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ON CONDITIONAL MEDIANS!
By R. J. ToMKINS
University of Regina

This article examines the properties of conditional medians, especially
vis-a-vis those of conditional expectations.

1. Introduction. While the notion of a conditional median has been defined

(see Loéve (1963) page 385) and employed (for example, see Csdrgd (1970) page
316), the literature does not appear to contain an exposition of the properties of
conditional medians. This paper aims to present such an exposition.

Let (Q, &, P) be a probability space and let &, be the trivial sigma-field. Let
R represent the set of real numbers and let /(A4) denote the indicator function
of an event 4 & .

DEFINITION. Let X be a random variable (rv) and let & be a sigma-field with
¥ < &. Anrv M is called a conditional median (CM) of X with respect to &
if and only if

(CM1) M is Z-measurable, and
(CM2) PX =Z M| %)=} < P(X £ M|Z) almost surely (a.s.).

A conditional median M shall be denoted by p(X| &).

It seems natural to say that a CM M is unique if, given any other CM M*, we
have M = M* a.s. Note that y(X| <) is just a usual (constant) median of X
which is, of course, not necessarily unique; it is easy to concoct examples to
show that this is also the case when ¥ is not trivial. Hence, inequalities and
equalities involving CM’s will be carefully explained.

Loéve ((1963) page 385) has defined M to be a CM of X if and only if (CM2)
holds. Thus our definition is tougher.

Note that if ¢ is any strictly monotone function on R and if M is any CM
of X, then ¢(M) is a CM of ¢(X).

THEOREM 1. Let & be a sigma-field. Then every rv X has a CM with respect
to L.

PrOOF. Assume that P(X < x| &)(w), where xe R and we Q, is a regular
conditional distribution function for X given & (cf. Ash (1972) page 263). For
each we Q, define M(w) = inf{xe R: P(X < x| &) (w) > }}. Clearly M is a
rv and (CM1) holds. Moreover, for any (fixed) positive integer n, and any
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integer k,
PX<M—-—nt'2)<PXZ (k—1)/n|¥)
SISPXZLkn|)SPXEMA nt|2D)

a.s.ontheevent [k — 1 < nM < k]. Hence X< M + n'|¥) = 4 a.s. and
PX=M-—n?'|¥)=4%as. forall n > 1. (CM2) now follows readily from
the monotone convergence theorem for conditional expectations (Loéve, page
348). [

REMARK. Our definition of CM can be shown to be equivalent to that of
Brunk and Johansen (1970) so that Theorem 1 is a consequence of their Theorem
1.5. Theorem 1 may also be obtained by proving it first for simple rv and then
employing Lemma 1 (below) twice.

2. Some properties of conditional medians. Since conditional medians are
measures of central tendency in their own right, it behooves us to examine their
properties in light of the well-known traits of conditional expectations. We will
commence such an examination with a convergence lemma.

LeMMA 1. Let & be a sigma-field. Let {X,}, {M,}, n = 1, be sequences of rv
such that

(a) M, is a CM of X, with respect to &, and
(b) rv X, M exist such that X, — X in probability (i.p.) and M, — M i.p.
Then M is a CM of X with respect to <.

Proor. Note first that M is “-measurble. To start with, assume X, — X a.s.
and M, - M a.s. Clearly I(X = M) = limsup,_. I(X, = M,) a.s. Hence,
by Fatou’s lemma for conditional expectations (Loéve, page 348), } <
limsup, . P(X, = M,| &)< P(X = M|¥) as. Similarly PX S M| <) = }
a.s. Finally, if (b) holds, a subsequence {n,} 1 co exists satisfying X, — X a.s.
and M, — M a.s. so that the preceding argument applies. []

REMARK 1. Lemma 1 remains true if (b) is replaced by the weaker condition
(b’): P(+| ¥) is a regular conditional probability, M, — M i.p., and an event
Ce & exists such that P(C) = 1 and, for each v e C, the distributions P(X, <
x| &) (w) converge completely to P(X < x| &)(w). This follows, by Exercise 2
on page 214 of Loéve.

REMARK 2. It is worthy of note that, even when X, — X a.s., it is not neces-
sary that a sequence of respective CM’s {M,} exists and converges to a CM of
X. For example, let Y be uniformly distributed on (—1, ), let ¥ = &, and
define X, = (Y < (—1)*/n),n = 1,and-X = I(Y < 0). Then X, — Xa.s., and,
for each n > 1, X, has a unique median M, = 0 or 1 accordingly as n is odd
or even. But, clearly, {M,} does not converge.

THEOREM 2. Let X, Y be rv and let & be a sigma-field. Let p(X|¥) be any
CM of X. If Y is Z-measurable, then the following statements hold.
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(i) If (Y| &) isany CM of Y then u(Y| &) = Y a.s.
(i) #(X| L)+ YisaCMof X + Y ie. p(X + Y| %) = u(X| &) + Y.
(iiiy Yu(X|Z)is a CM of XY; i.e. (XY |Z) = Yu(X| Z).

Proor. To prove (i), note that P(Y = w(Y| L) | L) =LY Z (Y| ¥) = %
a.s. Similarly, (Y < (Y| ¥)) = 4 a.s. These inequalities are true only if
wY| L) LY £ pu(Y| &) a.s., establishing (i).

The proof of (ii) is trivial, so proceed to the proof of (iii). On the (Z-
measurable) event[Y = 0], P(XY = Ypu(X|Z¥)|¥)=P0=0|Z)=1> Las.
On the event [Y > 0], P(XY = Yu(X| ©)|9) = P(X = n(X| D) | ©) = } as.
Finally, on [Y < 0], P(XY = Yu(X|Z2)|Z)=PX S u(X|¥)|¥) = } as.
That P(XY < Yu(X| £)| &) = % a.s. follows similarly. []

THEOREM 3. Let X, Y be rv, let ac R, let & be a sigma-field, and let p(X| <)
be any CM of X. Then the following assertions are true.

(i) If M is any CM of the constant tv a, then M = a a.s.

(il) ap(X| &) is a CM of aX; i.e. w(aX| L) = ap(X| Z).

(iii) If X = Y a.s. then a CM p(Y| &) exists such that y(X| &) = w(Y| &).

(iv) If X = aa.s. then y(X| &) Z a a.s.

(V) If X is independent of &, then every median u(X| &) of X is a CM of X
with respect to .

(vi) If, foreachn =z 1, p (X|Z)isa CM of X and if M is a T-measurable
rv satisfying inf,., p,(X| ¥) < M < sup,., (X | &) a.s., then M is also a CM
of X.

(vii) There exist CM’s M* and M** of X such that M* < M < M** a.s. for
all CM’s M of X.

Proor. (i) and (ii) are immediate from theorem 2 by taking Y = a, while (iv)
follows from (i) and (iii).

To prove (iii), let M be any CM of Y and define (Y| &) = min (M, p(X| £)).
Clearly u(Y| ¥) is “-measurable, (Y| )< u(X| &), and (Y Z (Y| &£)| &) =
P(Y=M|Z) = %a.s. Moreover (Y < (Y| ¥)| L) =P(Y < M|Z)=1Lon
the event [M < u(X|¥)] while, on the complement of that event, P(Y <
uY| )| %) = (Y £ p(X|2)| %) = PX < p(X|¥)| %) = }as. Thus
w(Y| &) is indeed a CM of Y.

To prove (v), let me R be any ¥ -median of X. Then, by independence,
PX=m|@)=PX=m)=}<PX<m|P).

In view of the definition of CM and of part (ii), it will be enough to show
that (vi) holds in the case M = sup,., p.(X| &).

Note that, given any two CM’s M,, M, of X, max (M,, M,) is also a CM of X;
this can be proved readily by an argument similar to the proof of (iii). Hence,
letting M, = max,_, 1,(X| ¥), n = 1, it follows by induction that each M, isa
CM of X. Moreover M, 1 M, where M is easily seen to be a rv. Hence M is a
CM of X by Lemma 1.
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For (vii), note that it will suffice to establish the existence of M**, since that
of M* follows by part (ii). To this end, let .2 be the collection of all CM’s of
X with respect to &, and let M** be the essential supremum of . (vii) is an
immediate consequence of part (vi) and Theorem 1.5 of Chow, Robbins, and
Siegmund (1971). []

ReMARK. If X is independent of &, it does not necessarily follow that every
CM of X is constant (cf. (v) above). For example, let X and Y be independent,
identically distributed (i.i.d.) rv with P[X = 1] = P[X = 0] = 4, and let & be
the sigma-field generated by Y; then Y is a CM of X.

THEOREM 4 (Jensen’s inequality for conditional medians). Let ¢ be any real-
valued convex function which is defined on an open interval I, bounded or unbounded,
in R. Then, given any sigma-field &, any rv X with P[XeI] =1, and any CM
w(X| Z), a CM of the tv $(X) exists satisfying p(¢(X)| ) Z (pu(X| ¥)) a.s.

In particular, CM’s p(|X|| Z) and (X*| &) exist such that p(|X||Z) =
|(X| Z)| a.s. and w(X*| D) Z p(X| Z) as.

Proor. Note that real sequences {a,} and {b,} exist such that ¢(x) =
SUp,.; (@, x + b,) for all xe I (see Ash (1972) page 286). Since P[Xel] =1,
#(X) = a,X + b,a.s. foralln = 1. By Theorem 2(ii) and (iii), a, (X | &) + b,
isa CM of a, X + b,. Moreover, Theorem 3(iii) shows that a CM p,(¢(X) | &)
exists which is a.s. at least as great as a, u(X| &) + b,.

Let p(¢(X)| L) = sup,s: ta($(X)| £); this is a CM of ¢(X) by Theorem
3(vi). Note that p(X|¥)el a.s. by Theorem 3(iv). Hence p(¢(X)|¥) =
SUP,»1 (@, (X | Z) + b,) = $((X| D)) a.s.

The special cases follow by taking / = R, and ¢(x) = |x| or ¢(x) = x*. []

THEOREM 5. Let X, Y be rv and let & be a sigma-field. Then

(i) itis not always possible to find CM’s satisfying (X + Y| &) = y(X| &) +
wY| 2);
(ii) it is not always possible to find CM’s satisfying p(u(X | &) | &) = p(X| Z)
where &, C < is a sigma-field,
(iii) it is not always possible to find CM’s satisfying p*(|XY||Z) <
w(X?| )yu(Y?| £); i.e. the Cauchy-Schwarz inequality does not always hold. for
CM’s.

Proor. The counterexamples given below only involve rv with unique CM’s.

That (i) holds is well known. In fact, it holds even if XY = 0: let X,, X, be
i.i.d. with P[X; =0] =3 =1— P[X, =1], put X = X, X,, Y = X, — X, X, s0
that u(X| &) = (Y] ) = 0 while u(X + Y| 9) = (8] %) = 1.

For (ii), define X, Ysuch that P[Y = k] =4, k=0, 1,2, P(X = 1|Y = k) =
$4=1—-PX=0|Y=k), k=0,1 and PX=1|Y=2)=%=1—-PX=
0|Y =2). Let & be the sigma-field generated by Y. Since P(X = 1) = 13,
MX| ) = 1. But p(X| Z) = p(X|Y) = I(Y = 2) 50 that p(u(X| ¥)| &) = 0.
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To prove (iii), let X, Y be i.i.d. rv with P[X =1]= .6 =1 — P[X = 2].
Then p(X| Z)u(Y| &) =1-1=1. But P[XY = 1] = .36 and P[XY = 2) =
48 so p(XY| %) =2. Hence, by a remark in Section 1, p*(|XY||¥,) =
HXY | Z) > (X | )XY | Gy = p(X°| Gyu(Y*| ). O
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