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A review of probability methods in multiplicative arithmetic, with liberal use
of probabilistic language, reasoning, and technique, and sparing use of the ap-
paratus of number theory, is the object of this paper. Except for the fundamental
theorem of arithmetic and its immediate consequences, what number theory is
required is developed in Section 10. As for probability, the ordinary limit
theory for random variables is enough except for the weak-convergence results
in Sections 4 and 6 and the entropy calculations in Section 9. The diagram below
shows the logical interdependence of the first nine sections; the remaining three
can be consulted as the need arises.

/4N
3—5,/
2/
1/ \7——)8
9

1. Introduction. Additive functions. An arithmetic function f, defined over
the positive integers, is additive if f(m,m,) = f(m,) + f(m,) whenever m, and m,
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are relatively prime; it is multiplicative if f(m,m,) = f(m,)f(m;) whenever m, and
m, are relatively prime. If, in addition, f(pf) = f(p) for every prime power
ptB=1,2, ..., then f is completely additive or multiplicative. We shall be
concerned exclusively with real arithmetic functions, and largely with additive
ones, as the logarithm of a positive multiplicative function is additive.

An additive f must satisfy f(1) = 0. Let 8,(m) be the exact power of the prime
p in the factorization of m, so that

(1.1) m = II pfr™ .
Additive functions are those of the form

(1.2) flm) = 35, f(pP™) .

Let 6,(m) be 1 or 0 according as p|m or p }m, so that

(1.3) , 0,(m) =0 if g,(m)=0
=1 if B,(m)>0.

Completely additive functions are those of the form

(1.4) f(m) = 33, f(P)d,(m) .
The series (1.2) and (1.4) are actually finite sums, as §,(m) = d,(m) = 0 for
p > m.

ExampLE 1. The number of distinct prime divisors of m is w(m) = 3], d,(m),
which has the form (1.4) with f(p) = 1. With multiplicity counted, the number
of prime divisors of m is Q(m) = >}, B,(m), which has the form (1.2) with
f(p?) = B. Whereas o is completely additive, Q is only additive.

ExampLE 2. If m, and m, are relatively prime, then the general divisor of
m,m, is k, k,, with k, a divisor of m, and k, a divisor of m,. The number A(m)
of divisors (not necessarily prime) of m is therefore multiplicative, and log A(m)
is additive.

ExampLE 3. It follows from the same observation that the sum ¢(m) of the
divisors of m is multiplicative and log ¢(m) additive.

ExampLE 4. Euler’s function ¢(m) is defined as the number of integers less
than m and relatively prime to it. Because of the relation

(1.5) A g (1 %)

(see Section 7), ¢(m)/m is completely multiplicative, and ¢(m) is multiplicative.

ExaMpLE 5. The number of prime factors of m with multiplicity counted is
at least as great as the number of distinct prime factors of m. The excess,
Q(m) — w(m), as the difference of two additive functions, is itself additive.

Because of the representations (1.2) and (1.4), whole classes of additive
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functions can be constructed at will, and these will be the objects of the gen-
eral theory.

Probability. Since the value f(m) of an additive function varies in a highly
irregular way as m runs through the integers, it is natural to investigate the
average behavior of f. Let P, be the probability measure on the integers that
corresponds to a mass of 1/n at each m in the range 1 < m < n. Among the
first n integers, the proportion that lie in a set M is thus P,(M). The problem
is to analyse, for large n, the distribution function P,[m: f(m) < x] of f under
P,.

If k is a positive integer, the number of multiples of k not exceeding n is the
integral part [n/k] of n/k. Since x — 1 < [x] < x, we have

1 1 1 n 1
1.6 1 nm:km:A[y}S_.
(1.) k n <Pl | nlLk!l™ k
For large n, the probability under P, of the event k| m is thus close to 1/k. It
is a corollary of the fundamental theorem of arithmetic that, if p,, -- -, p, are
distinct primes, then 5pi(m) =1fori=1, ..., u—thatis, each p, divides m—if
and only if the product p, - -- p, divides m. Therefore

(1.7) p,,[mzapi(m)zl,iz1,.-.,u]:i[_L],

n Pl e Pu
If m is drawn at random from the range 1 < m < n, then the 6,(m) are random
variables, and (1.7) gives their joint distribution.

The essential point is that the d,(m) are almost statistically independent of one
another. Consider independent random variables d, (defined on some probability
space, one variable for each prime p) satisfying

i
(1.8) Pld,=1]=", Pld,=0=1-1.
P
If p,, - - -, p, are distinct primes, then, by independence,
(1.9) Pld, = 1,i=1, - u]=— 1 .
Pl PR P‘M

As n— oo, (1.7) converges to (1.9) for fixed p,, ---, p,, so the d,(m) are for
large n jointly distributed approximately as the simpler, independent random
variables d, are. Since, for example, P,[m: 6,(m) = 1] = 0 for p > n, this re-
quires some qualification. We shall see, however, that the joint distribution
under P, of the d,(m) for p < n is well approximated by the joint distribution
of the d, for p < n—sufficiently well at any rate that in many interesting cases
the distribution under P, of the sum (1.4) nearly coincides with the distribution
of the corresponding sum }; _, f(p)d,. There are of course many limit theorems
concerning sums of the latter sort, and the objective is to carry them over to
the analysis of completely additive arithmetic functions.
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For the study of additive functions in general, we need independent, integer-
valued random variables b, having the geometric, or Pascal distribution with
parameter 1/p:

k
(1.10) ]p{bp:k]:(_l_) <1_i>, k=01, ...
P P '
In order to have them defined on the same space, it will be convenient to define
the d, as functions of the b,

(1.11) d,=0 if b,=0
=1 if 5,>0.

By (1.10), this is consistent with (1.8). Compare (1.11) and (1.3).
Now 8, (m) = k; if and only if p;*:| m; this holds for each of distinct primes
Pis -5 P, if and only if p*1 ... p *«|m. Therefore, by (1.6),

. 1 1 n
(1.12)  Pm: B (m) = kyi=1, -, u] = 7[W]

This converges to
1

. > | — I -_—
(1.13) Plo zkoi=1oul =

The inclusion-exclusion principle now implies that as n — oo
(1.14) P,,[m: ,Bpi(m) = ki’ i = l, ceey u]—> p[bpi — ki’ i=1, .. ., u]

for distinct primes p, and nonnegative integers k.

The behavior of the b, thus approximates that of the 8,(m), and so probability
theorems can be used to analyse (1.2). It will turn out that the law of large
numbers and the central limit theorem apply to Examples 1 and 2 above, and
the three-series theorem applies to Examples 3, 4, and 5.

Formulas concerning primes. Standard number-theoretic formulas we shall re-
quire ((1.19), (1.20), and (1.21)) can be derived heuristically by entropy con-
siderations (which can be passed over, as there are rigorous proofs in Section
10; but see the notational conventions starting at (1.23)).

It takes log n units of information to specify an integer m in the range 1 <
m < n and hence log n units of information to specify its factorization into
primes—to specify, in other words, the values of

(1.15) Bum), p=n.

The system (1.15) thus has entropy log n under P,.
Let us compute the entropy of the corresponding random varlables

(1.16) b,, p=n.
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Since b, has mean p~*/(1 — p~) = 1/(p — 1), it has entropy

(1L17)  —3X5, (—;->k <1 - %) 1og<—117—>k<1 — %)

= logp - Els,] — log (1 1) = 182 _10g(1- 1),
gp - Elb,] — log (1— ) = EF —log (1 —
The last term, being of order 1/p, is small compared with the next-to-last, which
is itself close to p~*log p. Thus b, has approximate entropy p~*log p, and since
the b, are independent, the system (1.16) has approximate entropy > ., p~*logp.
This sum, because of (1.14), should for large n approximate the entropy log n
of the system (1.15) under P,:

(1.18) ¥ 18P ~iogn.
p
The fact is that the difference of the two sides of (1.18) is bounded, and this
is still true if n is replaced by a continuous variable x:

(1.19) Zpézl"’#:logwroa).

For a direct, elementary proof of this, see Section 10.

If we regard =(x), the number of primes not exceeding x, as a distribution
function in x, we can write {Z r~*log t n(df) ~ log x. If we formally take dif-
ferentials on each side, we obtain x~*log x - n(dx) ~ x~*dx and hence n(dx) =~
dx[log x. (Treating the integral as differentiable is a far lesser transgression than
differentiating the approximate equality.) Thus the density of primes in the
vicinity of x should be about 1/log x, which integrates approximately to x/log x
(differentiate again). For the entropy approximation (1.18)to hold, primes ought
therefore to come along at such a rate that z(x) is near x/log x. According to
the prime number theorem, the ratio of these two quantities in fact converges
to 1 as x — co. Here we shall need only the elementary one-sided estimate (see
Section 10)

(1.20) n(x)=0<lo’g‘x>.

If 7(dx) =~ dx[log x, then log log x =~ {z r~*log tdt ~ (i t~'n(dt) = X ,<.p~"
The last arithmetic fact we need (see Section 10) is that there exists a constant
¢ such that '

1 1
1.21 — =logl .
(1.21) Zyse -, = loglogx + ¢+ 0 (1)

In Section 9 these ideas are used to give a rigorous information-theoretic proof
that there are infinitely many primes. It would be interesting to have rigorous
information-theoretic proofs of results like (1.19).

Let us compute the uncertainty remaining in 5, when the value of 4, is
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known. If d, = 0, then b, = 0 also, and there is no uncertainty at all. Under
the condition 4, > 1 (or d, = 1), the conditional distribution of 4, — 1 coin-
cides (see (1.10)) with the unconditional distribution of 4, and hence has entropy
(1.17). Multiplying by P[d, = 1] = 1/p, we see that the conditional entropy
of b, given d, is
(1.22) _logp 1o (1 _ i) —0 (Lgl’) .

pip—=1) p p r
Since };,p~*log p < oo, it follows by independence that there exists a finite K
such that the entropy remaining in the system (1.16) when the d,, p < n, are
known is less than K.

In Section 9 the number-theoretic analogue is proved: There exists a K such
that, under P,, the conditional entropy of the system (1.15) given the system
0,(m), p < n, is less than K; K can be taken as 2.6—or as 3.8 if information is
measured in bits rather than in natural units. Thus to know which primes
divide an integer m is almost to know m itself, in that to learn the exact powers
with which the various primes divide m yields less than 4 further bits of infor-
mation, which for large n (m being a random integer in the range 1 < m < n)
is small compared with the total information of log, » bits. It is a reflection of
this fact that for many problems an understanding of completely additive func-
tions is enough for an understanding of additive functions in general (see Lemma
2.2 below).

Notation: Probability. In addition to the d, and b, defined above, we shall
require random variables
(1.23) d)=d,— L, br—p 1.

P P
Since E[d,] = p~%, d,’ is d, centered at 0; since E[b,] = p~'/(1 — p~') is nearly
p~%, b, is nearly centered at 0.

For distribution functions F, and F, F, = F will denote weak convergence:
F,(x) — F(x) for continuity points x of F. For random variables {,, {, — F will
denote convergence in distribution: the distribution function of {, converges
weakly to F; and {, = { will indicate that the distribution function of {, con-
verges weakly to that of {. Finally, if a is a constant, {, — a will mean that {,
converges in probability to a. In all of these relations, each random variable
involved may be defined on a different probability space.

Notation: Number theory. In addition to the arithmetic functions 4,(m) and
B,(m), we shall require the centered functions

(1.24) 5, (m) = d,(my— L, p/m)=p,(m)— L.
P P

There an alphabetic parallel between the notation in (1.24) and (1.23). The
number-theoretic results are most easily understood, and their analogy with
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probability results most clearly brought out, by the systematic use of parallel
notation. An arithmetic function f(m), as a function on the space of integers,
is a random variable under P,. By the standard convention of probability theory,
we usually omit the argument m; thus P,[f < x] is short for P,[m: f(m) < x].
By

(1.25) Bulf] = - T flm)

we denote the expected value of f under P,.

Most of the theorems will be stated in terms not of a single additive function
/> but in terms of a sequence or array {f,} of additive functions. We consider
the distribution of f, under P, and investigate what happens as n — co, which
corresponds in probability theory to working with a triangular array of random
variables. Even if we are interested in a single additive f, truncation arguments
ordinarily lead to an associated array {f,}, and so it is convenient to work with
arrays from the outset. Also, limits such as the Poisson distribution can arise
only from an array.

The distribution function of f, under P, is P,[f, < x]. If this converges
weakly to a distribution function F, we write

(1.26) fo=F.
If { is a random variable,
(1.27) fo=¢C

will indicate that (1.26) holds with the distribution function of { in the role of
F. Finally, there is the analogous notion of convergence in probability: for a
constant a,

(1.28) fo—a

will mean that P,[|f, — a| = ¢] — 0 for ¢ > 0. In (1.26), (1.27), and (1.28),
the f, need not be additive. It must be remembered that the distribution of f,
is governed by P,, and this is so even if f, does not depend on n. If f= F,
which means that P,[f < x] — F(x) for continuity points x of F, we say that f
has distribution F.

Density. 1f P, (M) — 6 for a set M of integers, we say M has density 6 and
write D(M) = 6:
(1.29) P (M) = D(M) .

A set of density 1 we regard as containing “practically all” integers, a set of
density 0 as containing “practically none.” An arithmetic function f has distri-
bution F if and only if

(1.30) D[m: f(m) £ x] = F(x)

for continuity points x of F.
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2. The law of large numbers. Let {f,} be an array of additive functions.
Suppose for the moment that f, is completely additive, so that (see (1.4)) f,(m) =
2ip<nfa(P)o,(m) for m < n. The corresponding sum {, = }7,., f.(p)d, has mean

(2.1) A, = 5, P

P
in cases of interest, its variance };,_, f,%(p)p~*(1 — p~?) is near
(22) an = Zp§n [‘nz_(P—)" .

P

In analysing the distribution of f, under P, it is therefore natural to normalize
fn to (fu — 4,)/B,; it will turn out that this normalization is appropriate in the
additive case as well as in the completely additive case.

In Sections 2 through 6 we shall consistently use the notation (2.1) and (2.2).
We shall assume that B, > 0 for sufficiently large n; if f, = f, this amounts only
to the assumption that f(p) does not vanish identically.

Since {,, as defined above, has mean 4, and variance at most B,?, it follows
by Chebyshev’s inequality that (¢, — 4,)/¢, B, = 0 if ¢, — co. With the extra
condition (2.3) to cover the case in which f, is additive but not completely
additive, the number-theoretic analogue holds.

THEOREM 2.1. Let {f,} be an array of additive functions such that

(2.3) sup”%ni)—l.<oo, m=1,2,....
If ¢, — oo, then
(2.4) Som A g,

¢an

We may restrict the n of the supremum in (2.3) to values large enough that
B, > 0. Notice that (2.3) is no restriction at all if f, does not depend on n.
Notice also that (2.3) is no restriction if each f, is completely additive, since it
then suffices to check it for prime m and since |f,(p)| < pB, by (2.2). Before
proving the theorem, let us apply it to the first two of the examples in Section 1.

ExampLE 1. If f, = o for all n, then 4, = B, = };,., 1/p. By (1.21),

(2.5) A, =B} =loglogn + 0(1),
and it follows by (2.4) that (if ¢, — o)
— loglogn
26) o —loglogn _
(2.6) ¢,(log log n)?

To derive a consequence of (2.6), let us show that

2.7) loglogm — loglogn _
(log log n)?
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For m < n, the ratio here is at most 0; if it is less than —e and if n* < m, then
log log nt < log log n — ¢(log log n)}, which implies log log n < ¢~*log®2.- There-
fore, for n beyond some ny(¢), the ratio in (2.7) has modulus exceeding ¢ with
P,-probability at most P,[m: m < n*], which goes to 0. This proves (2.7),
which in turn implies log log m/log log n — 1. By this and (2.6),

o(m) — loglogm _

(log log m)t+e
for ¢ > 0. Therefore (see (1.29))
(2.8) » D[m: |w(m) — loglog m| < (loglog m)t*] =1,

and w(m) is “usually” near log log m.

These results are also true with Q(m) in place of o(m), since Theorem 2.1
applies as well in the additive as in the completely additive case. An integer m
is “round” if Q(m) is large—if m is the product of many rather small primes.
Hardy and Wright ([19] page 358) observe that round numbers (like 1200 =
2¢.3.5%and 2187 = 37, decimal notation obscuring the roundness of the latter)
are rare, as “may be verified by any one who will make a habit of factorizing
numbers which, like numbers of taxi-cabs or railway carriages, are presented to
his attention in a random manner.” Since loglog 10" < 3, an integer under 10
million will ordinarily have at most three prime factors. This much the law of
large numbers yields; the central limit theorem of the next section contains
more detailed information.

EXAMPLE 2. A prime p has A(p) = 2 divisors, and so, if f,(m) = log A(m),
(2.9) A, =log2.loglogn + O(1)

B =log’2 -loglogn + O(1) .
Therefore,
(2.10) logA —log2-loglogn _
¢.(log log n)?
if ¢, — co. The analogue of (2.8) follows as before, and log A(m) is usually near
log 2 - log log m, or A(m) itself is on a logarithmic scale near (log m)'¢®.

Let A,(m) be the number of u-tuples (k,, - - -, k,) of positive integers with
k, - -+ k, = m—the number of ways of expressing m as a product of u factors,
order accounted for. Then A,(m) is multiplicative, and A(m) is the special case
Ay(m). Since A,(p) = u, (2.10) holds with log A, and log in place of log A
and log 2.

The following lemma, which we shall use repeatedly, suffices to prove Theo-
rem 2.1 for the case in which f, is completely additive. Let g be a function
defined over the primes.

LeEMMA 2.1. There is a constant C, independent of g and of n, such that

@.11) E By 0099 F S € e 2L
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By the Chebyshev argument, (2.11) implies

(2‘12) Pn[lZpén g(P)apll g '2] é % Zpén gzl(pp) .

For completely additive f,, f,(m) — A4, = X ,<.f.(p)d,'(m) if m < n, and hence
(2.12) implies (2.4) in this case. Obviously, the probability analogues of (2.11)
and (2.12) hold with C = 1.

Proor oF THE LEMMA. Let 4 = 3, _.g(p)/pand B* = 3 _, ¢*(p)[p. We first
find a C such that

(2.13) - Eu[Zr2a 9(P)3,) = A* + CB
for all g and n. By (1.7) (here p and ¢ both represent primes),
Eal Z o< 9(P)3,
(2.14) = Boer P [ ]+ Toesvara 0000 [ -]
S Bt Dorsnsa K00 4 5, l0P0@)]

By Schwarz’s inequality,
2 2 3
qus'n Ig(P)g(q)! é [quénpq : qu§'n g“%)?;}_(ql] é B [qugnP‘I]* .

If we show that 3}  _, pg = O(n®), it will follow that the final term in (2.14) is
at most a bounded multiple of B*. But };,..,pq < n )}, n(n/p). For p < nt,
use (1.20) to bound #(n/p) by a multiple of np~*/log np~* < 2np~*[log n; elsewhere,
bound z(n/p) by n/p. It follows that

2
DirasaPd =0 ( lOr;n Zpgni”% + 17 Datcpsn ’%) .
and this is O(n*) by (1.21).

Since the final term in (2.14) is at most a bounded multiple of B?, (2.13) will
follow if we show that the next-to-last sum in (2.14) is at most 4* 4 C,B® for
a universal C;. This sum does not decrease if terms with p = ¢ are included,
and A* is this latter sum with the range further expanded to include pairs
p» q < n with pg > n. Thus

S IPID < oo 19D
pPg=m,pFq Pq == A P q=n,pq Pq

and for the proof of (2.13) it remains only to estimate the last sum, which by
Schwarz’s inequality is at most

1 2 2 3 R 1 3
[meémql&f»_ﬁ : Zp,qsn g%‘(ﬂ] =B I:Zp,qgn,pvn F[—:‘ .
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Now

1 1 17
Zp,qgn,pvn F[— =2 Zpsni,n/pqénl—pzl“ + [anpén —P{| .

By (1.21), the second sum on the right is O(1) and the first one is

1 n 1
i — | log1 — loglog — + O
Dipsat » [og ogn og log » + <10gn/p>]

= Zpgn;f%[—logo — %) -+ 0<$>]

= Zﬂéni‘% o <-i%§—‘:> .

The final term here is O(1) by (1.19), and so (2.13) is proved.
If 4 = E,[X,<.9(p)d,], then by Schwarz’s inequality,

4= 4] S Ty l0pP) S 1 [Zpenplt - 8= B[ FO T

By Schwarz’s inequality again and (1.21),
4] £ 3,e, 9D < [Zpgn l]& - B = B-O(log log n)t,
P P

and it follows by (1.20) that [4] . |4 — A’| is at most a bounded multiple of B2
By (2.13), E,[X,<. 9(p)d, — A < CB* + 24(A — A’), which implies (2.11)
with some new constant C. []

To each additive f there is associated a unique completely additive f* de-
fined by

(2.15) fr(m) = 3, f(p)d,(m) .

For example, Q* = . Notice that f* = fif f itself is completely additive and
that f*(p) = f(p) in any case. The quantities 4, and B,?, as defined by (2.1)
and (2.2), are the same for f* as for f. If ¢, — oo, then (f,* — 4,)/¢,B, =0
by (2.12); hence Theorem 2.1 for the general additive array will follow if we
prove that (f, — f,*)/¢, B, = 0. This is a consequence of (2.3) and the follow-
ing lemma (with C, = ¢, B,). The lemma will be used repeatedly.

Lemma 2.2. If {f,} is an array of additive functions and C, are positive con-
stants with

(2.16) 1imwiééﬂ=o,» m=1,2,-..,
then .

— * 1
(2.17) Ve b2l < 2, 110) — )] =0

Proor. The sum in (2.17) is at most

Zpar (PP + 1API] + Doz 1fu(P) — fuX (PP 5
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and the second sum here vanishes unless 8, = 2 for some p > T. Therefore

1
(218) P - T, 11(p%) — £ (P2 ¢
1 s eC,
= ZDT? + 2psr Po| |fu(p)] + lfn(]’)! = T
Choose T so large that 3., 1/p* < ¢/2; that T fixed, choose k so large that

1
2ipsr Pu[B, Z k1= Xoar P—_k < e.

Finally, use (2.16) to choose n, so that n > n, implies 2|f,(m)| < ¢C,/T for all
m < T* If n = n,, then the right side of (2.18) is at most ¢. []

The point of the lemma is this. If B,(m) < 1, then f,(p%'™) = f,*(p*'™);
hence if g,(m) < 1 for all but a few p, f,(m) should be near f,*(m). Since
P,[8, =2 2] < 1/fp*and } 1/p* < oo, it is likely that 8,(m) < 1 for most p, and
so it is likely that f,(m) is near f,*(m). For this reason, most problems concern-
ing additive functions reduce to problems concerning completely additive func-
tions. See the remarks following (1.22) and at the end of Section 9.

3. Approximation by the normal law. Here we prove the central limit theo-
rem under conditions which make the arguments quite simple. Section 5 con-
tains the general theory of convergence to infinitely divisible laws, including
the central limit theorem under the Lindeberg conditions.

Let @ be the standard normal distribution function.

Tueorewm 3.1. If {f,} is an array of additive functions such that

(3.1) lim,_., (M — o m=1,2,...,
B,

and

(3.2) maxpén_lfé_P)l -0,

then

3.3 oz A o,

(3.3) -

n

If f,=f and B, — oo, then (3.1) automatically holds, and if, further,
sup, |f(p)| < oo, then (3.2) holds. These remarks apply to Examples 1 and 2.
(For completely additive f,, (3.2) implies (3.1).)

ExaMPLE 1. If f, = o, then (2.5) holds, so (3.3) implies

o —loglogn _ o
(log log n)}
Of course this is stronger than (2.6). Because of (2.7), we also have'
o(m) — loglogm _ 0,
(log log m)}
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which can be put in the form (see (1.29))
D[m: w(m) < loglog m 4 x(log log m)t] = ®(x) .
These results hold with Q in place of w.
ExAMPLE 2. By the same reasoning (see (2.9)),

log A — log2 . loglogn -0,
log 2 - (log log n)}

and
D[m: A(m) < (log m)logzzx(logxogm)é] — q)(x) .

There are obvious analogues for A, (m) (defined after Example 2 in the preceding
section).

To prove Theorem 3.1, observe first that, by (3.1) and Lemma 2.2,
(fu — fu¥)|B,=0. We may therefore assume in the proof that f, is com-
pletely additive, in which case (3.3) is the same thing as

1

(3.4) = oanfolP)3y = @
The next step is to find a sequence {r,} in which r, is small enough that
3.5) logr, o
logn

but large enough that

1 2
(3.6) s z;,uq,s,,[%l’_)_,o.

If ¢, is the maximum in (3.2), then ¢, — 0, so that r, = n‘» satisfies (3.5). The
quantity in (3.6) is at most (use (1.21))
€ Xir <psn 1_ ¢, (log log n — loglog r, 4 o(1))
P

= ¢, (—loge, + o(1)) ,
from which (3.6) follows.
By (3.6) and Lemma 2.1, (3.4) is equivalent to

1 '
(3.7) 5 Dsr, Sl = @
Consider the probability analogue

1 Y
(3'8) B Zpér,,fn(]’)dp =0.
Since

2
27’5" %B_)_ =u max?éufnz(P) + —l];_ an ’
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it follows by (3.1) that the sum on the left is o(B,*); hence },,., f.(p)d,’ has
asymptotic variance B,2, and by (3.6), so has the sum in (3.8). Now |d,/| = 1,
and so E[|4,’*] £ E[4,'* < 1/p; hence the third absolute moment of f,(p)d,’ is
at most | f,(p)|*/p. Since B,™* 3., |f.(p)I*/p is at most the maximum in (3.2),
Lyapounov’s theorem ([7] page 185) implies (3.8).

We deduce (3.7) from (3.8) by a moment argument requiring two lemmas
we shall use again further on. Let g be a function defined over a set U of primes
and put

(39) B — ZpeU gz(P) .
P
LemMa 3.1. If max U < r < n, then for all k
, , 2k kBk
(3.10) Bl Zyer 0(P)3, 1 — ELZ,e0 0(P), 1 < =

The inequality (3.10) is an expression of the fact that the joint distributions
of the 4, and of the d, nearly coincide. The next result concerns the d, alone.

LemMma 3.2. If |9(p)| £ M for pe U, where M = 1, then for all k
(3.11) |E[Z,e0 9(p), 1| < k! Mbet™™.

Deferring the proofs of the lemmas, let us use them to complete the proof of
the theorem. Let &, and ¢, denote the nth elements of the sequences in (3.7)
and (3.8). If we take g(p) = f.(p)/B, and U = [p: p < r,] in the lemmas, then
(3.9) is at most 1, and (3.10) gives

ky k
(3.12) B4, — BIEA < 20

n

which goes to 0 for each k because of (3.5). By (3.2), there exists an M > 1
such that | f,(p)|/B, < M for all n and all p < n, and so (3.11) implies

[E[CH] < k! Meet .

By Theorem 11.2 with 6 = Me, (3.8) implies (3.7).

The ideas in this proof will recur in Section 5. If in (3.7) and (3.8) the sums
ranged over p < n, the right side of (3.12) would be 2*n*/n, which goes to infinity,
not 0. Hence the necessity of restricting p to the range p < r,, where r, satisfies
(3.5). On the other hand, r, must satisfy (3.6) to ensure that (3.4) and (3.7)
are equivalent.

Proor oF LEMma 3.1. If b = 3 ,., 9(p)d, and { = 3, ., 9(p)d,, then

(313) En[hk] = Z g(pl) e g(pk)]E'n[apl e 5pk]
and
(3.14) E[*] = X 9(py) - - - 9(pELG,, - - - 4,15

where in each sum the p; independently range over U. There may of course be
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repeats among p;, - -, p,; if Pil’ Piyp -+ is a list of the distinct primes among
P> - - ,p,,, and if P=p,p, --- is their product then ]En[é 20, 1=
P,[0 =...=1]= n‘l[n/P]and Eld, ---d,] =P, =d, = .. =

?’11 pi Pig
11 = 1/P. S:nce these two expected values dlﬁ'er by at most 1 /n a term-by—term

comparison of the sums (3.13) and (3.14) shows that

(3.15) [EJ#] — BIEY £ (S0l = 720,

where the last inequality holds because, by Schwarz’s inequality
Yoer 9P S [ZpevPPB < 7B
Let 4 = 3,5 9(p)/p- Now
B[k — A} = Do OE[F])(—A4)",

and E[{ — A]* has the analogous expansion. Comparing the expansions and
applying (3.15) to each term gives ‘

(3.16)  [Eu[h — AF — L — AF| = Do () 22 41— = —:,—(IAI + rB)*.

Now (3.10) follows because [4| < 3, |9(p)| < rB. [

Proor or LEMMA 3.2. By the multinomial expansion,
| k ’ k! "ok ku
(Zpevxp) = u=IZ k—'*—TZ XpL e xpu
A k!

where ]’ extends over the u-tuples (k;, - - -, k,) of positive integers adding to k
and " extends over the u-tuples (p,, - - -, p,) of primesin Uwithp, < ... < p,.
Therefore the kth moment in question (see (3.11)) is

GAT) B B ey B PRI - gh(pEL, T

Since the d,’ have mean 0, the summand in (3.17) vanishes if k; = 1 for some
i; and k, > 2 implies |E[d, ]| < E[4, ]' < 1/p;. Therefore

(3.18)  |E[X,er 9(2)d,' | < k! 3k, 3 3 Ig";fpl)l Ig";(pu)l ,

where now Y’ extends over the (k,, - - -, k,) which add to k and in which each
k, is at least 2, and where 3" has the same range as before. Since

ZMUM < Mki—2? ZpeU gz(P) < M*:B? ,
p P

the innermost sum in (3.18) cannot exceed

2Tt Sy lg* (p)|]< e
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Since there are fewer than k* terms in }}’, we arrive at

1

IELZsew 9(P)4,' T < k! 200, B S KM -k

MkBZu
u!

4. Approximation by Brownian motion. We turn now to.an invariance prin-
ciple, or functional central limit theorem. The hypotheses are those of Theorem
3.1; Section 6 contains more general results. The weak-convergence theory
needed here, in particular the theory of the function space D = D[0, 1], can be
found in [3].

For 1 < m < n, define an element X, (., m) of the space D as follows. For
0<=r< 1, put

(4.1 0.(f) = I:p p<n,
then define
4.2) X,(t, m) =

1
B,

[+(4) :
2 qup —T é t] ’

1
B,

Ty [ o(pr=) — L2,

If £, is completely additive, (4.2) reduces to

1

(4.3) Xt m) = —

Ziveau fa(P)3, (m) .

As tranges over [0, 1], the sums in (4.3) range over the partial sums )}, ., f.(p)d,’
and similarly for the sums in (4.2). The scaling is so arranged that the variance
sum (2.2) corresponding to X,(#, «) is approximately ¢.

Now X,(+, m) is a random function in D if m is chosen at random in the range
1 <m < n. Thus we have a random element X, of D, governed by P,. Let
W denote Brownian motion.

THEOREM 4.1. If {f,} is an array of additive functions such that

(4.4) lim,_ /(M o, m=1,2, ...,
Bﬂ

and

.5) max, , /Pl 0,

then

(4.6) X,—W.

Before proving the theorem, we apply it to » and A.
ExampLE 1. If f, = o, then X, (¢, m) = B, 3}, « 0,/(m). Let Y,(-, m)be
the function on [0, 1] with value '

y (loglogp .\ _ 1
T 1 e — 6 1 1
" ( log log n > (log Tog n)t [ X5y 0,(m) — log log p]



PROBABILITY AND ARITHMETIC FUNCTIONS 765

throughout the interval from log log p/loglog n to the next such point to the
right (and with value 0 to the left of log log 2/log log n). The sum Y}, 0 .(m)
is the number of prime factors of m not exceeding p. From X, — W we can
deduce Y, — W: Let 4,(0) = 0, 4,(1) = 1, and 2, (log log p/log log n) = B,?/B,?,
p =< n; define 2, on [0, 1] by interpolating linearly between these points. Then
sup, |4,(t) — {| — 0, and hence (see Section 17 of [3]) the random function
X.(2,(t), m) converges in distribution to W. With B,? and B,* in place of log log n
and loglog p on the right in the definition of Y,, it coincides with this last
random function. To pass to Y, — W is now simple because we have B, ~
log log n and even max,_, |B,* — log log p|/B, — 0.

Since the maximum jump in Y, goes to 0, Y, = W still holds if Y, is defined
as before at points of the form log log p/log log n but is defined by linear inter-
polation in between such points. It is in this last form that Y, is treated in [6].

Let Z(., m) be the function on [0, 1] with value

loglogp ) \o 1 5t — low 1
Z(log log m ’ m> - (log log m)? [2Zesp 94(m) og log p]

in the interval from log log p/log log m to the next such point. Since Y, — Wand

max

loglogp  loglogp -0

log log n log log m

(see (2.7)), it follows by the arguments of Section 17 of [3] that the P,-distribu-
tion of Z converges to Wiener measure W. Therefore (see (1.29)) D[m: Z(., m) e
M] = W(M) if M is a Borel set with W(dM) = 0. For example (see Section 11
of [3)),

D[m: max,,, 2igsp Oy(m) — loglog p > x] _ 2 §= e dy
- (log log m)* r

psn

for x > 0, and
D 1 1 2 ‘
Mm: ————— 3| —Ip =M Y0 log lo ]< ]_ rc 3
[ log log m [p P =m, Jgs, 0(m) > loglogp | < x - arc sin x

for0 < x< 1.
The same arguments go through for f, = Q; it is only necessary to replace J,
by g, throughout.

ExampLE 2. If f, = log A, then, since A(pf) = B + 1, (4.2) becomes

i~ Zoeon | 108 (6,0m) + 1)~ 22 ].

Xn(t, m) = 3

The set Q,(7) is here the same as in Example 1, and by the argument there we
can prove Y, = W, where

( log log p m) N 1
loglogn ’ '/~ Tlog 2(log log n)t
X [Zgsp 108 (By(m) + 1) — log2 - log log p] .

Y,

n
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The sum on the right is the logarithm of the number of divisors of m composed
entirely of primes not exceeding p. It is easy to write down the analogue of Z
in the preceding example.

Because of the relation ([15] 1 page 38)

Aupf) = (i)
it is possible to deduce and interpret the corresponding results for A, (see Example
2 in Section 2).

In order to prove Theorem 4.1, observe first that replacing f, by f,*, as defined
by (2.15), has no effect on (4.1) but in general converts (4.2) into a new func-
tion X, *(t, m). But
sup, | X,(t, m) — X, X(t, m)| < —

g~ Zioen [a(PPP™) =[5 (P™)| =0

by (4.4) and Lemma 2.2. In proving (4.6) we may therefore assume that f, is
completely additive, and we may work with (4.3) rather than (4.2).
We next show that there is no loss of generality in assuming

“4.7) fup) =0 for p>nt

(this restriction is needed in the tightness argument). Indeed, since there exists
a sequence {r,} satisfying (3.5) and (3.6), certainly

L

(4.8) 5

an}<p_s_'n fn2(p) - 0 *

P
Hence if we pass to a new completely additive array by setting f,(p) = 0 for
p > ni, the new B, is asymptotic to the old one. Since E,[|6,'|]] < 2/p, it follows
by the Chebyshev argument and Schwarz’s inequality that

NS T X EREy 5 |fn]<7p)|

B’n
g%[z%-zﬁ%@]ﬂ

where each sum extends over nt < p < n. This goes to 0 by (1.21) and (4.8),
so passing to the new array has in the limit no effect on the distribution of X,.
We shall prove that (X,(s), X,(¢)) = (W,, W,) for0 < s < t < 1. An obvious
extension of the argument will show that all the finite-dimensional distributions
converge weakly. It is enough (see [3] page 49, for example) to show that

4.9) aX,(s) + bX,(t) = aW, + bW,
for real a and 5. If
9.(p) = (a + b)f(p) if peQ.s)

(4.10) = bf.(p) if peQ.(r) — Qus)
=0 if Pé Qn(t) )
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then (4.9) is the same thing as

1
(411) ‘B Zpg,, gn(p)ap’ =aW, + bW, .

n

The variance sum (2.2) corresponding to g, is
2 2
(412) Vn2 = (a + b)2 ZpeQn(s) [1‘% + b ZpeQn(t)—Qn(s)fnp(p) .

By the definition (4.1),

1 2 2
(4.13) Supt t — an ZpeQn(t) f'"r]fp) é maxpén fgfzp;) s

and by (4.5),
2
(4.14) max, _, % 0.

n

Now (4.13) and (4.14) together imply

2
(4.15) ?2 —> (a4 by's + Bt — 5).

n

Since this limit is the variance of the normal variable aW, 4+ bW,, and since
V™t Xpsn 9a(p)d,’ = @ by Theorem 3.1, (4.11) follows.

The tightness argument remains. Here the proof is constructed so as to apply
in the more general setting of Section 6: We assume only (4.7) and (4.14). The
argument requires two lemmas. Let g(p) be a function of primes.

Lemma 4.1. If U, and U, are disjoint sets of primes with max U, < n* and
max U, < nt, then

(416)  E(Zyer, 073 V(S per, 93,
g%p) 9%(p)
= 17(Zoer, TP) (L5, 22,

Proor. The arguments are like those for Lemma 3.1. Leth, = 3 pev, 9(P)0,

L= 2per, 9Py Ai = Xbeu, 9(P)ps B = Tyev, 9*(p)lps and u, = max U,.
Now

Eu[mf k] = 59(p) - -+ 9(Pe)9(9) -+ 994 BBy, -+ 3, 0, -+ 3, ]

where p,, - .., p, range over U, and ql; *++, gy, range over U,; and E[{,1{,*]
has the analogous expansion. Just as we proved (3.15) by comparing (3.13) and
(3.14), we can therefore prove

[Eu[hhe5] — E[LMGR]| < % [Zsev, 19PN X5 e, 19(P)I T

= — (wmB)(u,By)s .

x|~
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If in the argument leading to (3.16) we use a double binomial expansion, we
arrive at
[Eu[(h, — Ai)i(hy — Ag)*2] — E[(G — A)"(C, — Ao)"]|
< (] + BYA(] + B < (22820, B

If k, = k, = 2, the final term here is at most 16B,2B;* because u;, < nt. Since
U, and U, are disjoint and the d, are independent, E[({, — 4)P({, — 4,))] <
BB}, and (4.16) follows. []
Let g(p) be defined over primes, as before, and for u < v let
M, = sup min [| 33, <,<, 9(P)9,'|s | Dacpsay 9(P)I,I1 5
where the supremum extends over triples x,, x, x, with u < x, < x < x, < v.

LEMMA 4.2. There is a universal constant C, such that, if u < v < nt, then

" C 9(p) T
(4‘17) pn[Muv g Z] é 7[2u<p§v ;p :I .
ProoF. By Lemma 4.1,
2, 2
Eul(Secrse S0P Y Sacray OPVT S 17| Dicoer, NP |

for x, < x < x, £ nt. Therefore (4.17) follows by Theorem 12.5 of [3] or
Theorem 6.1 of [5]; the constant C;, which may be taken as 17K}, in the nota-
tion of [3] or as 17K in the notation of [5], is independent of n, u, v, g and 1. [

Because of (4.7), Lemma 4.2 applies to f,. For0 <r<s<1, let

2
Zra = ZpeQ,ﬂst,ﬂr) f” (f)) ;

if in (4.17) we take u to be the largest prime in Q,(r) and v to be the largest one
in Q,(s), we obtain
P fsup min [|X,(1) — X,(0)l, [X(6) — X0l 2 €] = 5 23,

where the supremum extends over triples #,, ¢, t, with r < ¢, < ¢t < ¢, < 5. It fol-
lows by Theorem 11.3 that, if

(4.18) O=5<85< - <5 =1, S — 8§, =0, i=1,..-,k,

then
Cl k—2 2

ct 1=0 Ldag8i4g "

Pw'(X,,0) > ¢] £

Clearly Y:{0 3, .,,, = 2, and by (4.13), 30, . .. < S5 — 5 + 2¢, where ¢, is
the maximum in (4.13) and (4.14). If we choose the s, to satisfy s, — 5;_, < 20
as well as (4.18), we obtain

(4.19) P w(X,, 3) > ¢] < %(45 +2e).
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Given positive ¢ and 7, choose & so that 12C,d/¢* < ; by (4.14), ¢, < 0 for
large n, in which case the right side of (4.19) is less than 5. Therefore, for each
positive ¢ and 7 there exist a 4, 0 < 6 < 1, and an integer n, such that

(4.20) P,[w"(X,,0) > ] <7, nz=n,.

Now (4.6) follows by Theorem 15.4 of [3], which completes the proof of
Theorem 4.1.

5. Approximation by infinitely divisible laws. This section extends to the
general case of an infinitely divisible limit the central limit theorem of Section
3. The proof of that theorem required a sequence {r,} satisfying

(5.1) logr, .y
log n
and
(5.2) B 3 <psn fnlfp) -0

(see (3.5) and (3.6)). Such a sequence in general need not exist, and to carry
the theory through, we must restrict ourselves to those arrays for which one
does exist. Let H be the class of arrays {f,} of additive functions for which
(5.1) and (5.2) hold for some {r,} and for which the further condition

(5’3) limn—mo'f‘n_érp_)‘:os m:1,2a"’,

n

holds. If f, does not depend on n, then (5.3) is equivalent to B, — oo, and the
first condition is that B, ~ B, for some {r,} satisfying (5.1).

If will be convenient in this section to omit the normalization by B,; this can
be arranged by passing from f, to f,/B,. Let H' be the class of arrays {f,} of
additive functions for which

(54) Zr,,,<psn L_;Z(_PZ -0
P

for some sequence {r,} satisfying (5.1), for which
(5.5) sup, Yy 2P < oo,
I4

and for which

(5.6) lim,_, fi(m) =0, m=20,1, .

If {f,} is in H, then {f,/B,} is in H'; not all arrays in H’ arise in this way, since
the sums in (5.5) need not equal 1. '

Let K, be the finite measure on the line R* corresponding to a mass of 2p)p
at the point f,(p) for each p < n:

(5'7) Kn(M) = ZpSn,f,,,(p)eM f'n;fp) .
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If K is a finite measure on the line, there is an infinitely divisible distribution
F, with characteristic function

(5.8) () = exp §=.. (€% — 1 — iux) _xl? K(dx) ;

F, has mean 0 and variance K(R'). The general infinitely-divisible distribution
with mean 0 and finite variance has this form. If K is a unit mass at 0, then
F,=0.

Write K, —, K to indicate vague convergence: K, (M) — K(M) for every finite
interval M whose endpoints are continuity points of K. Weak convergence K, — K
for finite measures can be defined by requiring K, —, K and K,(R') — K(R").

TreoreM 5.1. If {f,} is in H', then a necessary and sufficient condition for
(5.9) fo= Zpua TP~ F
P

is that F have the form Fy and
(5.10) K,—,K.

It is not difficult to see that the equivalence of these conditions persists if
(5.10) is strengthened to K, — K and if to (5.9) is added the requirement that
Yipsnfa'(P)[p converge to the variance of F.

PROOF OF SUFFICIENCY. It will be clear that the argument to follow still holds
if n goes to infinity through some subsequence of the integers, a fact that will
be needed in the proof of necessity.

Assume (5.10); we are to prove (5.9) with F = F . By (5.6) and Lemma
2.2, we may assume f, to be completely additive; then

(5‘11) Zpénfn(P)ap’ﬁFK
is the objective. The probability analogue is

(5.12) Dipsafu(p)d, = Fx .
As the first step in the analysis of (5.12), we show that

(5-13) [fu(p)dy 1 p = 1]

is an infinitesimal array (see (11.5)). We have
2
(5.14) Zpen L2100,

indeed, if $? is the supremum in (5.5), then the sum here is at most Y _.-1 f,(p) +
eS?, so that (5.14) follows from (5.6). Since (5.14) implies

(5.15) max,_, L+P| o,
P ,
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it suffices to prove that [ f,(p)d,: p < n] is infinitesimal, or that
1
(5:16)  max,o, P/ p)y| > el = max[ - p < mo /)] >

goes to 0. By (5.6), there exists an n, for which n > n, implies that |f,(p)| =< ¢
holds for all p < 1/e. But then n > n, implies that (5.16) is less than e.

Since the array (5.13) is infinitesimal, the general convergence theory applies
(see Theorem 11.4). Let K,’ be the measure having for each p < n a mass

(5.17) [fn(P) (0- %)T (1- %> :f”z(”)% ('~ %)
at the point £,(p)(0 — 1/p) and a mass
(5.18) ) (1 - %)]% =ff(P)% (- %)2

at the point f,(p)(1 — 1/p). Since by (5.5) the row sums of (5.13) have bounded
variances, (5.12) holds if

(5.19) K -, K.

The total weight of the masses (5.17) goes to 0 by (5.14), so removing them
from K,’ has no effect on (5.19). If each mass of the form (5.18) is increased
to £,2(p)/p, the total increase goes to 0 by (5.14), so (5.19) is again unchanged.
Finally, if each mass of the form (5.18) is shifted from the point f,(p)(1 — 1/p)
to the point f,(p), the maximum shift goes to 0 by (5.15), and (5.19) is once
more unaffected. But with these three changes, K,’ becomes K,, so that (5.19)
becomes (5.10).

Therefore (5.10) implies (5.12). We shall show that (5.12) implies (5.11),
but first under the added assumption

(5.20) sup, max,_, | f.(p)] < o .
Because of (5.4), it follows by Lemma 2.1 that (5.11) is equivalent to

(5.21) Dipsr, Su(p)0y) = Fi .
By Chebyshev’s inequality, (5.12) is equivalent to

(5.22) Zpér,,fn(]’)dp, = Fy.

Thus (5.22) holds, and we are to deduce (5.21) from it. Let &, and {, be the
nth terms in (5.21) and (5.22). By Lemma 3.1, |E,[4,*] — E[{}]| < 2*r,*S*/n, S
being the supremum in (5.5). If M exceeds the supremum in (5.20) and M = 1,
then |E[{,*]| £ k! M*¢*S* by Lemma 3.2. Thus (5.22) implies (5.21) by Theo-
rem 11.2.

To treat the general case, where (5.20) need not hold, define for each positive
T a completely additive f , by

fraP) =fulp) i DI T

=0 otherwise.
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Let K, , be the measure with mass f% .(p)/p at f, .(p) for each p < n, so that
Ky (M) = K, (M n [—T,T]). Define K, by K,(M) = K(M n[—T,T]). If +T
are continuity points of K, then (5.10) implies that K, , —, K, as n — co. It is
easy to see that {f; ,} lies in H' (the same {r,} works as for {f,}). Since (5.20)
holds with f; , in place of f,, it follows by the case already treated that

(523) ZpénfT,n(P)ap' = FKT (n - °°)

if +T are continuity points of K. Now K, —, Kas T — oo, and hence F,, = F.
By Theorem 11.1 (applied with T going to infinity through a sequence of points
for which +7 are continuity points of K), (5.11) will follow from (5.23) if we
show that

(5.24)  limy_o, im sup, .o P[] Xpcn (fu(p) — fra(P))3,'| Z ] = 0.

If K, = K, (5.24) follows easily from Lemma 2.1. The general case requires
a further argument. The sum in (5.24) is

P D) g Sulp) (L _1
B0y = Z oy p D (1) 4 mp (1= )0,
=Zl+22+23,

where each sum here extends over those p with p < n and |f,(p)| > T. By
Lemma 2.1 and (5.14),

B ZH = € Byea LX) 0 (n— o).

As for the nonrandom sum Y,

2

%!

IA
~|

b

o < 3 DL < L s £2)
P r— p
the sums having the same range as before and $* being the supremum in (5.5).
Finally, if T > 1 then
: 2

Pin#0lsno sl < %,
the sums with the same range. If $?/T < ¢/2, then the probability in (5.24) is
at most 4¢~*[E,[ 311] + S*/T — S*/T (n — oo). This proves (5.24). []

PROOF OF NECESSITY. Since sup, K,(R') < oo by (5.5), it follows from Helley’s
theorem that each subsequence {K,} contains a further subsequence {K,,.} such
that

(5.25) K

n’’ ""‘vK

for some finite measure K. By the sufficiency part of the theorem, already
established, f,., — X ,<. fu(p)[p = Fx. Butif (5.9) holds, then F, must coin-
cide with F. Since the K in the representation (5.8) is unique, there is thus
only one possible limit in (5.25), which must therefore be the limit of the entire
sequence {K,}. []
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We can now extend Theorem 3.1 to the general Lindeberg case and prove a
partial converse.

THEOREM 5.2. If {f,} is an array of additive functions satisfying (5.6) and

(5.26) SRS

then g

(5.27) S psniaimise L ";ff’) -0, >0,
implies

(5.28) fa— Zpsniﬁ;ﬂ=®~

If {f.} lies in H' and satisfies (5.26), then (5.28) implies (5.27).

Proor. Because of Theorem 5.1, we need only show that (5.6), (5.26), and
(5.27) together imply that {f,} is in H'. Now (5.27) implies the existence of an
increasing sequence {n,} such that n > n, implies

: 1
Zpgn,lfn(ml>k‘1 [%P)‘ < T
If r, = nV* for n, < n < n,,,, then certainly (5.1) holds. As for (5.4), split the
sum according as |f,(p)] < 1/k or not:

% 1 1 1
Zr,,q»snf"—[f’i = e Zrn<p5n? + <’ m=n< My, .

Since by (1.21) the sum on the right is O(log k), (5.4) follows. []

Every Fy is a possible limit in Theorem 5.1. To see this, suppose first that
K consists of positive masses g, - - -, ¢, at points x;, - - -, x;, where the x; are
distinct from each other and from 0. Choose 0 < 4, < 0, < --- < 6, in such
a way that log 6,/0,_, = p,/x} i = 1, ...,1, and define a completely additive
fa by
(5.29) f(p) = x; if (logn)li-1 < p < (logn)’s, i=1,...,1

=0 otherwise.

Then {f,} is in H’ and K, — K.

For the general (finite) K, construct measures K*’ of the preceding kind with
L(K, K®) < 1]k, where L denotes Lévy distance ([17] page 39). For each k,
there exists by the above argument an array {f, ,} in H’ such that K, — K»
as n — oo, K,*® being the measure (5.7) corresponding to f, ,. Let {r,,} be the
sequence in (5.1) and (5.4) for {f; ,}. There exists an increasing sequence {n,}
such that n = n, implies

1

1 1 1 :
(5.30) —Q—g——rM < — Zrkm<p5n ﬁ%m" < - maxpSk |fk,n(P)| < 7 ’

log n k k
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and L(K®, K,*) < 1/k. If f, = f, , for n, < n < n,,,, then {f,}is in H" and
K, = K. Thus every K and F are possible.
Suppose f,, is completely additive with

(5.31) | =1 if n<p=ry
=0 otherwise,

where 6 > 1 and {r,} is any sequence going to infinity slowly enough that (5.1)
holds. Then {f,} is in H’, and the limit K consists of a mass of 2 = log # at
the point 1. Thus F, is the distribution of P, — 2, where P, is a Poisson vari-
able with mean 2. The centering sum in (5.9) can be added back in, since it
converges to 4, and we may conclude that f, — P,. Here f,(m) is the number
of prime divisors of m in the range r, < p < r,°. :

If £, has the form f/B,, the class of possible limits is much smaller, consisting
of those K with density |x| in some finite interval adjacent to 0 on the left, those
K with a single mass at 0, those K with density x in some interval adjacent to
0 on the right, and linear combinations of these; see [22] page 64. This class
of course includes the normal case and excludes the Poisson case. It is perhaps
interesting to note that (if f, = f/B,) {f,} is in H if and only if B,? goes to infinity
in such a way that B}, is a slowly varying function of x; hence the form of B,’
can be written out (see [15] 2 page 282).

6. Approximation by additive processes. We shall extend the functional limit
theorem of Section 4, replacing Brownian motion by a more general additive
process, or process of independent increments.

For 0 < ¢ £ 1, let K, be a measure on the line with

(6.1 K(R) =1.
Suppose that, for each Borel set M,
(62) KJ(M)gKt(M)’ O§S§t§ 1’

so that K, (M) = K,(M) — K,(M) defines a measure with K, (R') =t — 5. By
Theorem 15.7 of [3], the family {K,} determines a random element X of D, a
random element whose increments are independent and have characteristic
functions

(6.3) E[enx0-X0] = exp =, (e — 1 — iux) K, (d) .
X

Since X(f) — X(s) has variance ¢ — s, X can have no fixed points of discon-
tinuity. On the other hand, only in the case of Brownian motion will the paths
of X be continuous with probability 1 (see Theorem 19.1 of [3]). For Brownian
motion, K, consists of a mass of ¢ at 0.

The theory here goes through if (6.2) holds and K,(R?) is continuous in #; the
requirement (6.1) is only a convenient normalization.

For an additive array {f,}, define Q,(7) by (4.1) and the function X,(¢, m) by
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(4.2)—or by (4.3) if f, is completely additive. Let K, , be the measure having
a mass of f,%(p)/B,’p at the point f,(p)/B, for each p in Q,(?):

2
(6.4) KodM) = Zipeoursymp,ten f;—(zf’l .

Then K, , is the K, of Section 5 for f,/B,—see (5.7).

THEOREM 6.1. If {f,} isin H and if K, , — K, for each t, where {K.} satisfies
(6.1) and (6.2) and hence determines an X via (6.3), then X, — X.

Proor. Because of (5.3), one of the defining conditions of H, we may, just as
in Section 4, restrict attention to completely additive f, and take X, to be defined
by (4.3). And we may assume as before that (4.7) holds; to set f,(p) = 0 for
p > nt has asymptotically no effect on K, , or, as shown in Section 4, on X,.
Now K, ,(R') — t by hypothesis; since the functions are non-decreasing in ¢ and
the limit is continuous, the convergence must be uniform in ¢, and therefore
the maximum jump in K, ,(R")—as a function of —goes to 0. Therefore (4.14)
again holds.

The tightness argument in Section 4 (the proof of (4.20)) required of f, only
the properties (4.7) and (4.14), which hold here as well. Since X has no fixed
points of discontinuity, Theorem 15.4 of [3] can again be applied. Therefore we
need only prove that the finite-dimensional distributions converge.

We treat the two-dimensional case. Suppose 0 < s < ¢ < 1, and define g,
by (4.10). We must prove

1 '
5~ Zren 9(P)3, = aX, + bX,.

n

Define V,? by (4.12). We have seen that (4.14) holds again, and hence (4.15)
follows just as before. It therefore suffices to prove that

65 71- 5 0.(p), = B(aX, + bX,),

n

where 6 = [(a + b)’s + b*(t — s)]t. From (4.15) and the assumption that {f,}
is in H, it follows that {g,/V,}is in H’, and so Theorem 5.1 applies. Now the
measure (5.7) for g,/V, is given by

2
Knl(M) = Zpén,ﬂn'(p)yn_xe”lg;}];) .

Let ¢, denote the function

(6.6) ¢, (x) = zx .
Ifx,,,=Kk,,—K,, and ¢, = B,/V,, then

Kn’ = onz(a + b)an,sgbo_,:(a+b) + 0n2b2Kn,s,t¢';,:b N
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Since X has independent increments, it follows by (6.3) and a change of vari-
able that
Elexp[iud(aX, + bX,)]] = exp = (¢ — 1 — iux) - K'(dx) ,
x

where K’ is given by
K' = 0%a + b)’K, Py, + UK, Py -

Since K, , = K,, and since 6, — 0 by (4.15), it follows that K,’ — K’. Thus
(6.5) is a consequence of Theorem 5.1. []
It is now a simple matter to prove Theorem 4.1 under the Lindeberg condition.

THEOREM 6.2. If {f,} is an array of additive functions satisfying (5.3) and

1 2
(6.7) e 2ipsnlinml>eB,, f"}fp) -0, e>0,

then X, = W.

PROOF. As in the proof of Theorem 5.2, from (5.3) and (6.7) it follows that
{f.} is in H. Since (6.7) implies K, , converges weakly to a mass of 7 at 0, and
since these limits determine Brownian motion, X, — W follows by Theorem
6.1. [

Any family {K} satisfying (6.1) and (6.2) can occur as a limit in Theorem 6.1.
The proof involves the construction (5.29). Write K’ —3 K to indicate that
K'(M) < K" (M) for all Borel sets M. Suppose 0 = ¢, < f, < --- < t, = 1and

(6-8) G,3G,3---3G,, G(RY=1, i=1,..u.

Suppose for the moment that each G, has a finite support that excludes 0. For
1 < i < u, construct completely additive functions f; , by a formula like (5.29),
in such a way that {f; .} lies in H’ and the corresponding measures (5.7) con-
verge weakly as n — oo to G, — G,_,. There is no difficulty in'arranging that
2o f2.(p)/p is exactly equal to 7, — #,_,. If the ; in (5.29) are multiplied by a
common constant, the values of the log 6,/6,_, are unaltered and so the limiting
distribution is also unaltered. Thus we may arrange that f, ,(p) vanishes unless
U <p=ay,, Where 0 < a, o < « 0 < @,

Let f, = fin + -+ + f..> and let J; , be the measure with a mass of f,*(p)/p
at f,(p) for each p < «, ,. By the construction, B, = 1, {f,} lies both in H and
in H', and J; ,—=G,, 0 <i < u, as n— co. Moreover, J, (R") is exactly ¢,
from which it follows that [p: p < a'M-] co.(clp:p=a,;]ift, <1<,
Therefore the measures (6.4) for f, satisfy

(6‘9) Ji,n_gKn,t_g‘]j,n’ ti§t<tj’0§i<j§u’
We have constructed {f,} in H and {J, ,} satisfying (6.9) and
(6.10) Jiw=0; (n—>o),0<isu.

If the G, are not concentrated on finite sets that exclude 0, the argument
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involving (5.30) can be applied (approximate the G, by approximating the dif-
ferences G, — G,_,). Thus (6.8) implies the existence of an array {f,} in H and
measures J; , for which (6.9) and (6.10) hold.

For each k, we now apply this result with u = 2%, 1, = i/2*, and G, = K, ..
Thus there exists an array {f, ,} in H and measures J, ; , such that

Jein 3KE 350 —2’7§t<§, 0<i<j<2k,

where K(*) is the measure (6.4) for f, ,, and
Joim= K, (n— ), 0 <i<?2.

Choose an increasing sequence {n,} in such a way that n > n, implies that (5.30)
holds and the Lévy distance from J, , , to K, ,x is less than 1/k, 0 < i < 2% If
fo = fion for n, < n <y, then {f,}is in H. Consider the measures X, , cor-
responding to these f,. Suppose /2" <t < j/2*. If k> h and n, < n < n,,,
then

ch,izk—h,n =K, Jk,jzk—h,n .

But the Lévy distance from the first of these measures to Ky_n/p = K, g is less
than 1/k, and similariy for the third measure. Thus, if #* and #’ are dyadic
rationals with # < ¢ < ¢”, there exist measures J,, , and J,., , such that J,, , 3
Ka:=3Jerns Joo =Ky, and Jy,, , = K., Since K,, 3 K, 3K,,, and K,..(R)) —
K, (R") = " — t', asimple approximation argument shows that K, , = K,. Thus
any {K,} satisfying (6.1) and (6.2) is a possible limit in Theorem 6.1.

There is a functional limit theorem for (5.31). Suppose 6 > 1 and {r,} goes
to infinity slowly enough that (5.1) holds. If, for 0 < ¢t < 1, Y, (1, m) is the
number of prime divisors of m in the range r, < p < r,”, then Y, converges in
distribution to a Poisson process with rate 2 = log #; for 2 = 1 this is a conse-
quence of Theorem 6.1, and so it clearly holds whatever 2 is. It follows, for
example, that the Lebesgue measure of [¢: Y, (¢, m) > ] has asymptotically a
uniform distribution over [0, 1] (see [21] page 261).

The hypotheses of Theorem 6.1 can be weakened in the case f, = f. Recall
the definition (6.6).

THEOREM 6.3. Suppose {f,} is in H and f, = f, and suppose

(6.11) max, ‘f;ifp) 0.

If K,, = K, then K, ,— K, = tK{;', where {K} satisfies (6.1) and (6.2) and so
determines an X to which X, converges in distribution.

Proor. If v, is the maximum element of Q,(), then by (6.11) and the defi-
nition of Q,(¢), :

(6.12) B?’n,t = ZpeQ“(t) ﬁ;)_g)_ ~ tan .
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Now

‘(p) _ B,
K, (M) = ZpeQn(z),f(m/BneM*%% = BZ‘{L Kvn,t1¢5;n,t13n(M) .

Now (6.12) and the hypothesis K, , — K imply K, , = K, = tK¢};'. Certainly
K, (M) is non-decreasing in ¢, so (6.2) holds. Also, K(R!) = lim, K, ,(RY) = 1,
and (6.1) follows. [

The class of possible limits in Theorem 6.3 coincides with the class described
at the end of Section 5; to prove this it is only necessary to observe that (6.11)
is satisfied by the f constructed on page 65 of [22].

7. Sufficient conditions for a distribution. The results of this section and the
next are analogues of the three-series theorem and hence are more naturally
formulated for a single f than for an array. They give necessary and sufficient
conditions for f to have a distribution in the sense of (1.30). See (1.10), (1.11)
and (1.27) for the notation.

THEOREM 7.1. If f is additive and the three series

1
(7'1) ZIf(P)I%c 0 ZIf(P)I<c fz(P) ’ Zlf(p)|<c f(P)
P P P
converge for some ¢ > 0, then
(7.2) [= 2,/
or, in case f is completely additive,
(7.3) f=2,/(p)d, .

In the next section, we shall require a slightly different theorem.

THEOREM 7.2. If the first two series in (1.1) converge, and if

(7.4) @i = 2lifi<e.psn fp) >
P
then
05 == D [0 = L2 [ B fr)

Proors. Suppose the first two of the series in (7.1) converge. If f(pbr) # 0,
then b, > 1, which has probability 1/p. Since the first series in (7.1) converges,
the second series on the right in (7.5) converges with probability 1 by the Borel-
Cantelli lemma. If f(p'») + f(p)d,, then b, > 2, which has probability 1/p*.
Since ] 1/p* converges, there is probability 1 that the first series on the right
in (7.5) differs in only finitely many terms from 3} ;. <, f(p)d,’. This last series
converges with probability 1 by Kolmogorov’s theorem ([9] page 108), because
the middle series in (7.1) converges. Thus both series on the right in (7.5)
converge with probability 1.
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By the discrete form of Scheffé’s theorem ([29] or [3] page 224), the con-
vergence in (1.14) is preserved if each side is summed over an arbitrary collection
of u-tuples (k, ---, k,). Applying this fact with p,, ..., p, consisting of the
primes not exceeding 7', we see that

(7.6) 2i15p)I<e,pST [f(Pﬁ”) - f—(}?)—] + Zirwizensr f(PPP)

= 21/ )I<e,pST [f(Pbp) - ﬂpﬂ] + Zironzersr f(P'?) -

The right side of (7.6) converges in distribution as T — oo to the right side
of (7.5). Suppose we show that

1.7y lim,_, limsup,_. P, [

i/ pI<e,r<psn [f(Pp’) - &pplj” = e:| =0
and

(7.8) lim, .. lim sup,, .. P.[| i/ pr1ze,r<psn f(PP2)] Z €] = 0.
It will then follow by Theorem 11.1 that

2i1fp)i<e,nsn [f(}’p”) - I(PL):] + Zironzensn (PP?)

converges in distribution to the right side of (7.5), which is equivalent to (7.5).
Since f(pf?) = f(p)d, unless B, = 2, Lemma 2.1 implies that the probability
in (7.7) is at most

1 '
ZDT? + Pl X rimi<or<ose (P3| = €]

1 C 2
é Zp>T? + :2‘ Zlf(p)l<c,p>T f}()P) ’
which goes to 0 as T — oo. Since f(pfr) = 0 unless 8, = 1, the probability in

(7.8) is at most
1

Zlf(p)lzca»f’ 0
P

which also goes to 0 as T'— co. This proves (7.5).

If the third series in (7.1) also converges, say to a, then a, — a, and the con-
vergence in (7.5) is preserved if we add a, on the left and a on the right. But
with this change, (7.5) reduces to (7.2). If fis completely additive, (7.2) ob-
viously reduces to (7.3). [I

By a theorem of Lévy [23], 3., f(p*») has a continuous distribution function if
(7.9) Zf(maeo;l’— =005

in the opposite case, the distribution is discrete by the Borel-Cantelli lemma.
Theorem 7.1 applies to the last three examples of Section 1.
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ExampLE 3. Let f(m) = log (¢(m)/m). Since o(pf) =1+4p+ --- + pb,
f(p) = log (1 + 1/p)is of the order 1/p, and the series (7.1) converge. Therefore

o(m) _, ( Ly _1_>
log ——L = 37 log 1+p+ —|-pbp .
Since (7.9) holds, the sum on the right has a continuous distribution function;
therefore (see (1.29))

@10)  p[m: MM cx]op[m, (14 Lo L)<y

m )4 p’r
for all x. The integer m is said to be abundant if o(m) > 2m, deficient if
o(m) < 2m, and perfect if o(m) = 2m. By (7.10), the set of abundant numbers
and the set of deficient numbers have densities, and the set of perfect numbers
has density O (the last set is conjectured to be finite). The distribution function
on the right in (7.10) is known [11] to be singular.

ExampLE 4. If p,, ..., p, are the distinct prime factors of n, then Euler’s
function satisfies ¢(n)/n = P,[m: p,ym,i =1, ..., k]. But since the p, divide
n, (1.6) implies that, under P,, the events [m: p,|m] have exact probabilities
1/p;,» and (1.7) implies that they are independent (not merely approximately so).
Therefore ¢(n)/n = II,(1 — 1/p,), which proves (1.5). If f(m) = log (¢(m)/m),
then f is completely additive and f(p) = log (1 — 1/p), so that series (7.1) again
converge. Therefore

m 1
log ﬂm.)—= Z,,d,,log(l — ?) ,
which implies
(7.11) ) (1 _ i)d” .
m P
By (7.9), the distribution functions are again continuous.

Since the d, are independent, the limiting variable in (7.11) has mean
I, (1 — p~*), which has the value ([19] page 245) 1/{(2) = 6/*. Since ¢(m)/m is
bounded, we can integrate the limit: E,[¢(m)/m] — 6/z*. If S, = X 2_, ¢(m)/m,
then S, = n(6z~* 4 6,), where 6, —0. Now X}%_, ¢(m) =nS, — 3% S,,
and so

1 6 1 6
— ;=1¢(m)=-—2+0ﬂ——-—222,‘=11m<——5—|- 0m>
n T , n T
3 3 1
="§+0n+71;;———22:bn_=1im0m

Since the last term here has modulus at most n~* 332 _, |6,,|, which goes to 0,
we have

Losn gm -2
n T
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If two integers are chosen independently and randomly from among 1,2, ..., n,
the chance they are relatively prime is 2n=* 3% _, ¢(m), which is about 6/z* for
large n.

EXAMPLE 5. Let f(m) be the excess Q(m) — w(m). Since f(p) = 0, Theorem
7.1 applies, and

Q(m) - w(m) = Zp (bp - dp) .
As all these quantities are integer-valued,
D[m: Q(m) — w(m) = k] = P[L, (b, — 4,) = k]

for nonnegative integers k. With k = 0, this gives

T

(7.12) D[m: Q(m) = a(m)] = 11,,(1 - %) =2

Q(m) = w(m) means that m is square-free—divisible by no perfect square.

8. Necessary conditions for a distribution. We prove the converse to Theo-
rem 7.1.

THEOREM 8.1. If the additive function f has a distribution, ihen the three series
in (7.1) converge for every ¢ > 0.
The difficult part of the proof is to establish the existence of a 2 for which

1
(8.1) 2iirmiza ’; < .

Let us assume (8.1), complete the proof of (7.1), and then return to (8.1).
We may assume 2 > c¢. Since f has a distribution, for every e there exists
an x such that

(8.2) Plf| = x]<e, n=1,2...,

(in other words, the sequence of distributions is tight). By (8.1) and by Theorem
7.1 with ¢ = 2, 335,22 /(P??) has a distribution and hence for every e there
exists an x such that

Po[| Doz f(PP) 2 x] < e, n=12,....

It follows readily that the difference f — 33 /2 f(p??) satisfies the same con-
dition: for every ¢ there exists an x such that

(8.3) Pl X< f(PP2) = x] < e, n=12....
Define

2.
(8'4) u, = Zlf(p)ld,pén f(PP) s vﬂz = Zlf(p)l<1,psn f (P—)“ .

If v, — oo, then Theorem 3.1 implies that

i
Pu[ - D7) = 22 < x| — 0| = 6, 0.
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But then the probability complementary to that in (8.3) is within 2e, of

®<x—un>_®<—x—u">< 1 2x
Uy v = (2n)} v, ’

n

contrary to (8.3). Therefore v, is bounded. From this and (8 1), it follows
that the first two of the series in (7.1) converge.

Define a, by (7.4). According to Theorem 7.2, f — a, converges in distribu-
tion. If f has a distribution, then a, must have a finite limit ([17] page 42), and
so the third series in (7.1) must also converge.

To find a 2 satisfying (8.1), we need two lemmas.

Lemma 8.1. Let f be additive, let Q be a set of primes p for which f(p) > 2, and
let L be a set of square-free integers | for which |f(I)| < 2/2. There is a universal
constant C, such that, if

1

ZpeQ,pén— =71,

P
then

1
(8-3) JieLizn

be e[ (2)]eer

Note that 2 < et; C, is independent of f, n, 2, Q, and L.

Proor. For any set M of integers, let A,(m) be the number of divisors of m
in M. Let Q' be the set of primes not in Q, and let S be the set of square-free
integers composed of primes in Q'.

Clearly
(8.6) EJA] = Siep Pufmel|m] = zil 1
and

1 1
(8'7) En[AL] = '; Zmé'n,AQ(m)<r AL(’n) + 7 ngn,AQ(m)gt AL(m) .

Since each integer in L is square-free,

A (m) < 200m = 20emberim — 28e™A(m) ,

and so

1 1 1

71_ ngn,AQ(mKr AL(m) é ZT]En[AS] § 2° Zses,sg'n ? é 2r HpeQ’,pén (l + 'p—) .
By (1.21), there is a constant C, such that
(8.8) ., (1 + i) < C,logn.

P
Since
HpeQ,pén <1 + L) g HpeQ,p§n exp i_ ’
)4 4p
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we have
(8.9) L P sqmer Bufm) < G20 BT

Fix m for the moment and suppose that A (m) = x. Then m has the form
m = rst, where r = gq, - - - q,, the ¢, being distinct elements of Q, where s lies
in S, and where ¢ is composed of primes already appearing in rs (rs is the square-
free part of m). If I|m and [e L, then, I being square-free, [ = r's’ with r'|r
and s'|s. Now distinct values of  with the same value of s’ cannot divide:
Suppose [, = r’s"and [, = r's’ (1 # 1)), with r{/ |, )/ | r, and s’ [ 5. Then r/ } 1,/
because 7’| r, would imply [, |/, and (by the properties of L and Q) 1 = f(l,) —
fb) = f(ry) — f(n') = f(r/|r’) > 2, an impossibility. A collection of divisors
of g, --- ¢q,, with no divisor dividing another one, has cardinality at most 7.,
where by (11.6), r, < C,2°/xt if C, is increased sufficiently. If G is the set of

all square-free integers, then
2=
A(m) < 7.0o(m) < Cy 2 Ag(m) = %0 Ag(m) .
x x

This holds for any m such that A,(m) = x. By (8.8),

1 C C 1
— 2imsn,dqimze A (M) = -—; E.[A] = ——: 2igeq,gsn
n T T g

< &l‘[ps"<l + i) < Q’jlogn.
T* - P Té
Putting this and (8.9) into (8.7) and using (8.6) gives (8.5) with a new C,. []

LemMma 8.2. If

(8.10) lim inf, ., P,(L) >0,
then
L 1 1
8.11 liminf, o~ Y permen— > 0.
( ) m 1n n—oo logn Zm L,m=s m >

Proor. Choose an integer 4 so that P,(L) > 2/6 for large n. Then

Fmeriensor = 2 Poll) = 1 PuL) Z 5
m 0 0
for large k. Given n, choose i so that #* < n < 6**%; then sum 1/m over the
blocks 67 < m < ¢i1. []
We can now complete the proof of Theorem 8.1 by showing that, if for each
¢ there is an x satisfying (8.2), then (8.1) holds for some 1. By symmetry it is
enough to find a 2 such that

1
(8'12) Zf(p»x 7)— < 0.

By (8.2) and (7.12), there is a 2 such that, if L is the set of square-free integers
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I with |f(I)] < 2/2, then (8.10) holds and hence so does (8.11). Apply Lemma
8.1 with this L and with Q the set of p with f(p) > 4: if (8.12) fails, then (8.11)
and (8.5) are in contradiction. This proves (8.1).

9. Entropy. As observed in Section 1, it takes log n units of information to
specify an integer in the range 1, 2, - - -, n and hence log n units of information
to specify its factorization into primes. Since log n is unbounded, it will follow
that there must be infinitely many primes if it is shown that each prime con-
tributes to the factorization at most, say, 2 units of information.

A finite partition . of a probability space has entropy H(.%) = — Y] P(4) X
log P(A), the sum extending over the elements of the partition; see Chapter
2 of [2]. The common refinement \,. % of partitions %77, ..., %7, has as
its elements the various intersections 4, N ... N A4, with 4, in .%,. A basic
fact of information theory is that entropy is subadditive in the sense that
H(V, %) < 3, H(-57).

It will be convenient in this section to work in the space Q, =[1,2, ---, n]
and to take P, as the measure on {, assigning probability 1/n to each point.
For prime p, let .%7," be the partition of Q, with elements

®-1) Ay (k) = [meQ,: p*|m, p**tfm]

(the set is empty if p* > n). To know which element of .%7," an integer m lies
in (m in the range 1 < m < n) is to know the exact power of p in the factoriza-
tion of m. By the fundamental theorem of arithmetic, V., %," has the in-
dividual points of , as its elements and hence has entropy log n; subadditivity
now implies

(9'2) log n= H(Vpén "Q/p”) = Dlpsn H('yp”) .

To estimate H(_%,*), observe that

u _1[n 17 n 1 1
9.3) P,(4,%(0) = [7] - L;——} S oS5
Write h(f) = —tlogt; h is bounded by e~ and is increasing for ¢ < e~ Since
27k < etfor k = 2, (9.3) gives
orn 2 - 1 2 3
(9'4) H(Mp)§?+ Zk=2h<'5k_>:'e_+'2—10g2<2'

By (9.2) and (9.4), (n) = } log n, and there are indeed infinitely many primes.
These ideas can be carried further. By (9.3),

O EEaHP ) S Nk () 5 B me, b < 6ler

Since & is concave and has slope —1 at ¢t =1, A(f) < 1 — ¢ for all ¢ and hence
h(P,(4,"(0))) = k(1 — n~'[n/p]) < 1/p. On the other hand, logt <t — 1 for
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all ¢, so that A(t) = #(1 — f) and hence A(P,(4,"(0))) = n~[n/p)(1 — n~Y[n[p]) =
p~t — p~* — n~, Therefore

1 1 1

(9:6) [HPuA,0) — | =+ -

| P P n
Further,

1[n 1[n 1 1 1
P (A, D)) =h(=| = |——|=|)=2(—— = — = 1 .
@) =# ([ 2] =[5 ]) 2 (5 -5 — ) e

If p = 3, then, since p~! < e™*, we also have A(P,(4,%(1))) < A(p~*) = p~*logp.
Therefore

0.7) [P, (4,2(13) - “’—;‘f”—} < (5 + ) loeps p=3.

By (9.5), (9.6) and (9.7),

|y — 2 — 18P | <o (g L

P P P n
By (10.3), the right side here summed over p < n is O(1). By (10.5) and (10.7)
it therefore follows that

9.8) 0< 3, HS,Y) — H(V < S7,") = loglogn + O(1) .

If the partitions % were independent under P, (that is, if the g8, were in-
dependent random variables), the difference in (9.8) would vanish. That the
difference is of smaller order than H(V,., %) = logn is an indication that
the total amount of dependence is small, which is the fact exploited in the pre-
ceding sections.

The number-theoretic analogue of the conditional entropy (1.22) can be esti-
mated in an elementary way. Let <Z," be the partition of Q, with the two
elements[me Q,: pfm] = A, (0)and [meQ,: p|m] = Q, — 4,%0). To know
which element of <Z," contains m (1 < m < n) is to know whether or not
p divides m. Since .o7," refines <%, (see [2] for the definition and properties of
conditional entropy),

H(S7," | B,") = H(S7,") — H(,")
L] LED - D+ s,

If p = 3, so that p~* < e7?, the second ‘term on the right here exceeds the first,
and (9.5) gives H(.,"|.2%,") < 6p~*log p. Since H(.7*| <%, < H(.") < 2,
it follows that there exists a constant K such that )], H(.%/,"| <%,") < K for all
n. Moreover, H(V ,.5," |V, ") < 5, H(5," |V, B") < £, H(-57,| 5,
and hence .

(©-9) H(V, %"V, ") <K

for all n.

1
>logp—|—6_%%ﬂ, p=3.
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A slight improvement of these estimates, together with some computation,
shows that K may be taken as 2.6. Measured in bits rather than natural units,
this is 2.6/log 2, which is less than 3.8.

10. Appendix: Number theory. By the definition (1:1) of §,(m), logm =
2 By(m)log p; let log* m = 33, 0,(m)logp (compare (2.15)). By Stirling’s
formula,

(10.1) E.[log] = - log n! = log n + O(1).
n

Now E,[8, — 0,] = 21 PulB, — 0, = k] < Yuas 1/p¥* < 2/p?, and hence
E,[log — log*] <2 3;,p~*log p. By this and (10.1),

(10.2) E,[log*] = Z,% [%} log p = log n + O(1) .

Ifn < p <2n,thenl < 2n/p < 2and 0 < nfp < 1, sothat[2n/p] — 2[n/p] = 1.
Therefore

172 1
Zn<p52n logp =2n Zn<p52n <‘2‘;1" [_7'1] - 7 [%:D logp °
Since 2[y] < [2y] (as 2[y] < 2y), the sum on the right does not decrease if ex-
tended over all p. The sum thus extended is E,,[log*] — E,[log*], which by
(10.2) is bounded. Thus there is a K such that 3, _,_,, log p < Kn for all n.
Given x > 1, choose 7 so that 2"~ < x < 2". Since
Dipsa 10gP < 2 Zak-lquk 10gP < K%.,2"' < 2Kx,

we have

(10.3) Lps:logp = O(x).

If z(x) is the number of primes not exceeding x, then

log p s 2 .
72'-(x) é Zpéxi 1 + Zz’.‘<p$z log x% é X + logx Zpéx logP )

now (10.3) implies

(10.4) 7(x) = O ( 10; - > :

which is (1.20).

Removing the integral-part brackets in the middle term of (10.2) converts it
into 37,., p~*log p and introduces an error of at most n~ 3} ,_, log p, which is
O(1) by (10.3). Hence, by (10.2), 3}, p *logp = logn + O(1), and since
log x — log [x] is bounded,

(10.5) T 182 _log x 4 O(1),
P

which is (1.19).
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According to the integration-by-parts formula, if dF and dG are mass distribu-
tions over (@, ] with no common points of positive mass, then
(10.6) $ s FdG = FG|} — §,, GdF .

Let dG have mass p~'logp at each p, so that G(¢t) = 3], p~'logp = logt +
o(t), where ¢ is by (10.5) a bounded function. Let F(f) = —1/log ¢, so that
dF(t) = dttlog*t. Taking a = § and b = x in (10.6) gives

Zpsz_l_zﬂx+ S;wm
)4 log ¢ la tlog*t

— 14 2% 1 loplog x — log 1 . () g
+ log x + loglog x — loglog a + §z Tlog' t

Since ¢(f) is bounded, the last integral extended over (a, o) is finite and ex-
tended over (x, o) is O(1/log x). Therefore there is a constant ¢ such that

1 1
10.7 <, — = logl o ,
(10.7) Zreey = loglogx + ¢+ 0 ()

which is (1.21).

Two other standard results, not needed in the paper, are easily obtained. If
M bounds the O(1) term in (10.5), then, for 0 < § < 1 and all x, 3], logp =
0X 3 pacpss P lOg p = Ox(log 6—* — 2M). For small enough 6, the final factor
here is positive, which, together with (10.3), implies

Zpéx lng =x

(the ratio of the two sides is bounded away from 0 and infinity). Finally,
n(x) = 3l,<, log p/log x < x/log x, which, with (10.4), gives

X

) = log x '

11. Appendix: Probability. See Section 1 for notation. Suppose that (§,, 7, 7)
is a random vector for each n and T.

TueoreMm 11.1. If , , = 9, (n — o) for each T, if y, = 5 (T — co), and if
(11.1) lim,_,, lim sup,_., P[|§, — 7..r| =] =0
fore >0, then &, = 1.

Proor. Let d(n, T, ¢) be the probability in (11.1). Suppose x’ < x < x”’, and
choose ¢ smaller than x”” — x and x — x’; then

Pl = X'l — 5(’19 T,e) < p[En S X] S P9,y = x"l+ o(n, T, €).

If x’ and x” are continuity points of the distribution functions of 5 and all the
7, it follows, upon letting n — co and then T'— oo, that P[§, < x] has limits
inferior and superior lying between P[7 < x’] and P[y < x”']. These last two
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probabilities converge to P[» < x] as x’, x” — x, provided x is a continuity
point of the distribution function of 7. []
The above result can be found in more general form in [3] page 25.

Tueorem 11.2. If lim, |E[¢,*] — E[(, ]| = 0 fork = 1,2, - .-, if there exists
a 0 such that |E[(,*]| < k! 0% forn, k = 1,2, ..., and if {, =, then §, = (.

Proor. The hypotheses imply (see ([7] page 88 or [3] page 32) that
lim, E[{,*] = E[(*]. It follows that |E[(*]| < k! 6%, so that ), E[{*]z*/k! has
positive radius of convergence and hence (see [15] 2 page 228 or [8] page 176)
the distribution of { is determined by its moments. Now &, = { follows because
lim, E[§,*] = E[{*] (see [7] page 92). [

For an element x of the space D, define

w'(x, 6) = sup min [|x(r) — x(t)|, |x(t.) — 2(1)[],

where the supremeum extends over triples #,, ¢, , with 0 < 1, <t < £, < l1and
t, — t, £ 0 (see [3] page 118).

THEOREM 11.3. Let X be a random element of D; for0 < r < s < 1, put
(11.2) 7(r, 5) = P[sup min [|X(7) — X(4,)], | X(t;) — X(2)|]] > €],

where the supremeum extends over triples with r < t, St < t, <s. If0=1s5,<
5< < s, =1lands; —s,_, =0,i=1, ..., k, then

i-1 =

(11.3) PIw"(X,0) > e] = 2¢25 1(Si> Siya) -

Proor. If0< ¢, —t, < d,thens; <1, <1, < 5;,,forsomei,0 < i < k — 2,
s0 (11.3) follows from the definition (11.2). []

Consider a triangular array: Suppose that, for each n, &, ---,§,, are in-
dependent random variables. Suppose that
(11.4) E[§.]=0, E[&:] = 0w < o,

and suppose that the array is infinitesimal in the sense that
(11.5) max,g, P[|€,] =¢]—0
for ¢ > 0. Let K, be the finite measure defined by

K. (M) = Zkék,,. SGM,eM £ dP,
and define F, by (5.8).

THeorEM 11.4. If (11.4) and (11.5) hold, if 3z, 0% = O(1), and if K, —, K,
then 3iqr, Sme = Fi-

Proor. This result is to be found on page 294 of [24], but with the assump-
tion (11.5) strengthened to max, ¢%, — 0; however, this condition is used only
in the “comparison lemma” on page 291, for which (11.5) itself actually suffices—
see Theorem 1, page 98 of [17]. On the other hand, the result is to be found on
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page 100 of [17], but with the assumption K, —, K strengthened to K, = K; this
proof too is easily adapted to the present circumstance. []

We need a combinatorial result due to Sperner [30]. Denote the cardinality
of a finite set by bars.

THEOREM 11.5. Suppose |S| = n, and consider a class &7 of subsets of S with
the property that no element of %7 is a subset of another element of 7. The maxi-
mum v, of || for such a class & satisfies

(11.6) 7”:0(2‘.).
nt

Proor. Suppose % has the required property and || = 7,,. Suppose M =
max[|4]|: Ae %] = (n + 1)/2, and suppose 4,, - - -, 4, are the elements of .
of size M. A set of size M has M subsets of size M — 1, so a list of all subsets
of size M — 1 of all the 4, has length kM if repetitions are allowed. But a set
can appear in the list at most n — M + 1 times, that being the total number of
sets of size M that contain it. Hence the number of distinct sets in the list is
at least kMJ(n — M + 1), which in turn is at least k if M > (n + 1)/2. Thus
it is possible to replace 4,, - - -, 4, by k distinct subsets of size M — 1 without
changing |.%’| and without destroying the defining property of 7.

By repeated application of this procedure, we can ensure that M = [n/2].
Similarly, we can ensure that min [|4|: 4 € %] = [n/2]. But if |4| = [n/2] for
every 4 in %7, then

|"Q/| é (['n,’;?]) ¢
Now (11.6) follows by Stirling’s formula. []

12. References. The standard treatment of probabilistic number theory is
Kubilius’ book [22]; introductions can be found in [20] and in [6]. There are
extensive bibliographical notes in [22]; for work subsequent to the appearance
of [22], see the review paper [16] of Galambos and LeVeque’s section on additive
functions in Reviews in Number Theory, 1940-1972, to be published presently by
The American Mathematical Society. Because of these bibliographies, only a
few remarks are needed here.

Hardy and Ramanujan [18] and Turan [31] obtained the first laws of large
numbers; the results of Section 2 here, in their present generality, are due to
Kubilius. Erdds and Kac [13] proved the first central limit theorem for additive
functions; the proof in Section 3 is essentially that of [4]. The general theorems
on convergence to infinitely divisible laws were proved by Kubilius, who in-
troduced the class H. The moment method of Section 5 is that of MiseviCius
[25], adapted to arrays {f,}, extended to the case of vague convergence (see
(5.10)), and simplified by the methods of [4].

The invariance principle of Section 4 is implicit in Theorem 7.3 of [22]; one
of the manuscript versions of [3] contained the present proof. The same result
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under the Lindeberg conditions, Theorem 6.2 above, was proved by Philipp
[27] and by Babu [1]. The general theory in Section 6 is new.

The results in Sections 7 and 8 are due to Erdds [10], [12] and to Erdds and
Wintner [14]. The proofs are theirs, simplified somewhat.

Section 9 is new.

LeVeque’s conjecture that the error term in the Erdoés-Kac theorem sohuld
be the same as for the classical central limit theorem was proved by Rényi
and Turan [28] by methods of analytic number theory. No probabilistic proof
has been found; probably the methods of this paper cannot be adapted to that
problem.
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