_,| = r) = E|S,|"/u*" we have
therefore
E\V,|" S E|V,|" + ¢;s"E|V,_|’

where s = pf~7 < 1, ¢; is a constant independent of n. By Step 2 the series
e s"E|V,|’ is finite and hence

SUP,. EIV,|7 = E[V)|" + lim,_, 25, (E|V,|" — E|V,_i|")
S G Ui SEV,) < oo

Case II. y > 2. Here we take the y/2 root of both sides of (6.5) and apply
Minkowski’s inequality to obtain

EIS,[' < (et + rpy < e’ + (rpy’
where § = y — . Proceed as before.

Step 4. We now complete the proof of Theorem 2. By Steps 1 and 3, |V
converges with probability 1 and in mean or order y to a non-degenerate real
value V. But V, = 0 for all nsufficiently large with probability 1 by Theorem 1.
Thus we have ¥V, — Va.s.and E||V,| — V. |"— 0. Thisimplies |V,|" is uniformly
integrable and hence E|V, — V.|" — 0.,

ReMARK. It is worth noting the equality
2
EV:::EW7-+<£> S E|W,)|
u
which occurs in the case y = 2 of Theorem 2. This follows from
E(W3| W, = 1) = ES}, = |rlo* + r'g?
which replaces the inequalities in Cases I and II.

We have used the following lemma at various places in the proof of Theorem 5.
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LEMMA 2. Let {£,} be a sequence of independent random variables with E€, = m
and E(§; — m)* = o* for all i(o® < o). Puty, =& + & + -+ + £,. If m>0
then for all r

rm < Ent < rm 4 o*l4m Ep,~ < d*ldm
and E(,”) < ro®. If m < 0 interchange + and —; if m = 0 then E(7,*)! < ro®.
Proor. All inequalities follow from
En,* + En,” = Elp,| < (Ep,))t = (r0* + Pm*)t < rm + % ";2

E771,+ —_ E’?r_ = Eﬁr =rm (IIOW add) s
and
E(’?r—)2 é E[(”r - rm)_]z é rg* ’
Ey,* =z Ey, =rm,  Ep’=E(@y*) + E(y,").
7. Proof of Theorem 6. We are assuming in (2.1)/(2.2), that ¢* < co and
7n<o, 2>0, o' = |pd > 1.

Put
Vn = p‘”(|y|5W"+ + 'uWn_) ¢

1°. {V,}is a nonnegative submartingale (with respect to 2, = (W, - - -, W,)
as usual). To see this let A, = p"V, = |p|!W,* + 22W,~. Then
EQ,|W,_,=r>0)=|p|*ES,* + BES,” > 2RES,-
> HE(=S,) = 2(—pyr
= ‘OA"_I .

(The last equality is because A,_; = |p|'r* 4 2~ = |p|r when W,_, = r > 0.)
Similarly, E(A, | W,_, =r < 0) = pA,_,.

2°. lim EA,/EA, , = p, hence )7 s"EV, < oo forall |s] < 1.

Proor. We have

EQA | Wos=1) _ |p'ES} + RES; + |p'ET} + BET.
A ||t + 2t

n—1

—p as r— 4+oo.

(Recall ES,*/n — p*, ET,*| — 2* as n — oo, see Section 4, and p+ = 1~ = 0.)
Hence E(A, | W,_, =r) < (o + ¢)A,_, for all |r| = k(¢) and consequently

PEA, \ S EA, < ¢+ (0 + ¢)EA,

n—-1 =

where ¢ is independent of n. This gives us what we want since EA, = p"EA, — co.
3°. ¥, converges a.s. and in mean square to a non-degenerate random variable
(so P{non-extinction} > 0). By 1° we need only show

7.1 SUpEV,? < oo .
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Using Lemma 2 at the end of the last section we get
E(A | Wooy = 1> 0) = [|E(S,*) + 2E(S,")’
< |plotr + A(ir* 4 o'r)
Sald L+ 00,
and similarly E(A,’|W,_,=r <0) <A, , + p?A2_,. Taking expectations,
dividing by o we get for some constant ¢
EV2<cp™EV, ,+ EV:,

and therefore, sup EV,? < const X Y, p~"EV, < oo by 2°.
4°. Each of the four processes {o=>" W3 }, {0 "W}, {0~ W}, ..} and {p~" W}, ..}
is a nonnegative submartingale and hence converges a.s. (and in mean square) by
(7.1) and E(p~"W,*)* < const X EV,? This assertion follows from inequalities
of the form E(W,_ ,| W, =r<0) = o|r|, E(W} | W, =1r>0)=pr. We
prove only the first one. Let r < 0 then
EWasa| W =1) = Bice EWiapa| Wos = OPWy = k| W, =1}

Z Zk>0ESIc_P{Wm+1 = kl Wm = r}

= Zk>0(_kﬂ)P{Wm+l = kl Wm = r}

= |UE(W | W = 1 < 0) = |uET}, 2 |pir| = p'r .

(The 2nd and 3rd inequalities are from Lemma 2 of Section 6.)

5°. To finish up we must prove (3.3). Let A%, A=, B*, B~ be respectively
the events on which p=*"W, o~ "W, o~ "W} .., o "W,,,, have nonzero limits
and let V' = lim V,, then A*4~ = B*B~ = ¢ and

{(V#0} = 4% U 4~ U B* U B~
To prove (3.3) it is necessary and sufficient to show
(7.2) P{A*B* U A"B"} = 0.

But starting from any W, =i > 0 the process {W, ,,}, n = 0 coincides, as long
as it is nonnegative with a symmetric self-annihilating process {W,} n = 0,
W, = i, which has mean ¢ = E(W,|W,_, = 1) < 0. Hence, by Theorem 1,
Wopin, = W%Ml < 0 for some n, with probability 1. Similarly, if W,=1i<0
then 12 > 0 implies W, ,, = 0 with probability 1. From these remarks we may
conclude

P{W, <0, W, ,>0 io.or {W,}] becomes extinct} = I
which clearly implies (7.2).

8. Proof of Theorem 3. The following elegant proof was suggested by Pro-
fessor Harry Kesten (private communication).
We may suppose

py=EX,=EW,|W,.,=+1)=1.
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We use the representation (5.1) and the identity (5.3). Note that because the
stepmeanis EX; = ¢ — 1 = 0, therandom walk S,’ = S/ + X, + --. + X/ =
W, 4+ S, — k is recurrent. Define

a =min{m: §,’ < 0}

B=min{n: r, > a}
T, = |W| + Wi + --- + |W,_ recall. Both a and 8 are well defined with
probability 1. Roughly the 1dea is to show |W,| is “small” relative to |W,|
with “high” probability by comparing W, = S’ , With S/, This leads to
P(lim inf |W,| < oo} = 1. We get estimates for |S,’| and v, — a from fluctuation
theory for random walks with mean 0.

Let S = W, = k > 0. By definition of a, S/ > 0 for j < «, soby(5 3)and

the definition of 5 we will have W, = S, >0, W, = §,>0, -, W, =
_, > 0 and then

Tﬁ:S0,+S;1+ + ’,91

W, =S
It follows that the event {« = m, 8 = n, r, = m 4 j} is completely determined
from the values of S/, Sy, - -+, S,’. Hence the events {@ = m, t, =m + j}and
{(Xpi1 = Xy -+ s Xpp; = x;} are independent for each j=zlmx, .-, X5
consequently

PAW, =8> a=me,=mtj} = Pis,, - 51> 4]

:P{|Xl'—|— +X,~’I>§}-

Keeping in mind P{.} = P{.|S, = k} and noting EX, = 0, E(X/)’ = ¢* < oo
we get for every R > 1

d d .
P{lWﬂ_Sa,|>7}=nglp{|X1,+ +Xj’|>‘2_‘} P{T,g—a'=j}

= ZléiéRP{|X1’+ +Xj'|>—‘21‘}+P{Tﬁ_a>R}
4aR

= 7 + P{r, —a > R}.
But P{|W,| > d} < P{|W, — S| > d/2} + P{|S,’| > d/2} hence
B P> d) = Py, —a> R+ P{is| > )+ 2R

We want to estimate P{r, — a > R} for R > k = S,/. Let A be the event
{the random walk {S,’} starting at S = k exits to the right from the interval
[1, R]}. From ([8] pages 252-254) we obtain

k
P} < e
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for some constant ¢, independent of k and R (provided 1 < k < R). Now « is
the first hitting time of (— oo, 0] so clearly A occurs if and only if

max {S/, S, .-+, S._;} > R.
But
Tp—a < Ty — Ty = S:ﬂ—l < max{S/, S/, ---, Sh_i}»
hence
(8.2) Pz, — a > R} < P4} < CI% .

Using the methods of proof on page 211 of [8] (see also Exercise 6, page 232)
one can show that the assumption E|X/|* < oo implies

SUP,zo E(|S,[| $ = k) < oo .
Hence
d 2E|S,)| _ ¢
8.3 P{S' _}g_ag,z
(8.3) 51> 41 < 2E < &
with ¢, independent of k. (Note: This is the only place we need E(| W |*| W, =
1) < oo. If only E(|W |**| W, = 1) < co for some ¢ > O then the right hand

side of (8.3) is ¢,k*~¢/d. This is still enough to prove Theorem 3.)
Let us now put the bounds (8.2) and (8.3) in (8.1) and also set

R=ki, d=}k.
Then we obtain
PIW > k| Wo= k) < 5

for some constant ¢ < co. Hence

P(W,| < ik forsome n= 1| W, =k} = P(W, <k} =1 — k%
and for reasons of symmetry

P{|W,| < ik forsome n= 1|W,= —k} = 1 _:7.
From Lemma 3 it follows that lim inf{W,| < oo a.s. and therefore by Lemma 1
in Section 3.
P{extinction} = 1.

LeMMA 3. Let {W,} be a Markov chain and suppose there are numbers 0, 0 <
0 < 1,0 >0, c< oo such that for all |k| sufficiently large

(8.4) P{(|W,| < 0|k| for some n>=1|W,=k} =1 — l‘kcﬁ .
Then
P{liminf{W,| < o} = 1.
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Proor. Suppose we could show

(8.5) P(W, <r forsome n=0|W,=k}=1—2
rﬁ

for all |k = r > r, > 0 where b < oo is independent of k and r. Then forr = r,
and with

B, ={|W, £r forsome n = m}
we have P{B,| W, =k} = L if |k| < rand P{B,|W, = k} = P{B,| W, = k} =
1 — b/r’ by stationarity and (8.5). Hence

P{B,} = (Lmsr + L) PBu| W = K}P{W,, = k}
b b
z AW+ (1- ) PW >zl -2
and therefore
P{liminf |W,| < oo} = lim,_, P{|W,| < r i.0.}

= lim,_, lim,,_, P{|W,| < r for some n = m}

- lim,_m<1 _f_’_> 1.

7o
Assume (8.4) holds for |k| = k, > 0. To establish (8.5) keep r > k, and let
A, = {|W,| > r forevery n= 0}
and define a sequence of times {v;} by vy, = 0 and for j > 1, v, ; < oo,
v;=min{n:n>v,_, |W,| S OW, _]}.

Ifv,, = coorif [W,| > 0|W,,_ |foralln> v, ,, then wedefinev; = W, = co.
Also put

u=sup{j:v; < co}.
Then

P{A,} = P{A,, u = oo} + 17, P{4,, u = j}

where P{.} = P{- | W, = k}.
Now since § < 1, we have on [# = oo]

(8.6) W, | S 0W,| =60k <r
for all j sufficiently large (provided r > 1). So
P{A,,u=c0}=0.

(Note that it is possible for P{u = oo} > 0since we are not assuming 0 is absorb-
ing here.) Next

P{Ar’u:j} é P{yj+l = OO,lWyjl > I‘,le < 00}
= E{P(v;,, = oo Wyj, v,); [ijl >rv; < oo}



944 K. BRUCE ERICKSON

But from (8.4), if |f| > k,, then
P{)Jj+1 = oo | ij =1, v, = m} = PW,| > 0|t for all n > m|W, =t}

c c

IA

1w

ll]'|‘7 ‘

Hence since r > k,

PlA,,u=j} < E{|W 7 I[IW,,]|>7 y,<oo]}

Now [W,| > [W,| > ... so if we put
s=max{j: |W,[>rv; < oo}
then {|W, | > r,v; < oo} = {s = j} and by (8.6) s < o. Consequently,

oo c (=]
P{Ar} = Z:’:oE {—P ][szjl} =E {Zi =0 ][sz:]}

Put

Since r < W, =6 W,._l I<j<sit follows that
W, [P0 \W, |~
-1 J
Hence

Q——<Q—

rose(o- ILf/l,,)<0"Q,

1 b
)=
and finally
P{|W,| < r forsome n>20|W,=k}=1— P{4,} =1 — EQ
b

>1—-=
= o

.’

or

for all [k| > r = ry = k,.

9. Discussion of criticality in the general case. Suppose {W,} is a self-
annihilating process (2.1)/(2.2) with first moment parameters y and 2 as defined
in Section 3. If

p =max{ut, =, (g A} =1,
then one of the following must hold

(i) p = max{p*, 2"} =1, or
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In Case (i) we can show P{extinction} = 1 by essentially the same methods used
in Section 8. In Case (ii) the process tends to “flip-flop” instantaneously, see
Theorem 6, and the random walk trick appears to be useless.

Here is a sketch of a proof for sure extinction in Case (i). Without loss of
generality we may assume

We also suppose both E(|W,*| W, = 1) and E(|W,]*| W, = —1) are finite where
necessary and that assumption (B) is in effect.

If Wy, = k > 0, then until and including the first time W, < 0 we can imbed
W, in a random walk {S,'} with mean ¢ — 1 = 0. Using the estimates (8.1)—
(8.3) we have for every k > 0and 6 > 0

9.1y P{|W,| < bk for some ngl[WO:k}gl—%
where B, depends on b but not k. To get a similar estimate when W, = —k < 0
we consider three possibilities:
(@) A= —1. If Wy= —k < 0, we imbed W, = — W, in a random walk
with mean 2 4+ 1 = 0, and we may conclude
P{W,| < }k forsome n=1|W,= —k} = 1 _%

forevery k. Thisand & = }in(9.1)imply P{extinction} = 1 by Lemmas 3 and 1.
b)) —1<2£0. fWy= —k<O0,then W, =T, =Y, 4+ ... 4 Y, where

EY;, = 2 = —|4|, so by Chebyshev’s inequality
P(—0k < W, < 0k|W, = —k} 2 P(T, — k2| < (0 — |2])k}
>1-_ % __1_58
I Gl k

for any 6 such that [2] < # < 1. Hence
P{|W,| < 60k forsome n=1|W,= —k}
Z PW = 0k W= —kjz 1= 2.

This combined with (9.1) again gives P{extinction} = 1 by Lemma 3.
(¢) 0 < 2 < oco. From Chebyshev’s inequality we have

PO < ngAle(,:—-k}gl—T‘:;_

where 4 = 24 + 1. For 1k < j < Ak and b = 1/24 we have from (9.1)

P{|W,| < 3k forsome n=> 1|W, = j}
= P{|W,| < bj forsome n=2|W, =j}
>1-Biy 5

= kt
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for some B’ = 2!B, independent of k. Therefore

P{|W,| < 3k forsome n= 1|W, = —k}

2iosjsar P{|W,| = 3k forsome n> 1, W, = j| W, = —k}

P{O = W1 = %k} + Z§k<j§Ak(l - Bllk—%)P{Wl =]| Wo == _k}

PO < Wy <3+ (1= 20) gk < w, < ak)

(- 25)(-g)=1-2

kt k)~ kt

for some B, independent of k. Once again it follows that (8.4) is valid and hence
P{extinction} = 1.

[\VARI\VAR AN

v
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