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GEOMETRIC ERGODICITY AND R-POSITIVITY
FOR GENERAL MARKOV CHAINS

By E. NUMMELIN AND R. L. TWEEDIE
Helsinki University of Technology and CSIRO

We show that for positive recurrent Markov chains on a general state
space, a geometric rate of convergence to the stationary distribution z in
a ‘‘small” region ensures the existence of a uniform rate p < 1 such that
for z-a.a. x, ||[P*(x, «) — n(+)|| = O(p). In particular, if there is a point «
in the space with = (a) > 0, the result holds if |P*(a, a) — n(a)| = O(p%) for
some p, < 1. This extends and strengthens the known results on a count-
able state space. Our results are put in the more general R-theoretic con-
text, and the methods we use enable us to establish the existence of limits
for sequences {R"P"(x, 4)}, as well as exhibiting the solidarity of a geometric
rate of convergence for such sequences. We conclude by applying our
results to random walk on a half-line.

1. Introduction. In [5] and [19], Kendall and Vere-Jones proved that for {X,}
an irreducible Markov chain on the integers, with n-step transition probabilities
P(i, j), the existence of a state i, a rate p, < 1 and a limit #(i) such that

[P*(t, ) — ()] = O(e.")
imply the existence of a uniform rate p < 1 and limits 7(j) such that for any
pair (k, j),
[Pk, j) — ()] = O(p) -
In the transient case, where 7(j) = 0, the rate p is exact for all (k, j); but in the
positive recurrent case, with z(j) > 0 for all j, o can only be chosen as a (uni-
form) upper bound on the rates of convergence.

In [15], one of us has extended the transient version of this result to Markov
chains with values in general space. The purpose of this paper is to provide an
analogue, for general chains, of the somewhat deeper positive recurrent result.

We consider a Markov chain {X,} on a state space (S, % ), with transition
probabilities

P(x, A) =Pr(X,e A| X, = x), xeS, Ae &7 ;

we assume that for each x € S, P*(x, -)'is a measure on .~ , and for each 4 ¢ .5,
P*(., A) is a measurable function on S. We will assume throughout that {X,}
is p-irreducible for some probability measure ¢, and that {X,} is aperiodic (cf.
Orey [10] for definitions). The most interesting results we shall prove are for
the case where % is countably generated, and there is a finite invariant measure
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= for {X,}. We then know from [4] that for 7-a.a. x,

(1.1) IPr(x, ) — 7(5)] >0, o0,

where ||<|| denotes total variation. Also, every set 4 ‘with 7(A) > 0 contains a
subset C such that 7(C) > 0 and for some k > 1

(1.2) P, y) 2 96 >0, xyeC,

where p *(x, y) is the density of P*(x, .) with respect to =. Suppose C is such a
set, and let 7, = nl,/n(C) be the probability measure given by restricting = to
C. We shall prove .

THEOREM 1. Suppose & is countably generated and = is a finite invariant measure
for {X,}. Let C be a set satisfying (1.2), and assume that, when X, has the initial
distribution wn;, on C, convergence to the (single) limit n(C) is geometrically fast, i.e.,
for some p, < 1,

IS¢ 7e(dy)P*(y, €) — a(C)] = Olec™) -
Then there exists p < 1 such that, for n-a.a. x,
[[P#(x, +) — w(+)ll = O(") -
This result improves the pointwise result of Vere-Jones [19], even when S is

countable; for it implies, for geometrically ergodic chains on the integers, the
existence of a common rate p < 1 and constants M, independent of j such that

sup; [P*(i, J) — ()] = Mip" .
Our result is in a sense best possible, in that in general the constants M, cannot

be taken independent of i; in fact it can be shown [3] that if there is any com-
pletely uniform rate {a,} (not even necessarily geometric) over all i, j such that

[P, j) — ()| £ a,—0, n—oo,
then there exists p < 1 such that
sup; [[P(i, +) — @(+)l| = O(p") »

so the Markov chain is strongly ergodic; geometrically ergodic chains which are
not strongly ergodic are well known, examples being provided by random walk
on a half-line (see our Section 6, or [7], for conditions for geometric ergodicity;
and [18] for the fact that random walKs on a half-line are not strongly ergodic).
We are grateful to Dean Isaacson for pointing out to us this optimality aspect
of Theorem 1. '

As with the result given in [19], an analogue of Theorem 1 holds in the wider
context of the R-theory of Markov chains; it is in this context that we shall
present it. Our methods will hinge crucially on the splitting technique intro-
duced in [8]; in the next section we shall review both the R-theory from [15],
and those elements of the splitting method which we shall use. The splitting
technique also enables us to fill some of the gaps in the theory of R-positive
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chains, and in Section 3 we shall exhibit R-positivity analogues of (1.1) which
are a considerable improvement on those of [15]. In Section 4 we turn to ques-
tions of geometric ergodicity for R-positive chains, and prove our main results,
of which Theorem 1 is a special case. In Section 5 we give more concrete ver-
sions of our results when the state space is topological, and, in Section 6, we
give an application of our results to random walk on a half-line, using results
of [7].

2. Preliminaries: R-theory and the splitting technique. We denote the gen-
erating function of P*(x, 4) by

G,(x, A) = Xy, PM(x, A)z".

We define, for any initial probability measure 2 on &, the measure P, on the
canonical version of {X,} (cf. [9]) and for any set 4e &, we define 7, =
inf(n = 1: X, e A). We shall use the taboo probabilities

P (x, By =P (X, eB, 7, =n),
with generating function
AG.(x, B) = X7, P*(x, B)z" .
For any nonnegative function g and measure p we write

r9 = s 9(y)(dy)

and we write 1, for the indicator function of a set 4. For any nonnegative
function g we write the transition kernel

I,(x, E) = g(x)15(%) ;

if g = 1, then we write I,, = I,. Inequalities on measures are taken setwise on
&, and on functions pointwise. Forr > 0, a o-finite measure p on & is called
r-subinvariant if ¢ > rpP; and a nonnegative function g is called r-subinvariant
if g > rPg p-a.e. Some basic results of [15] and [16] can be summarised in the
following way.

THEOREM R1. (i) There exists a real number R = 1 and a partition {A(j)} of S
such that R is the radius of convergence of ¢-a.a. the series G,(x, A) forall Ae &
with ¢(A) > 0 and A C A(j) for some j.

(ii) Either Gy(x, A) = oo for all x and all A with ¢(A) > O (the R-recurrent case)
or Gy(x, A(j)) < oo for p-a.a. x and all j (the R-transient case).

(iii) In both cases, there exists at least one R-subinvariant measure p>» ¢. If
F,={Ae F:0 < pu(A) < )}, then any set in Z , has the “correct” conver-
gence properties of (i) and (ii).

(iv) In the R-recurrent case, there is an R-subinvariant measure n and R-sub-
invariant function f, satisfying # = nRP and f = RPf m-a.e.; m is unique up to
constant multiples, and f is unique up to constant multiples and definition on m-null
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sets. For any set A with ¢(A) > 0,
(2.1) 7(+) = Sa7(dy) 40x()> ) »
(2:2) f(x¥) = 4 4Gr(x, dYf(y), m-a.e.

Part (i) of this theorem gives the general version of geometric ergodicity for
transient chains: for if, for some p, < 1, some x, and some A4, with ¢(4,) > 0,

P(xy, 4) = O(0,")
then it follows that for ¢-a.a. x, and all “suitable” 4,
P*(x, Ay = O(R™).
Part (iii) of the theorem then identifies in an exact way how to choose ‘“‘suitable”

A in this result: in [11] and [12] results are given (which we mention in Section
5) which show that under some conditions, one can identify &, further.

THEOREM R2. (i) In the R-recurrent case, there is a partition {B(j)} of S such
that for every A C B(j), there is a n-null set N, and for x ¢ N ,,

(2.3) R*P*(x, A) — f(x)x(A)/xf ,
where m, f are as in (2.1) and (2.2). Either nf < co and {X,} is called R-positive, or

nf = oo and {X,} is called R-null.
(i) If A is any set with n(A) < oo and inf,_, f(x) > 0, then (2.3) holds for A.

One of the major purposes of the next section is to show that, in fact, (2.3)
holds assuming only 4 € %, and to investigate the class of initial distributions
for which the analogue of (2.3) is true.

We now turn to the splitting technique of [8]. We suppose that {X,} satisfies
the following

MINORIZATION CONDITION. For some k > 1, some measurable nonnegative
function & < 1, with ¢# > 0, and some probability measure v on &,

(2.4) PH(x, A) = h(x)u(A) , xeS, Ae 7.

We shall use k, & and v exclusively for the quantities in (2.4). The minorization
condition is far from restrictive; when & is countably generated, then (see
Section 5) we can always choose v as ¢ restricted to a C-set for ¢ (defined as in
(1.2)), and 4 as al, for some a > 0.

We now use (2.4) to “split” the chain {X,}; a more detailed description is given
in [8], but the following will suffice for our purposes. Suppose first that k = 1
in (2.4). Write, forall xe S, A¢ .+,

x, = (x,0), x, = (x, 1);
Ay=AX {0}, A =Ax{l}, A4*=d4x](01}.

Let & * be the g-algebra generated on S* by thé sets {4,; 4e .5, i = 0, 1}; we
identify subsets 4 of S with corresponding subsets 4* of S*.
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Any function g on S is given the value g(x,) = g(x), i = 0, 1, on $*; but any
measure A on & is split onto & * by setting

(2-5) Ad) = A (4) . AAy) = AU(4) .

We can now define the split chain {X,*} corresponding to {X,}. We first define
a transition probability P from $* to & by setting, for xe S, 4e &,

(2.62) P(x,, A) = [1 — B(X)]7[P(x, A) — B(X)u(A)] ;
(2.6b) P(x,, A) = v(A);

let {X,*} be a chain on (S*, % *) whose transition probabilities P*(x;, ) are the
splittings of the measures P(x,, +) from . onto .& *.

If 7 is any initial measure on & *, we write I?,* for the probability measure
of {X,*} given X;* has distribution 2. In [8] it is shown that the marginal dis-
tribution of {X,*} on S is the same as that of {X,}, but {X,*} has the advantage
that, from (2.6b), the set S, is an atom, i.e., transitions from every point in S,
are identical. This enables us to use renewal theory arguments not available
for {X,}, and these provide the main tool in the sequel. If kK > 1 in (2.4), then
we split the k-step chain {X,,}, exactly as in (2.6) with P* in place of P. Hence
to use (2.4) for general k, we need to verify that the R-theory of {X,} is inherited
in a suitable way by both {X,,} and {X}}; and this we now do.

Lemma 1. (i) If {X,} is p-irreducible, then so are {X,,} and {X}}.
(ii) The R-properties of {X,} are inherited as R*-properties by {X}.}.

ProoF. (i) The argument used in Lemma 1.5 of [8] can be imitated to prove
{X,.} is p-irreducible; that {X;} is then g-irreducible follows directly from the
nature of the splitting (2.5), and (2.11) of [8].

(ii) Suppose k = 1. From (i) and Theorem R1, there exist convergence pa-
rameters R and R* for {X,} and {X,*}, and clearly R < R*; we have to prove
that if for some x € $* and 4 ¢ & * with ¢(4) > 0

2.7 D P (x, A) < o0,

then {X,} is r-transient. But the solidarity properties of r-transience imply that
for some point x € S, and some B¢ . ¥ with ¢(B) > 0 both 33, r"P*"(x,, B) <
and 3, r"P**(x,, B) < oo;andso Y, r*P*(x, B) = [1 — h(x)] X3, r"P*"(x,, B) +
h(x) X3, r"P**(x,, B) < co. We next establish the equivalence of R-positivity
for {X,} and for {X,*}. This follows because of the uniqueness of the R-invariant
measure and function in the R-recurrent case: it is simple to check that if z is
R-invariant for {X,}, then x split onto & * is R-invariant for {X,*}; whilst if f*
is R-invariant for {X,*}, f defined by f(x) = [1 — h(x)]f*(x,) + A(x)f*(x,) is
R-invariant for {X,}. Hence, in particular, zf = 7*/*, and so the two are finite
or not together.

Now let k > 1. We need to prove only that {X,,} inherits the R*-properties
corresponding to the R-properties of {X,}; and again it is clear that the only
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thing that needs to be proved is that, if 2 I P™(x, A) < oo for some x, A with
¢(A) > 0, then in fact 37, r*P*(x, C) < oo for some C with ¢(C) > 0. By using
the same argument as in the proof of Lemma 1.5(i) of [8], we can find Ce &
with ¢(C) > 0, y > 0 and m, an integer such that

(2.8) inf {rme=tPmet~H(y, A);i =0, -,k — 1,yeC} =7

Then we have

00 > k v, P (x, A)
— Z:=0 Zic;ol r(n+m0)kP(n+m0)k(x’ A)
g Z;o=0 Z{c;ol SC r'nk+iPnk+'L'(x, dy)rmok—iPmok—i(y, A)
=7 L5 "PY(x, C).

3. Existence of R-limits. Throughout this and the next section, we will
always assume that {X,} satisfies the minorization condition, and {X,} is R-recur-
rent. Aswe have seen, this implies that by a splitting procedure, we can always
introduce an atom into the space, at least for {X%}. If ais such an atom for
{X.}, we write P(a, ) = P(x, +) and f(a) = f(x), xe a, where f is the unique
R-invariant function of Theorem R1; and we let

NS ={y: f(y) # e R* Py, @)f(a)},

N, =N,/ U{y:Gyy,N,) > 0}.

From Theorem R1(iv), #(N,) = 0. If 2 is any measure on & and g is any
nonnegative measurable function on S, we put

L's,(n) = §s 2(dx) §5 R™ ,P*(x, dy)g(y) ;

if 2 =¢,, the point mass at x, we put L. ,(n) = T,4(n), and if g = 1, we put
Lyg(n) = Lip(n). WewriteI',, =T,,, xea. Ifgis any nonnegative measur-
able function, and p is any signed measure, we put

and put

lledl, = sup, {|#9]; 0 < % < g} 5

if E is any set in &, we write

el = lledhy, -
We write '
u(n) = R"P*(a, a) ;

we can then use the first-entrance-last-exit decomposition (3.14) of [8] to write,
for any nonnegative measurable g, and measure 1

(3.1) RaPrg = Ty (n) + Ty xux T,y (n), n=1
where x denotes convolution of sequences. In particular, we have
(3.2) RrAPY(a) = T, % u(n), nx=1

the usual first entrance decomposition.
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THEOREM 2. Suppose that {X,} is R-positive, and normalize x, f so that nf = 1.
Let g be any nonnegative function with ng < co. Then there is a set N, with
n(N,) = O such that, for all x¢ N,

(3-3) [R*P*(x, +) — f(x)=(+)

Proor. (i) We first assume that there is an atom a C S. Let » be any
measurable function with 0 < » < g. -From (3.1), letting 1 = 1, denote the
function identically unity on S,

[R*e, P"7p — f(x)(77)| < Dsg(n) 4 [Uaa x # % Do () — f(X)m(a),, + 1(n)]
(3-4) + [f(¥)m(@) o  1(n) — f(x)(x7)]
S TLy(n) + Top # [Toa x #(n) — fx)7(a)]
+ f(x)ﬂ(a') Z;’o=n+1 Fag(j) ’

since from (2.1), 7y = #(a) 17, L', (/). Also from (2.1),
(3.5) 0o > rg = m(a) X7 L'ey()) >
so that the last term in (3.4) tends to zero for all x, as n — co. From (3.2) and
Theorem R2(i), we know that for x outside a null set N,, |I,, « u(n) — f(x)z(a)| =0
as n — oo; so from (3.5) and a standard convolution argument, the second term

in (3.4) goes to zero for x ¢ N,.
To handle the first term, we note that for any fixed m < n,

thﬂ(n) = Sac Fadu(m)rw(n - m) ’

,—0, n—oo.

so from (3.5) again,

(3-6) 00 > D iimi Fag(”) = Vo Fady(m) 2in=1 Fug(”) :
Since, from (2.1), n(+) = 7(@) Y n-; ..(m), (3.6) shows that there is some z-null
set N,’ such that Y >, I', (n) < co for yg N/, and so for such y, the first term
in (3.4) converges to zero also. Hence (3.3) is proved for yg N, U N,/ = N,.
(ii) Now assume only that the minorization condition holds. The result
proved in (i) holds for {X;%}, and so if g is & -measurable, it holds also for {X,,};
so we have (3.3) as n = mk — oo. But if we choose g; = R’P’g, the R-invari-
ance of r gives 7g, = g < oo, and so for j =1, - -, k,

[Rme+iPmEi(x, o) — f(xX)m(e)ll, < [[R™P™H(x, +) — f(X)7(+)
which gives (3.3). []
By choosing Ee &, = {4: 0 < n(4) < oo}, we get the following

. =0,

COROLLARY. Suppose {X,} is R-positive with nf = 1. Then for each Ec .5 ,
there is a w-null set N, such that for x ¢ Ny,

(3.7) [[R*P"(x, +) — f(x)m()

As a consequence of this corollary, we can see that the condition (3.10) in [17]
is in fact always true. Hence Theorem 2 of [17] can be amended to give a

—0, n—oo.
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completely general analogue of the countable space quasistationarity results of
[13].

In the R-null case, by using (3.1) and the same methods as in Theorem 2,
we can prove the following, a detailed proof of which we omit.

THEOREM 3. Suppose {X,} is R-null, and let g be any nonnegative measurable

function with tg < co. For x outside a n-null set N,
R"P”g(x) -0, n—o .
In particular, if n(E) < oo, for x outside a m-null set Ny,
R*P*(x, E) —> 0.
In [15], where Theorem R2 was proved by reduction to the l-recurrent case
we could only show convergence for those sets in ., which were also in
T, ={Ae F :inf, , f(x) = 6, forsome d, >0, and =(4) > 0},

as noted in Theorem R2(ii).

We now investigate the limiting behaviour of sequences R"2P"g for arbitrary

initial distributions 2, and we shall see that for such sequences, .% ; plays a very
natural role.

THEOREM 4. Suppose {X,} is R-positive, with nf = 1. There is a single null set
N such that, if 2 is any measure with A(N) = 0 and Af < oo, and g is any function
with f(x) = cg(x) = 0 for some 0 < ¢ < oo (except perhaps for x € N), then we have

(3.8) [R*AP(+) — (Af)z(+)l, >0, n— oo.
In particular, if Ec &, for such a
(3.9) |[R*AP™(+) — (Af)m(+ )|l >0, n—oo.

PrROOF. (i) Assume that there is anatom a, and let N = N,; assume A(N) = 0.
As in (3.4), we have for 0 < 7 < ¢,

(3-10)  [RAPy — (A )(77)| = Tiy(n) + Lo % Do x u(n) — (4f )7(2)|

+ (A)(2) i L) -
Since co > nf = cng, from (3.5) the final term in (3.10) goes to zero as n — oo.
To handle the first term, this time we note that

(3.11) 0o > Af = F, Did(m)f(e)
since A(N,) = 0. Now for any m, as in (3.6), again since A(N,) = 0,
Zwemir Daa() = Sae aay(m) X371 Tyal(m)
(3.12) = See Dia(m)f AT
= el (mfa)]™ — Tia(m) -

From (3.12) and (3.11), the first term of (3.10) goes to zero as n — co. From
(3.11), we can also put

e % u(m) — (4f ) (@)
(3.13) = [Pae x u(n)—flaym(@) e+ 1(m)|+ | f@)m(@)T 0 x 1(n) — (4 )n(a)|
= Dhox Ju(n) — flaym(e)] + fla)m(@) Z5onn Laa(n) -
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Since u(n) — f(a)r(a), (3.11) implies that both terms in (3.13) go to zero. Hence
the second term in (3.10) goes to zero from (3.5), and (3.8) is proved.

(ii) Suppose now the minorization condition holds. From (i), we have (3.7)
for {X %} and hence for {X,,} when 1 is a measure on % and g is a function on
S. To deduce the result for {X,}, it suffices again to consider the functions
9, = RiPig; for if g < c¢f, then R‘Pig < cR‘P/f = f by R-invariance, except
perhaps on N,. [J

A version of this theorem can be proved for R-null chains: we give without
further details

THEOREM 5. Suppose that {X,} is R-null. There is a w-null set N such that, for
all 2 with A(N) = 0 and Af < oo, and all g with f = cg = 0 except on N, some
0 < ¢ < oo, and with ng < oo,

R"P"g -0, n— oco.

T

In particular, for all such 2 and for Ec % , N F
R"APY(E)—0, n— .

Finally, we remark that the splitting technique can be used to provide a simple
proof of the existence of the R-invariant measure r: this complements the indirect
construction in [15], or the direct construction in [9]. The details are similar to
those for R = 1 in Section 4 of [8], and we will not pursue them here.

4. Geometric ergodicity for R-positive chains. In this section we come to
the generalization of the solidarity results for rates of convergence with which
we began the introduction. We shall again assume in this section that we deal
with chains which satisfy the minorization condition; we shall also assume that
{X,} is R-positive, with 7 and f normalized so that zf = 1. We need two pre-
liminary results: ‘

KENDALL’S LEMMA. Suppose {u(n)} is an aperiodic renewal sequence with corres-
ponding first renewal probabilities {b(n)}, i.e., u(0) = 1 and

u(n) = u « b(n), n=1,2,....
Let u,, = lim,_, u(n). The following conditions are equivalent:
(i) |u(n) — uo| = O(p,"), some p, < '1;
(i) Xp b(n)r < oo, some r, > 1,

(ili) (1 — 2)U(2) = (1 — 2) X2, z"u(n) can be extended as an analytic function
with no zeros except a simple zero at z = 1, in a region {|z| < r)}, some r, > 1.

Proor. See [5].

LemMa 2. If {a,,n = 1} is a sequence with a, >0, then for any r > 1,
Y5m @ < oo if and only if F7o; Tien anr™ < oo

Proor. Use Fubini’s theorem.
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Because they are of independent interest, we give first two geometric ergodicity
theorems for the case when an atom exists, and then extend these results to the
general case using the splitting technique.

THEOREM 6. Suppose S has an atom «, and for some p, < 1,
4.1) |R*P*(ar, a) — fla)m(a)] = O(0,"), n— oco.

Then there exists p < 1 and a single n-null set N such that, if g is any function with
f = cg =0 for some 0 < ¢ < oo (except perhaps on N), we have for all x ¢ N,

(4.2) HIRPH(x, +) = f()7(+)ll, = O(e"), n— o0
In particular, for x¢ N and E€ 5,
(4.3) [R*P*(x, +) — f(x)z(+)llz = O(p") , n—o0.

PrROOF. Asin [19], if we take u(n) = R"P*(a, ), then from (3.2), the corres-
ponding sequence b(n) = I',,(n). Our assumption (4.1) is then, from Kendall’s
lemma, equivalent to assuming that for some r > 1 (which we shall take such
that r < p,7%), :

(4.4) Do 1L e(n) < oo
We shall show that for this 7, and ¢ as in the theorem,
(4.5) Ziwa IR P (x, o) — f(xX)m(+)lly

is finite; thus (4.2) will hold with p = r=*. As in (3.4) and (3.13), provided
x ¢ N,, we can bound (4.5) above by
Zia Dag(mrt + [ 25000 Loy (Mr L5 Laa(m)r™ Z5o rfu(m) — fla)w(a)]
+ f@a(@) T r* Di-win Paa(m)] 4+ f(0)7() T r* Z5onia Tay (m) -

Since we have (4.1) and Lemma 2, we thus need to show

(4-6) T Toy(n)r < oo ;
4.7) Diwoy Loa(m)r® < o0
(4.8) Diwaa Lp(m)r® < o0 5

and the latter two need hold only outside some (fixed) z-null set.
To see (4.6), note that for any fixed m, from (4.4)

(4.9) 00 > Niw Lpa(m)r = (oo 2oy Logy(m)r Ly ((m)r™ ;
multiplying by r~™ and summing over m gives

(4.10) oo > (r— 1) e Toa(mr™ = oo Ziny Caau(mrf(y)/f(@)
g ¢ Zzto:l Faa(n)rn/f(a) - Z:;l Faa(n)rn 4

since I,y (n) = O for all n. A similar operation on the inequality

o > Z::l I‘aa(n)rn g Sa" Fady(m)rm Z:=1 I‘ya(n)r%



414 E. NUMMELIN AND R. L. TWEEDIE

gives us, from (4.4),

(411) oo > (r—1)7 X Loa(mr® = $ue e Taay(m) ooy Tyum)r®
= (o ”(d)’) Dinet F,a(n)r” s

so for all x outside a z-null set N,, say, (4.7) holds. But now for x¢ N = N, UN,,
we can imitate (4.10) starting from x rather than a, to find that (4.8) holds, and
the theorem is proved. []

The value p occurring in (4.3) may not be the best possible for given x, E:
Vere-Jones ([19], page 26) gives a chain on three states in which the rates of
convergence differ from state to state whilst Teugels [14] constructs an (n + 1)-
state chain which has n different “decay parameters.”

We now prove a version of Theorem 6 for arbitrary initial distribution 2.
Since the step (4.11) is unavailable to us, however, we need to assume (4.12)
below: this ensures that the analogue of (4.7) is true.

THEOREM 7. Suppose S has an atom such that (4.1) holds. If A is such that
AN,) =0, 2f < oo, and for some p, < 1
(4.12) |R*2PY(@) — (Af)x(@)| = O(o;*), n— oo,
then there exists 8, < 1 such that for any g with f = cg = 0, some 0 < ¢ < o©
(except perhaps on N,),
(4.13) [R*2P*(+) — (Af)a()ll, = O(B;"), n— oo

Proor. From the proof of Theorem 6, we need only show that
(4.14) Yiw Daa(n)re® < o0,

for some r, > 1; we can then take 8, = max (7%, r,™*), where 7 is as in the previous
proof. But for |z| < 1, from (3.2)

(4.15) (1 = 2) Tp ARPe)zr = [ S, Tr(mzrl(l — 2U()

(4.12) ensures that the left-hand side of (4.15) can be extended analytically in a
region {|z| < r,} for some r, > 1, and Kendall’s lemma, together with (4.1), then
implies that , > 1 exists such that };, I'; (n)z* extends analytically to {|z] < r,}.
Since I';,(n) = 0, this gives (4.14) for any 7, < r,. []

We now move to the general situation,' employing the minorization condition
to extend the results above in exactly the same way the theorems of Section 3
were proved.

THEOREM 8. Suppose that {X,} satisfies the minorization condition, and that for
some p, < 1,

(4.16) |R*wPh — (uf )(zh)| = O(p"), n— oo .

Then there exists p < 1 and a single w-null set N such that, if g is any function with
[ = cg = 0 (except perhaps on N),
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(i) for all x ¢ N, we have

(4.17) IR*P*(x, +) — f(O)(+)ll, = O(o) , n— o0
(ii) for any 2 with A(N) = 0, Af < co and such that for some p, < p,

(4.18) |R*2AP"*h — (Af )(mh)| = O(p;"), n— oo,

we have

(4.19) [R*2P"(+) — (Af)z(+)lly = O(e") , n—co.

Proor. The results follow immediately for {X}} on noticing that (4.16) and
(4.18) are respectively (4.1) and (4.12) for the atom S, C S*. They thushold also
for {X,,} when g is an & -measurable function. To extend them to {X,} it suf-
fices, as in Section 3, to consider the functions g, = RPig, j=1, ...,k — 1. []

It is of some interest to identify };, I';,(n)r™ in the case where a = S, for the
split chain {X}. Suppose k = 1 in the minorization condition, and let v = 7
for {X,*}. Then for any initial measure 2 on & *, and r > 0, we have

Din=a I"PH(r = n) = 2 L0L, rot (PHI )"PA(S,) = €(S)) »
say, where ¢ is the minimal solution of
& = riP* + rEISlP* .
As in the proof of Lemma 5.12 of [8], we have
E=P Yz r(P—h@u),
where & @ v(x, A) = h(x)v(A4); and so
E(S) = AP Tz r(P — h@v)"h .
Bearing in mind that we need (4.18) only to establish the analogue of (4.14),

we have the following criteria for the assumptions of our geometric ergodicity
theorems to hold:

THEOREM 9. (i) The following two statements are equivalent:
(a) for some ry, > 1,
|[R™yPrth — (vf )(zh)| = O(r,™™), n— oo ;
(b) for some r, > R,
v o, (P — h @)k < oo .

(ii) There is a null set N such that for any measure A with A(N) = 0, the follow-
ing two statements are equivalent provided either one of the two equivalent statements
of (i) holds:

(a) for somery> 1,
|R*AP*h — (2f )(mh)| = O(r,™™), n— oo
(b) for some r, > R
AP Y= r™(P* — hQ@v)"h < oo .
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ProOF. We need only note that for the split chain {X}}, xe S, = a implies
e, P* = v; the remainder follows from our previous results. []

5. Inmitial distributions, admissibility and topological spaces. In this section
we give some miscellanea which make more concrete the notions in Theorem 8,
which is the main result of this paper. Suppose now that & is countably gener-
ated, and let ¢ be any measure such that ¢(4) > 0 implies > 5, P*(x, A) > 0
for each x e S; i.e., any irreducibility measure. From [10], any set 4 with
¢(A) > 0 contains a C-set for ¢; that is, if p,"(x, y) denotes the density of P*(x, +)
with respect to ¢, there is a set C C 4 with ¢(C) > 0, such that, for some
m > 0,

(5.1) PM(%, y) = 85> 0, x,yeC.

Hence the minorization condition is satisfied with v as ¢l;/o(C) = ¢q b =
[0¢¢(C)]1,, and k = m.

Hence we have immediately that (4.16) holds if, for some irreducibility measure
¢, and some C-set for ¢, satisfying (5.1)

(5:2) [R™pc P™(C) — (9o /)m(C) = O(p,") , n— o0,

where p, < 1. Theorem 1 is a special case of this, since = is an irreducibilty
measure for {X,}; but so is any ¢ with 7 > ¢, so that (5.2) holds for a much
wider class of initial distributions than restrictions of = to C-sets for z. Identi-
fication of C-sets which are not atomic may not be trivial, although in cases where
¢ is known the densities p,"(x, y) will probably also be known. However, the
fact that every A with ¢(4) > 0 contains a C-set enables us to assert that, (again
putting ¢, = olz/¢(B)), (4.1) will hold provided that for some 4 with ¢(4) > 0,
and every B C A4 with ¢(B) > 0, there is p, < 1 with

(5-3) [R*@5 PY(B) — (92 f)=(B)| = O(p5") » n— 0.

This formulation enables us to extend our results to the case where .5 may not
be countably generated.

THEOREM 10. Suppose & is not countably generated, and that (5.3) holds. There
is a single convergence rate p < 1 such that, for any E€ &,

|R*P™(x, B) — f(x)n(B)] = O(o")
for any B C E provided x is outside a w-null set N, (which may depend on B).

Proor. If this is not true, we can find a sequence of sets E; € & , with sets
A; C E;, such that for x in a set of positive x-measure, for infinitely many n

[R*P*(x, 4;) — f()x(A)| = o> 011
Now let %, be an admissible o-field containing A4 for which (5.3) holds, and

containing the sets E;, 4;, j = 1, ... (cf. [10]); since Theorem 8 holds for {X,}
on (S, &), we have a contradiction. []
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Now let us turn to the conclusions of the theorems. The functions g which
occur there are of most use in enabling us to deduce results for {X,} from {X,,};
the more interesting results are the total variation convergence results on &,
which follow from them. Inthe case R = 1, we have f = 1 and so S itself is in
Z ;; hence we have the usual total variation convergence at a geometrically fast
rate provided such a rate exists for convergence on a C-set.

When R > 1, we will not usually have Se & ; and the identification of ele-
ments of & is then of particular interest if S admits a topology. In another
connection (now rendered somewhat redundant because of Theorem 2), these
sets are identified in [11] and [12] for a large class of chains: the proof of the
following is in these papers.

ProrositioN 1. (i) Suppose Pg(x) is a bounded continuous function of x for every
bounded measurable g. Then every relatively compact set E with o(E) > 0 isin . .

(ii) Suppose Pg(x) is a bounded continuous function of x for every bounded con-
tinuous g, and that & is the Borel o-field on S. If ¢ is regular, and the support of
© (supp ¢) satisfies

() ¢((supp ¢)) = 0;

(b) supp ¢ is of second category in the relativised topology;

then every relatively compact set E with ¢(E) > 0 is in & ,.

In [11] and [12], these relatively compact sets are shown to have “correct”
properties in the R-transient case also. From Proposition 1, Theorem R1, and
the results of this paper, we can thus state the following general result.

THEOREM 11. Suppose & is countably generated, and let ¢ be some irreducibility
measure for {X,}. Suppose that P satisfies either of the continuity assumptions of
Proposition 1. If there is a C-set C for ¢ such that, for some p, < 1 and constants
n(x, C), xe C,

9o P*(C) — pom(C)| = O(p,") s n— o0,
then there is a @-null set N, constants n(x, A) for all xe S and A e F (where

n(x, A) = 0 in the transient case, and n(x, A) = n(A) in the positive recurrent case)
and p < 1, such that, for all x ¢ N,

[P*(x, +) — 7(x, *)llx = O(p"), n— o0,
whenever E is a relatively compact set with o(E) > 0.

6. Random walk on a half-line. In this section we apply our results to random

walk on [0, co). We consider a sequence Y}, Y,, - - . of independent and iden-
tically distributed random variables, and write
an(Wn—1+Yn)+a n=la2a"’;

this is well defined once the initial distribution of W is given. We suppose that
both Pr(Y; > 0) > 0 and Pr(Y; < 0) > 0; the latter assumption ensures that
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{W,} is g,irreducible for ¢,({0}) = 1, ¢,((0, o0)) = 0. We will assume that
E(Y,) exists in the extended manner described in [7].

It is simple (cf. [6]) to verify that {W,} satisfies the continuity condition in
Proposition 1(ii), and we can then apply Theorem 11 to {i¥,}. However, because
of some monotonicity properties enjoyed by {W,}, we are able to eliminate the
null sets which occur for general chains, and achieve a more satisfying solidarity
result.

THEOREM 12. Let P be the transition law of {W}.

(i) A necessary and sufficient condition for the existence of p, < 1 such that

(6.1) P*0,0) = O(p,"), n— o0

is the existence of 0 < D < oo and n > 0 such that

(6.2) E(Y)) >0, Pr(Y;,< —x) < De"*, x=0.

If (6.2) holds, then there exists p < 1 such that for all x and all intervals [0, a],
(6.3) P"(x, [0, a]) = O(p™), n— co.

(ii) A necessary and sufficient condition for the existence of p, < 1 and =(0) > 0
such that

(6.4) |P*(0, 0) — m(0)| = O(p,"), n—> oo
is the existence of 0 < D < oo, n > 0 such that
(6.5) E(Y) <0, Pr(Y;>x)< De”, x=0.

If (6.5) holds then there is probability measure m on [0, co) and p < 1 such that for
all x,

(6.6) P(x, ) — 7(+)] = O(e") , n—>co0 .

Proor. The equivalence of (6.1) and (6.2), and (6.4) and (6.5), is proved by
Miller in [7]. He then uses the results of Vere-Jones to deduce analogues of (6.3)
and (6.6) under the additional assumption that Y, takes on only integer values.
From Theorem 11, we know that (6.3) holds for ¢-almost all x, for any irre-
ducibility measure ¢. If we look at the proof of Theorem 1 of [15], we see that
the null set on which (6.3) may fail is in, fact precisely the set on which

(6.7) e, Pr(x, 0)r" = co
where r is some value for which
(6.8) e, P*0, 0y < oo .

Since {W,} is stochastically monotone, P*(x, 0) < P*(0,0) for all n and all
x € [0, oo) (see[1]), so (6.8) implies that the set on which (6.7) holds is void. This
gives (i).

Now from Theorem 6 we see that (6.4) implies (6.6) except on a null set, since
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f = 1. To show that the null set is void, it suffices from the proof of Theorem
6 to show the emptiness of the sets

N, = {)’3 2in=1 OPn()” 0) # 1}

N, = {y: Z:=10Pn(y’ O)r% = oo},

and

where r is such that

Yiws oP™0, 0)r" < oo .
Although we do not know the structure of = in detail, we do know that = is not
concentrated on a bounded set, since Pr (Y, > 0) > 0 (and in fact when Y, is

not a lattice variable, z(U) > 0 for every open set U (see [2], page 147)). Now
let us look at 7, = inf(n = 1: W, = 0), and write

Sn = Z?:l Yt + SO

(where S, = W, has a prescribed initial distribution), for the random walk under-
lying {W,}. Thenz,=inf(n = 1:S§, <0). Weputr, =inf(n=1:85, < w),
w = 0. Then by translation invariance of {S,},

Pr(zyzn|S,=x)=Pr(r, 2 n|S,=x+ w)
SPr(r,zn|S,=x+w), w=0.

Hence firstly we see that if y € N,, then y + w e N, for allw = 0; since z(N,) = 0,
this cannot happen and so N, is void. Secondly, we have from Lemma 2 that

N ={y: ZarZ5-a Py, 0)] = oo},
i.e., since N, is void
Ny = {y: X rmPr(cg 2z n|S, = y) = oo} ;

so if ye N, then y + we N, for all w = 0, and so N, is also void. []
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