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ADDITIVE SET-VALUED MARKOV PROCESSES
AND GRAPHICAL METHODS!

By T. E. HARRIS
The University of Southern California

Let Z be a countable set, Z the set of subsets of Z. A E-valued Markov
process {&;} with transition function P(¢, &, T') is called additive if there
exists a family {£{, r = 0, 4 € B} such that for each 4, {¢;!} is Markov with
transition function Pand ¢ = 4, and such that £V % = ¢ u ¢B, 4,BeE,
t =z 0. Additive processes include symmetric simple exclusion, voter models
and all contact processes having associates. The structure of such processes
is studied, their construction from sets of independent Poisson flows, and
their representations by random graphs. Applications for the case Z = Zg,
the d-dimensional integers, include individual ergodic theorems for certain
cases as well as lower bounds for growth rates, and some results about
different kinds of criticality when d = 1.

1. Introduction. Let Z be a countable set of elements x, ¥, 2, -+ and E the
set of subsets of Z with elements &, , {, - .. and sometimes 4, B, -- .. Let €]
denote the cardinality of £&. Numerous studies have dealt with E-valued Markov
processes {¢,}; see [20] for many references to recent literature.

The present paper studies a class of E-valued processes that will be called
additive (so will their transition functions, etc.). If {£,} is a E-valued process
with transition function P(z, &, T'), additivity means that there exists a family
{4, t = 0, A€ E} of Markov random functions, each with the transition func-
tion P, all defined on the same probability space, such that £{4 = 4 and

(1.1) EAVE = EAUER, >0, A BekE.

(Note that 4 and B need not be disjoint and independence plays no role in the
definition.) We will always take £,° = (.

The additive processes include all contact processes that have associates ([ 13]),
symmetric simple exclusion (see, e.g., [23]), voter models ([17], as well as the
“biased” case of [22]), and others. Thus many genuine interactions are included,
in spite of the simple law of composition. There are close relations to perco-
lation processes and they will be exploited.

If |Z| < oo and at least in many cases where |Z| is countably infinite, addi-
tive processes have useful representations as functions of countable products of
Poisson flows. They also have graphical representations which, in the case where
Z is the set of 1-dimensional integers, are helpful in studying the process. In fact
it was the examination of graphical representations for certain special processes
in discrete time (see Toom [25], Vasil’ev [26]) that suggested the property (1.1)
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to the author. Clifford and Sudbury used other graphical representations in [2]
for certain processes, called “swapping” and “invasion,” which are cases of
simple exclusion and the voter model respectively. Gray and Griffeath [6] have
used a related construction for proximity processes. In Section 9 we shall give
a graphical representation that applies to all additive processes.

We shall show that for certain additive processes (in particular contact pro-
cesses with appropriate parameter values) we have

P, {inf,>0 €] > 0§, never @} =1

t
if £ = @. As far as the author knows, lower bounds for growth rates have not
previously been obtained except when &, is always increasing; see, Richardson
[21] for results in this case. Using the above lower bound, we obtain, for certain
additive processes, an individual ergodic result of the form?

P SEAE) di = o fian)] = 1

for certain explicitly described £. In the last section we investigate the question,
raised in Section 10 of [13], of the relations among different notions of “extinc-
tion” or of “critical value” for self-associate contact processes.

Every additive process has an associate (see, [13] and Section 2 below). The
association relation has a particularly simple graphical representation for addi-
tive processes (Section 9). This is also true for the graphical representations
used in [2] and [26]. All the processes studied in [13] having associates turn
out to be additive, but we shall give an example of a process with an associate
that is not additive. However, every binary process with an associate is additive
(Section 6).

An alternative approach to additive processes was sketched in Harris [14]; this
is related to Theorem 6.1. Related material, including the graphical analysis of
Section 9, was sketched in Harris [12].3

REMARK. Since this paper was submitted Holley and Liggett [18] have found
a very good upper bound for the critical parameter of the simplest contact pro-
cess. By combining their result (not derived by percolation or graphical methods)
with the methods of Sections 11 and ‘12, applied to the graphical structure of
Section 9 rather than to discrete-time processes, it appears that Theorem 13.5
can be improved, “sufficiently large” being replaced by a good bound. Lemma
13.1 would then be unnecessary if we are interested only in continuous time.
This may be included in some current work of J. Jameson.

NOTATION AND TERMINOLOGY. Z, is the set of d-dimensional integers. In this

2] am indebted to Claude Kipnis for proposing the question of individual ergodicity in con-
nection with simple exclusion, where the problem still seems to be unsolved.
¢ In [1] Bertein and Galves give other results about additive processes.
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case |[x — y| is the Euclidean distance from x to y. O is the origin of coordinates
in Z, and E, denotes E if Z = Z,. §(4) = |§ n 4] if 4 C Z; §(x) means &({x})
and is a coordinate of £, and we may regard ¢ as an element of {0, 1}”. Then E,
with the topology of simple convergence, is compact and metrizable. <#(E) and
%, are the Borel sets in & and R,;, C the continuous real functions on E, and C,
the cylinder functions in C. If 4 ¢ Z, C, is the set of continuous functions
depending on coordinates £(x), x € 4. The semigroup on C of a E-valued pro-
cess is denoted by T, the generator by .%. P, is the measure for a process with
initial value ¢ and &, is the corresponding expectation. If |Z] < co we may
regard %" as a matrix; then .%7(§, 7) is the intensity § — 7 if £ = 7. We some-
times write £ U x rather than £ U {x}, etc. d, is the unit massin E concentrated
at &. If v is a Borel measure on <Z(E), v(f) means { fdv if the integral exists.
The special notation £ # 7y means £ N 5 # @. We define §.(y) = 1if 42, 0

2. Structure of additive processes (|Z| < o).

Note. InSections 2—7, |Z| < oo. In thissection definitions are with respect
to a fixed Z and E. i

(2.1) DEFINITIONS. A mapping W: E — Z, written on the right for later
convenience, is called additive if W = » and (§ U n)W = W U »W, whether
or not ¢ and 7 are disjoint. The identity is W,. The set of all additive trans-
formations is 27

(2.2) DEerFINITION. If We 97, define W* e 77 by EW* = {x: xW £ &}, We
say that W* is associate to W. Then éW &y iff & & pW*.

Taking Z = {x,, - - -, x,} and representing § as a row vector (§(x,), - - -, §(x,)),
where £(x;) = 1 if x, € £ and 0 if not, we identify W with a matrix, also called
W, whose ith row has 1 in the jth column if x; € x,W and 0 if not. Then &¢W
has the usual matrix meaning except that integers > 1 are replaced by 1, and
the same applies to matrix products; thus (§W )W, = §(W,W,). The associate
matrix W* is just the transpose of the matrix W, and we see that (W*)* = W.

We have already defined additive processes in Section 1.

(2.3) THEOREM. Let {§,} be additive, with generator .87. Then there are addi-
tive transformations W,, W,, ..., W and constants p,, p,, - - -, p, > 0 such that

(2.4) SZf(E) = im0 (fEW) = f(€)) -
Conversely a process with the generator (2.4) is additive.

We can always assume W, does not appear in (2.4). Of course {W; may equal
& for certain & and i.
Referring to (2.4), we may say that W, is applied with intensity p;.

ProoF. Suppose {¢,} is additive. Let the processes §,4, A€ & be defined on
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some probability space with measure Q. Then
(2:5) P(t, A, {n}) = Xl Q85 = 7., xe Z})

where the sum [, has a term for each set {5,, x € Z} such that |J,., 7, = 7.
A given set {5,, x € Z} corresponds in a 1: 1 fashion to some W e 97 such that
xW =9, xe Z. Putting Q{§,° = »,, xe Z} = Q,(W), (2.5) becomes

(2.6) P(t, A, {n}) = Zwes QW) ({n}) -

For each W’ &+ W, thereisan 4’ ¢ Esuchthat /W’ = A’. Put 4 = A',n = A'W’
in (2.6), divide by 7, and let # | 0. Since the left side approaches the generator
element 7 A4’, A'W’), Q(W")/t is bounded. Hence we can find ¢, | 0 such that
for each W # W, lim Q, (W)/t, = p(W) exists. It follows that 7f(§) =
Dwes 0W)fEW) — f(€)), and (2.4) is proved.

Now suppose {£,} is a E-valued process whose generator .7 satisfies (2.4).
Take m independent Poisson processes 0 < 7, < 7, < -+, i =1, ..., m with
rates o, - -+, p,. Let0 < 7, <7, < --- beasingle ordering of all the z,,, where
we can assume ties do not occur. Put 7, = 0. Construct £,4 as follows. Let
4= Afor0 <t < r,. Assumingé,*hasbeendeterminedfor0 <t < 7,,n>1
and is constant on [7,_,,7;), 1 < j< n, put§* = Ern—IW(T") forz, <t < Thy
where W(z,) = W, if 7, is one of 7, 75, ---. Then §* = AW(z)) W(z,) - - -,
the product being continued over all z, < ¢. Since the product is in 27, the
additivity of £,# is shown. From the properties of Poisson processes we see that
the generator is given by (2.4). Note that we can write
(2.7) £ = AW(2)
where W(f) is a random element of 27~ with the distribution Q,(W) =
Prob (W (1) = W}. [

WARNING. The generator of an additive processis not determined by the values
of (x, ), xe Z, ne k.

From [13] we recall that the Z-valued process {£,*} with semigroup T,* and
generator 7™ is associate to {£,} if T,0.(n) = T.*6,(§), & neE, or equivalently
if 70,(y) = ¥*0,(§). (If |Z]| = oo we require T,0,(y) = T,*0,(¢) if & or 5 is
finite.) We call {§,} self-associate if T,* = T,. We shall use the *—notation only
for association. For related notions of duality see [7], [19] and [22].

(2.8) THEOREM. If {§,} is additive with generator (2.4), then {£,*} exists and
has the generator S7* given by the same expression but with W * instead of W .

ProoF. Itis easily verified that %7*6,(y) = .%78,(¢), which proves the result. []

(2.9) REMARK. From (2.4) we see that the class of additive generators is a
convex cone.

3. Recognition of additive processes. To determine whether a given genera-
tor is additive we must see whether there are numbers p(W) = 0, W = W, such
that (€, 7)) = Zwiew=, p(W), § # 7. This is a big computational problem
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unless Z is small but in special cases, particularly if %7 = 3} %, where each %7,
“lives” on a few points of Z, we can sometimes recognize additivity.

4. Examples. The following examples for finite Z can be used as building
blocks when Z = Z,; see Section 8.

(a) Symmetric simple exclusion. For eachi=1,2,...,n let x;, y, be points
of Z, x, + y;. Define W, by x,W; = y;, y; W, = x;, zZW; = z otherwise. Let {§,}
have W, applied with intensity o, > 0. Then {£,} is a simple exclusion process
with intensity p, for a particle at x; to jump to y; if y; is unoccupied and the
same intensity for a jump from y; to x;. Since W, = WX, this process is self-

associate.

(b) Contact processes. Let Z = O U N, where O is a distinguished point,
O¢N,and1 < |N| = n < . Let A(¢§) depend only on &(x), x e N, with A(¢) = 0,
A(€) = 0. Let 2 = 0 be constant and consider {£,} with the generator

S71(§) = w(f(E\0)) — f18)) + AE)NS(E Y O) — f(4)) -

{€,} was called a “contact process” in [13], extending the definition given in [11].
In the present paper we shall assume, unless the contrary is stated, that 2 depends
only on | N NJ|, say A(§) = 4, if |§ N N| = k.

It was shown in [13], Section 6, that {£,} has an associate iff
(4.1) £y (= 1) () 2 0 l<k=n.
If n = 2, this means 4, < 4, < 24,. Let g, denote the left side of (4.1).
(4.2) THEOREM. [f a contact process has an associate, both are additive.

Proor. For each n ¢ N with || =k, k = 1,2, - -, n, let W, be the additive
transformation defined by xW, = x U O if xe , xW, = x if x¢z. Define W,
by xW, = @ if x = O, xW, = x otherwise. Some routine calculations show
that {&,} is the additive process having W, applied with intensity 1 and W, with
intensity g, if p C N, |7| = k, 1 £ k < n. In fact {§,} is a “proximity process”
as defined in [17]. Since (W,)* = W, and O(W,)* = O U 7, {§,*}is a “branch-
ing process with interference” as defined in [17]; this was shown from a different
point of view in [13]. []

(c) The voter model. Let Z = {x,, x,} and consider
W1=(gg): Wz':gg’ W3=(H, W4=é}-

Let {¢,} have W, and W, applied with rate &, W,and W, with rate 3. Representing
¢ as (§(x,), £(x;)), we see that (1, 0) and (0, 1) both have intensity a for a tran-
sition to (0, 0) and a + B for a transition to (1, 1), while (1, 1) and (0, 0) are
absorbing. If § = 0 we have a component of the voter model of [17]; if 3 > 0
we have a biased voter model ([22]).

5. Extremal additive generators. Continuing to assume |Z| < oo, let &, be
the class of generators of additive processes. We include the 0-generator in &7,
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which is thus a closed convex cone. Each .% ¢ &, is a positive linear combi-
nation of generators %7, where

(5.1) S f(8) = fEW) — f(6) We 7 .
If W =W, 5, is 0. Note ()% = ¥ *.

e &, is called extremal if & = &' + %", where ', %" ¢ &,, implies
7" and " are proportional to .. The determination of the extremal s
is connected with a certain partial ordering of 27"

(5.2) DEFINITIONS. If W,, W,e %, W, < W, means that for each & either
EW, = EW, or EW, = £. We say W, dominates W, (or W, is subordinate to W,).
The domination is strong if also W * < W,*; in this case we write W, < W,.
The domination is proper if W, is neither W, nor W,. Both < and ( are partial
orderings.

For |Z| = 2 it can be verified that (3 1) < (} &), but ( )* = ¢ ) € (G 0 = @™
so the definition of « is not superfluous. Also (} }) strongly dominates (} {) and
(5 1), and these are the only cases of proper strong domination when |Z| = 2.

(5.3) THEOREM. A generator 7 ¢ &, is extremal iff & = ¢, where W has
no proper strong subordinate.

The proof is omitted.

6. Additivity and association. A E-valued process is called deterministic if the
embedded jump process is deterministic. Such a process is described by an in-
tensity function ¢(£) and a transformation ¥: E — & (in general not additive)
such that a jump from & is to &V Our convention is that ¢(§) = 0 iff &V = €.

(6.1) THEOREM. (|Z| < o0). Let & be the convex hull of the set of generators
7 such that &7 has a Markov associate 7* and both % and S7* are determin-
istic. Then & = <Z,.

This result will not be used and the proof is omitted. A generator of the sort
mentioned in the theorem may have an intensity ¢(£) taking 2 or more strictly
positive values.

Here is an example of a process with Z = {x, y} which is not additive but has
an associate. Let the transitions x — y, y — x, Z — x have intensity 1, with no
other transitions. This process is deterministic. The associate process, which is
not deterministic, has intensity 1 for x — y, y — @, and y — Z, and has no other
transitions. It can be verified that these processes are not additive.

It can be verified that if |[Z| = 2, every self-associate process is additive: This
property carries over to self-associate generators % = 3} %, in Z, (see, Section
8) if each generator %7, lives on 2 points.

7. Correlation inequalities. (|Z| < o). Let & be partially ordered by inclu-
sion. Let C, be the set of increasing f: & — R,. A process is called monotone if
T,C, c C;. It is said to have positive correlations (PC) if &, f(£,)9(¢:) =
& f6)E:9(5), [,9€C;y, £ E. It was shown in [15] that a monotone process
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in any finite partially ordered state space has PC iff each possible jump & — 7 is
between comparable states; i.e., § < yor & > 7. Since from (2.7) every additive
process is monotone, it follows that an additive process has PC iff for each W, in
(2.4) we have

(7.1) VE, EW,C €& or EW,DE.

Later we shall need a correlation inequality for a process 7, = {7, ** +, 7}
where 7, = A, W(t), W(t) is as in (2.7), and A, ---, A, € 8. The monotone
process 7, has the state space E¥, with the product partial ordering, and initial
state (A, - - -, Ay).

(7.2) LEMMA. Suppose k = 2. Then {3,} has PC iff each W, in (2.4) satisfies
(7.3) Either EW,c & V¢ or EW, D €& VE.

Furthermore {§,} and {¢,*} simultaneously have PC iff (7.3) holds for each W, in
(2.4).

REMARKS. Inthe same process we may have §W, C £andéW, D €. If |Z]| = 2,
(3 9) satisfies (7.1) but not (7.3).

Proor. If (7.3) holds, each jump of {»,} is between comparable states, so {7,}
has PC. Conversely suppose {7,} has PC; then so does {£,} and hence (7.1) holds.
Suppose some W, = W in (2.4) does not satisfy (7.3). Then Zis a disjoint union
Z, U Z,U Z; where Z, + @, Z,+ @, xW =@ if xeZ, xW 2 x if xe Z,
xW = x if xe Z,. Moreover xW O Z, if xe Z,. Takey, = (Z,, Z,, A, -+, A,)
where 4, - - -, 4, are arbitrary. There is a positive probability that the first
jump is to (Z,W, Z,W, - ..) which is not comparable with 7,, but this is impos-
sible if {5,} has PC.

We omit the proof of the second assertion which will not be used in what
follows. [J

8. Additive processes in Z,. Going to countably infinite Z, we restrict our-
selves to Z,;, although some of the results have obvious analogues for more
general cases.

The generator % is said to “live” on the finite subset V of Z= Z, if fe C,n C,,,
or fe C, implies /f = 0 or .%/fe C, respectively. If o7, is a generator living
on the finite subset V of Z,, let %7, the translate of %, to x, be defined by

(8.1) SSE) = o fE— %), SO =ME+ ).

From [16] or other known results it follows that %7 = 37,., .97, is the genera-
tor of a well-defined process. See Sections 5 and 7 of [13] for further discussion.

The transformation W: Z; — E, is said to “live” on the finite subset V' of Z,
if Ec Voré&c Z\Vimplies §W C V or §W = & respectively. Additivity is
defined as in the finite case, and 97 is the set of additive W such that W lives
on some finite set. The generator 7f(§) = f(EW) — f(§) then lives on the same
set as W.
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tw,...,W,e %, put

(8.2) S, fE) = T 0 fEW) — fE)
(8.3) =3,

where 7, is defined in (8.1). Note that %7 is defined by (8.2) with W, replaced
by W,, where

(8.4) EW,, = (& — X)W, + x.

We shall say that a process with the generator %7 is additive. In Section 9 we shall
see that such processes satisfy the definition of additivity of Section 1.

Each of the examples in Section 4 produces, by means of (8.3), a process in
Z, which we call by the same name. %7, for a contact process in Z, is defined
with a finite nonempty set N, O ¢ N, called the basic neighborhood. Then 7,
actson O U N as in 4(b). From Theorem 4.2 and Section 7b of [13], a contact
process in Z, is additive iff it has an associate.

9. Basic flow; graphical representation. We shall define additive processes in
Z, on a probability space appropriate for showing (1.1). We still use Poisson
flows but now in a different manner in order to provide the graphical const-
ruction that will be important to us. In order to establish precise relations for
later use it seems necessary to give some lengthy definitions. The partly verbal
description below (9.3) may help visualize the construction.

Start with given W, .-, W,e %, p;, -++, pn > 0, no W, = W,. In what
follows the indices i, j, k, n, N are integers. Note also that we hold fixed the
integer m > 1.

Forxe Z;, 1 <i < m,letQ,, betheset of atomic Borel measures w,, in (R,, £5))
with atoms of weight 1, such that ,,(0, c0) = w,,(— o0, 0) = 00, w;,(—n, n) < oo
forn > 1. Let &, be the g-field in Q,, generated by the sets {w,(B) < u},
Be &, ue R, Let &2 be the o-field if B is restricted to the interval (s, 7],
s < t, writing F ¢ if s = —o0; let F % = {¢, Q,,}. Let P, be the probability
measure on % ;, corresponding to a Poisson process with intensity p,. Letting
(Q, &7, P') be the product (IT Qi,, [[ % i II Pi,), We next obtain Q by re-
moving from Q' each ' having two or more different w;,’s with an atom at the
same point. We then complete Q n &' with respect to the trace of P’ on it,
obtaining our basic probability space (2, %, P). The o-fields & * and & * are
obtained by corresponding completion operations.

Let 0 < 7y < 74y < --- be the atoms of w, in (0, ). For TeR, let
T >zl > L, > .- be the atoms in (—oo, T). We may write 7., = t(ixn).

If ¢ € R, the transformation U, on Q which subtracts ¢ from the coordinate of
each atom of each w,, is measure-preserving; it is also mixing because the indivi-
dual Poisson flows are mixing ([3], page 367). Let U, f(w) = f(U, ).

9.1 DEerFINITIONS. For N = 1and x, y € Z, let Sy(x, y) be the set of ordered
Y& Zq J
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triples (X, Y, ¢) where
X = (X Xp o o0y Xy)s Xy= X, Xy =1y,
Y= wye o)
e =(ip iy oovyiy), 1 <0, v iySm
and where we also require x, + x,_, and x, € X Wiy 1S k<N Ifn, .-,
ny=1,1let I, 0 < k < N be random intervals defined as follows:
I = (0, z(i, y,m)) »
Ly = (TG yem)s T(i1 Yesaesn)) l<k=N-1,
Iy = ((iy> yws fy)s ]
or ¢ if the indicated interval is not proper. Let
Fz)y={G@,2):1<i<m2eZ;z¢zW,}, zeZ,.
If x + y, the event {£,(y) = 1} is defined as

(9.2) Uwz: U(X,Y,z)eSN(x,y) Unl,m,nNgl {[0<c(yn) < - < T(iyyyny) = 1]
N Nosksy Nmrerey Mazi (7(20) € 1)}
If x = y, {£,7(y) = 1} denotes the union of (9.2) with

Neoera {7(21) > 1}
Put §,*(y) = 1iff y = x. Now define

(9.3) &= () = U &) = 1),
‘SLA: UzeAstz’ AeE‘d’

To visualize this, let Z = Z, X R, = {(x, #): x€ Z,, te R}}. “Up” in Z means
in the direction of increasing . Put a symbol D (for “death”) at each point
(x, 7) such that some w,, has an atom at rand x ¢ xW,,. (If r > 0, then ¢ = some
Tiuae) We may imagine that D causes the death of a particle if one is present at
(x, ). For each x # y, t € R, such that some w,, has an atom at ¢ and yexw,,
put an arrow with tail at (x, £) and head at (y, 7). We may imagine that if a
particle is present at (x, 7), it generates another one at (y, t). Note that several
arrows may overlap. Let 2 be Z together with the above D’s and arrows.

An active path (up) in 2" from (x, 0) to (y, t), where ¢ > 0, is a sequence of
alternately vertical and horizontal directed segments (x,, 0) to (x,, #,) to (x,, 1,)
to (x;, ;) + -+ 10 (Xy_;, ty) tO (xy, ty), and finally to (x, 7) if 1, < ¢, where N > 1,
satisfying the following requirements:

(a) 0< < <tySBE X=X Xy =y, X, #x,_,for ] <k <N.

(b) There is no D in the interior of any vertical segment nor at the point (y, ).

(c) Each horizontal segment (x,_,, #,) to (x,, #,) coincides with an arrow whose
tail is at (x,_,, #,) and whose head is at (x,, 7,), k = 1,2, ..., N.

If x = y an active path may also be the single vertical segment (x, 0) to (x, ) if
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no D lies in the interval (0, 7]. We agree there is always an active path from
(x,0) to (x,0). If s < ¢, an active path from (s, x) to (z, y) is constructed simi-
larly. We then have

(9.4) €4 = {y: an active path from 4 x {0} to (y, 1)}, t=0.

Assuming for the moment that we have verified the appropriate properties of
€.4, let us note that we can construct associate processes on the same 2. Fix
some 7' > 0 and let the Poisson sequences T > tZ, > tZ, > ... be defined as
earlier in this section. If 1 > 0, an active path down from (x,T) to (y, T — 1)
is constructed like a path up except that we go down and use the transformation
W instead of W, at the time Z,,. We ignore any 7,,, = T but include T — ¢.
Then for fixed T and ¢ an active path down from (x, T) to (y, T — 1) exists a.s.
iff an active path up exists from (o T — 1) to (x, T), the two events being pos-
sibly different if some 7,;,, = T or T — ¢. Hence if we put

9.5) 7§:** = {y: 3an active path down from 4 x {T} to (y, T — n},
t=0

we obtain a process with the same properties as {£,4} but using W instead of
W,,. It is clear that

{r€7*“ ¢ B} = {§,° ¢ A} a.s.,
giving a graphical exhibition of association.

Vasil’ev [26] and Clifford and Sudbury [2] have noted this kind of relation-
ship for certain graphical representations.

10. Properties of £,4. The following properties can be verified by routine
arguments depending on the construction.

(10.1) §,%(w) is right continuous in ¢ and for each s > 0 is FZ(E) X (&, n
[0, 5]) X F % — ZZ(E) measurable.
(10.2) Putting F(A4, 1, 0) = §.4(w), we have

FA4,5s + t, 0) = F(F(A, s, ), t, U0), s, t =0,
where U, was defined in Section 9. The Markov property of £,4 follows from

this because F(4,s, 0)e # ™and F(¢, 1, Uw)e &+t Welet P(t, &, I') be the
transition function.
(10.3) If AcE;, 0 < |4] < oo, let H = {y: xW,, # x for some i and some
xed} Lett=r,=inf{r,,: 1 <i< m,ye H}. Then{r < e Ftt=0.
Let W. =W, ift =r,,. If Fisasin (10.2), then
F(A,t,(t)):A, T>t
=FAW_,t — 7, U, o), 0.
(10.4) There are constants ¢,, ¢, > 0 (depending on the process) such that
s 0"
PlEs(y) =1} = ZNgcglz—ul GV,

) t=0,
N! -
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In fact if x = y, {§,(y) = 1} is contained in the event in (9.2) without the con-
ditions (izn) ¢ I, and the required estimate follows from properties of Poisson
processes.

(10.5) From (10.4) it follows that P(z, £, ') has the Feller property. Another
consequence of (10.4) is that if |4]| < oo,

P{U,s.<: €4 is a finite set} = 1.

(10.6) From (10.3) we find that if g is a cylinder function and 4e &,
|4] < oo, then

limt“, gt—l(g(EtA) — g(A)) = Dz Pi(g(AWix) - g(A)) .

It follows from (10.4) that this equation holds for cylinder functions even if
|A] = oo, and hence .97 is given by (8.3) for cylinder functions. According to
a result of [16], this uniquely determines .o,

(10.7) ReEMARK. We shall use P, to denote probabilities for any right-
continuous process with initial value & having the transition function P(¢, 5, I').
Any such process is strong Markov with respect to {& %, r = 0} and {&F %0,
t = 0} (See, [4], Chapter 3). We can always assume right-continuity for all our
processes.

(10.8) DerFINITION. If xe Z, and w € Q let V,w be the element of w having
each w;, replaced by w, ,,,. LetV, f(o) = f(V,w). ThenV,is measure-preserving.

It can be verified that if 4, Be & and ¢ > 0 there exists R > 0 such that
|x| = R implies |[P(4 N V,B) — P(A)P(B)| < ¢. From this follows

(10.9) LEMMA. Let f(w) have the values 0 or 1 only and suppose P(f = 1) > 0.
If x,, - -+, x, are distinct points of Z, then

P{ r=1VxleI}zl_eni
where ¢, depends only on n and f, and ¢, — 0.

This is because, given ¢ > 0, we can pick m of the x,, say y,, ---, y,,, where
m > ¢, and ¢ depends only on the dimension, so that the variance of 3] V, f/m
is < e.

From (10.9) we get the following corollary.

(10.10)  LemMa. Let {€,} be an additive process such that

P, {infm

t
Then

PA{inft>0£;|>0\|Et|—>oo}=l, 0< |4 < oo

Proor. Let f be the indicator of {inf |£,°|/t > 0}. Since §,4 = U,., &, it fol-
lows from (10.9) that P {inf |§,|/z > 0} is arbitrarily close to 1 if |4] is sufficiently
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large. The lemma follows from the strong Markov property and the condition
|€,] — oo. [

11. Results in discrete time. In Sections 11 and 12 we establish some esti-
mates for discrete-time processes in E, that will give lower bounds for the growth
rates of certain continuous-time additive processes in Z,. Some of the methods
are familiar from the theory of percolation processes. In Sections 11 and 12 ¢
is an integer = 0.

Let Z={(x,y): x,y=0,1,2, --.}. From each (x, y) go directed bonds to
(x,y+ 1)andto(x + 1,y + 1). The bonds are independently “active” or “pas-
sive” with probabilities p or 1 — p. A parh is a finite or infinite sequence of
directed bonds, each beginning at the end of the proceding one, with no self-
intersections. It is active if all its bonds are active. A single point (x, y) is
considered an active path.

Let A, be the event that there is an infinite active path from (i, 0),
i=0,1,2,-...

(11.1) LemMa. If p = p, > 8, then
(11.2) P{A, U A, U -+ U A} =1 —¢[9(1 = p)*, k=1,2,...,
where ¢, > 0 depends only on p,.

Proor. This extends the result of Hammersley [8] that if p > p,, where it is
known that .6 < p, < .85, then P(4,) > 0. The method here is essentially the
same but the proof is included because [8] is not widely available and the result
is essential to what follows. Embed Z in R,. Construct vertical lines with
abscissae x/2, x = —1,1,3,5, ..., and lines with slope 1 through (0, y/2),
y=+1,+3, £5,.--. Each (x, y) € Z is now the center of one of the parallelo-
gram areas n (interior and boundary) cut out by the lines. Let w be a realiza-
tion of the assignments “active” and “passive.” Fix k = 1 and let

TOZ{(i,O)IiZO,l, ,k— 1},
and
Tp(®) = {(x, y) € Z: (x, y) ¢ U?-, T;, 3 an active bond to (x, y)
from some (x', y')eT,}, n=0,1,....
IfT,= @ wetake T,,, = @. LetT = (J T,. We now consider an » such that

|T(w)| < oo.

Let S, be the union of the =’s centered at the points of T;, except that S, is
first extended downward slightly at each point (j/2,0), j=1,3,...,2k — 3,
so that the boundary of S, becomes a simple closed curve. If S; # @&, each
in S, has a side in common with some 7 in S;_;, j = 1; hence the outer bound-
ary of |J S, is a simple closed curve J. A clockwise circuit of J beginning at
(—4%, —1) goes straight up on U segments (i.e., sides of a ), straight down on
U, to the right slanting up on R segments and to the left slanting down on R,
where R > k and U > 1. Also each segment traversed to the right or straight

down is intersected by a passive bond. Such a circuit will be called “passive.”
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Let ny, be the number of circuits with R segments to the right and U up.
Then n,, < 3*%+%, since there are < 3 choices for continuing each step of the
circuit (one could do better; see, [8]). Hence the expected number of passive
circuits is

n 1 — p)B+HY < [9(1 _P)]M1 .
2irzk,vz1 Mru( P = ("———“‘——1 — 91 = p)°
Then
P(A4, U --- U A,_,) =1 — P(|T(w)] < o0)

= 1 — P{3a passive circuit} > 1 — M ,
(1 =91 —p))

and the lemma is proved. []

(11.3) LEMMA. Lety,, k = 1,2, ... be the number of integers j = 1,2, - .-, k
such that A; occurs. If p = p, > 8, there are numbers c,,c; >0, 0 < ¢, < 1,
depending on p,, such that

(11.4) Py, < k) < eyfc)t, k=1,

Proor. Let L, be the section {(x,n): x =0,1, ...} in Z. Fix N = 1 and let
B, be the event that there is an active path from (j, 0) to L,. Let v,” be defined
like v, but with B; replacing 4;. We shall show that P(v," < c,k) < right side
of (11.4); the desired result follows because v,” | v,.

Let A, be the set of paths 2 from (i,0) to L, i =0,1, ...; A = |JA,. For
A€ A let &, be the g-field for the set of bonds between L, and L,, on or to the
leftof 2. If n =1,k =1, 2e A, and ¢, .-, 1, are integers = 1 whose sum is
k, let Dy, (1, - - -, t,) be the event that 4 is active, no other path from (k, 0) to
L, consisting of bonds on or to the left of 1 is active, the events B;, i =
toty+ ty ooty + 84+ -+ + t,_, occur, and no other B; occurs for 1 < i < k.
Then D, (1, -+, t,) € F ;. Lett = inf{i:i > 1, B, occurs}; then v, < oo a.s.
from Lemma 11.1. Assuming 7, + --- 4+ 7, < oo for some o, let 7, be the
smallest i = 1 such that B, . ., ., occurs. Assuming we have shownz,, ...,
t, < oo a.s., we have, putting r, + --- 4+ ¢, =k,

P{fl =l Ty =l Ten = t} = ZleAk P(Dkln(tv Tt t'n)’ Thpr = t) .
Let E,,;, be the event that there is an active path from some (k + i, 0) to either
A or the part of Ly to theright of 2, 1 < i< ¢. Then E,;, is independent of D,,,
and the above expression is, from (11.2)
Z P(Dkln(tv Tt tn) n Ekn) = Z P(Dkln(tp T tn)) : P(Eku)
2 P(Dyy(tyy -5 t,)) - P(A U -+ U 4))
Pty =t -+, 7 = 7,)(1 — ¢[9(1 — p)]'*) .

[\VA\Y

Hence
(11.5) Pt >tlty=1t, -, 1, =1) < c[9(1 — p)t t=1,2,...,
and P(zr, > t) is also < the right side of (11.5). Hence taking ¢ > 0 so that
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9(1 — ppet < 1, we have Ees1t+7) < (¢,)", n = 1, wherec, > 1. Takec, > 0
such that (¢,)se=* < 1. Then if ¢, is an integer,

P(”J'N < c3j) = P(Tl + .- + Tcsj > J) é [(02)03e_c]j = (C4)j ) ] = 13 2’ crt .
If ¢,j is not an integer we require the extra factor ¢, in (11.4). [

(11.6) DEFINITION. Let [1] denote the integer part of u. If 8> 0 let 4, ,,
t=1,2, ..., be the event that there is an active path from some (i, 0) to some
(o 1) with 0 < i < j < [81].
(11.7) LemMa. If8 < p,<p<p <1l,wecan find 3 >0and 0 < a <1,
depending only on p, and p,, such that

P(A, ) < (a)f, t=1.

Proor. Let X, X,,-- - bearandom walk with X;=0; given X,=k (k=0,1,- - ),
let X,,, = k or k 4 1 according as the vertical bond out of (k, r) is active or
passive. We shall show that if X, > k, there is no active path from any (i, 0)
toany (j, T) with0 < 7, j < k. Suppose R were such a path. Connect the points
(Xi, 8), t=0,1, ..., T, by straight line segments to make a path S from (0, 0)
to (k’, T), k' > k. Going down on R from (j, T) let (m, s) be the first point on
S. Then (m, s) is a lattice point and necessarily (m + 1, s) € R, since (m, s) must
be at the bottom of a vertical bond of R. Since every bond of R is active, this
implies (m + 1, 5) € S, a contradiction. It follows that

P(A.) = P(X, = [B1]) = P(e™™ = e7%) < [e#((1 — pe™ + p)]' -

Pick $ so that the quantity in the bracket (which we call @) is < 1, and the
proof is finished. []

(11.8) DefiniTION. Taking 8 as in Lemma 11.7, for ¢+ = 1 let p, be the
number of integers i, 1 < i < [B¢], such that there is an active path from (i, 0)
to some (j, 1), j > [Bt].
(11.9) LemMA. If8 < p, < p < p, <1, then
Plp, = ¢t — ¢) 2 1 — at — (e,
where a, B, ¢,, ¢,, ¢, are as in Lemmas 11.3 and 11.7.
Proor. Using Lemmas 11.3 and 11.7, if 8z is an integer then
P(#t = Csﬁt) = P{(F‘t = Ca;Bt) n (At,ﬂ)c} = P{(”t = Czﬁt) n (At,,s)c}
=1 — P, < cft) — P(A, ) = 1 — ¢)c,)? — at.

If 5t is not an integer, a slight adjustment gives the desired result. []

12. Growth rate of a discrete time process. We shall get a lower bound on
the growth rate of a “two-sided” process in discrete time. Let Z, be the set of
integer pairs (x, t); consider Z, asembedded in R,. Fromeach (x, ¢) € Z,, directed
bondsgo to (x — 1,7+ 1), (x, 2 4 1), (x + 1,7 + 1). They are called respec-
tively left, vertical, and right bonds. A path is as in Section 11 with three kinds
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of bonds instead of two. A path with only vertical and left (right) bonds is a
left (right) path. The bonds are independently active with probability p. Let 4,
be the event that there is an infinite active right path from (i, 0), i = 0, =1, - - -.
Then A, has the same probability as 4, of Section 11, and similarly for several
events 47, A, - - - jointly.

Let E, be the set of subsets of Z,. For each 7 ¢ E,, define a Z;-valued Markov
random function &7, t =0, 1, ..., with £? = 5, as follows. Given §,7 = §,
then x ¢ &7, iff there is an active bond from some (y, ), yeé to (x,t + 1).
From Section 11 we see that if p > 8 then P(£,° never ) = P(4,") > 0.

(12.1) LEMMA. Suppose p = p, > 8. Given ¢ > 0, there exists N depending
only on p, and ¢ such that if i, i,, - - -, iy are distinct integers, then
P(A; U A7, U -+~ U A7) > 1 —¢.

Proor. Suppose p = p,, using a domination argument for the case p > p,.
Let Y, be the indicator of A4, ”. The stationary process --- Y_,, Y, Y;, .- is
mixing. It follows that the variance of (Y; + --- + Y, )/nis < d, where 4, — 0
and 4, depends only on n. The lemma follows from this. []

(12.2) THEOREM. If p > §, then

(12.3) P{inf,21 If;”l >0& never @} —1, 0<|j<oo.

ProoF. The result isobviousif p = 1. Wenowassumed < p<p<p <1
as in Lemma 11.7. Let g, be the number of integers i/, —[ff] < i < —1, such
that there is an active left path from some (j, 0) with j = 0 to (i, ¢), r = 1,2, - - -,
where 8 is as in Lemmas 11.7 and 11.9.

For simplicity we prove the theorem with » = O, and we write &, for £°.
From the construction we have {|§,| = k} N 47 D (¢,” = k) N 4. From Lemma
11.9, since ¢’ and p, have the same distribution, putting k = ¢, — ¢,

Pllg,] = et — ¢, A7} = Pl = k, A7} = P(p) = ¢t — ¢3) - P(AY)
= (1 — a' —¢y(e)?* ™) - P(AY)
where the correlation inequality can be seen directly or deduced from Lemma
4.1 of [9]. From the Borel-Cantelli lemma,
P& < eyt — ¢y i.0.]47) =0,

and from this
(12.4) P<infm£t‘l > O‘AOT> —1.

Given ¢ > 0, let N be determined as in Lemma 12.1, = = inf {z: |§,| = N} or
oo if not defined as an integer, B = {£, never (}. Then (taking only finite »)

P{infE'ti =0, B} £ Trsrce Ty PE = 5,6, = 1) - P {infl_f:ﬂ =o}.
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From (12.4) and Lemma 12.1 we have, for |y| = N,
P {infﬁﬂ = 0} < P{(Use, A7)} < e
t

showing that P{inf |§,|/t = 0, B} = 0. []

13. Growth in continuous time. In this section a discrete time process {£,}
with the transition law of one of the random functions {£,7} of Section 12 will
be called a “basic process with parameter p.”

A B, -valued process 7, ,, - - - is said to dominate a B,-valued process {;, {;, - - -
if for arbitrary initial », and {, with », D {; there is a joint realization with
Nw D L =0,1, ..., Asimilar definition holds for continuous time. Actually
domination refers to transition laws rather than processes. A process does not
necessarily dominate itself, but an additive process does.

In this section {»,, r = 0} will be a contact process in Z, with ¢ = 1, basic
neighborhood* N = {— 1,1}, and 4, = k4, k = 0, 1, 2. This process will be used
to get lower bounds for others. It is additive and self-associate.

(13.1) LEMMA. For each 0 < p < 1, there exist A > 0 and 2 > 0 such that the
discrete skeleton {n,,,n = 0, 1, . .} dominates the basic process {£,} with parameter p.

ProoF. We first construct an intermediate process {, dominated by 7,,. Let
p be given; A and 2 will be determined later. We use a construction for {7}
like that in Section 9 of [11], but it seems advisable to give details here because
of a substantial difference due to the different nature of the dominated process
and because the lemma is essential to what follows.

For xe Z, and i = 1,2, ... let a/(x) be independent exponential random
variables with mean 1. For xe Z,,i=1,2, ... and j = 1, 2, or 3 let a;;(x) be
independent of each other and the a’s, Prob{a,;(x) < u} = (1 — e™)}, u = 0;
then a,(x) = max; a;;(x) is exponential with mean 1. Let the integer N > 1 be
fixed until further notice. We will define 5, = 5, so that »,(x) = 5(x) for
|x| > N. If p(x) = 0, let o,(x) = a,/(x), 05(x) = a,/(x) + ay(x), g4(x) = a,"(x) +
ay(x) + aj'(x), etc., alternating a and &’. If 5(x) = 1, let o,(x) = a,(x), g,(x) =
ay(x) + a(x), - - -, again alternating. Associate with each x, |x| < N, a clock
function S,(r) with $,(0) = 0 and ‘

Be =99 + (1= 7D = D+ 0lx+ 1), WS N

(13.2)

The kth jump of the coordinate 7,(x) occurs at the smallest # such that S,(r) =
0,(x). The details for an essentially identical situation are given in Section 4
of [10].

Let V,(x) = min (ay(x), 4), Vy(x) = min (a,(x), A). Assuming {, = 7, and
letting 1(A) be the indicator of 4, define, for x e Z,,

(13.3) G0 = 7@ (@u(®) > B) + Ha(x) > 8) - (1 = 7,(0) - (I + T — 1) ,

4 See the end of Section 8.
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where

I = ny(x — DIAVy(x — 1) > a/(x)),

J = ny(x + DIAV(x + 1) > a)(x)) .
Checking the variables involved in the definition, we find that the random vari-
ables {,(x), |x| < N, areindependent. If |x| < N, theny,(x) = {,(x). For example
suppose 7,(x) = 0, ny(x — 1) = 0, p(x + 1) = 1 for some x, |x| < N. If{(x) =1,
then Aay(x + 1) = Aay(x + 1) > a)(x), A > a)(x), and a,(x) > A. It follows
that 7,(x) becomes 1 before A and remains 1 until after A. Similar arguments
hold for other cases. Moreover, letting N go to oo, using the fact that {»,'"’}
converges weakly in law to {7}, we find that », > {;. From the nature of the
{-process the same is true whenever 7, O ,.

If y(x) = 1 then Prob {{;(x) = 1} = 1 — (1 — e7%)}; if 9y(x) = 0 and y(x — 1) 4

N(x + 1) = k then Prob {{(x) = 1} = r,, k = 0, 1, 2, where

Fy = 0
(13.4) r, = e 2 Prob {AV,(x — 1) > a,/(x)}
ry = e * Prob {max (AVy(x — 1), AV (x 4+ 1)) > a/(x)} = 1, .

Now pick A and 1 so that Prob{{(x) =1|{(x) =1} =1—(1 —et)} =
I —(1—pPandr,=1— (1 —p)

Since the {,(x) are independent for different x’s, and so are the &,(x), this
choice of A and 2 ensures that the pair {,, {, dominates &, £,. The lemma is a
consequence of this. []

(13.5) THEOREM. Let {{,} be a contact process in Z; with basic neighborhood N
and parameters ¢ = 1, 0 = A, A, 4,, - -+, A. Suppose N contains a unit vector
(say, (1,0, - - -, 0)) and its negative. Then for sufficiently large 4,, - - -, Ay, we have,
for 0+ @,

(13.6) PJL, never @} >0,
(13.7) P, {infml_ct‘l > o\ct never @} —1.

Proor. We first prove the result for the process {,} in Z, defined above Lemma
13.1. Choose p = p,, 8 < p, < 1 and then A and 2 as in Lemma 13.1. From
Lemma 13.1, the statement just above Lemma 12.1, and Theorem 12.2 we see that

(13.8) P,Y{infnzl-”!ﬂ—>0} >0, 7%+ Q.
n
From the independence of the death processes at different x’s, there are constants
0 < ¢, ¢, < 1 such that
(13.9) P{infugisa 0] < ailnl} < (@) 0 <y < oo

This means [7,| will a.s. not shrink by a factor < ¢, on infinitely many intervals
[nA, (n 4 1)A], and hence P {inf,,|7,|/t > 0} > 0. Since {y, never @} C {|7,| — oo}
a.s. (see, Lemma 9.3 of [13]), (13.7) holds for {3,} by Lemma 10.10.
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Now consider {7,} in Z, embedded in Z, on the set of integer multiples of
(1,0, -.-,0). Arguing almost as Lemma 5.8 of [11], we see that {7} and {{,}
can be defined on the same probability space so that 5, < ¢, provided 4, > 2 and
A = 24 for k = 2, if 5, c {,, and (13.6) follows. If |€] = N? then either a line
parallel to the unit vector (1,0, ---) has N points of { or N such lines have at
least one point of {. Hence if |{| = N?, {, contains either a process 7, with
70| = N or N independent processes 7, on different lines, and (13.7) follows. []

REMARK. In d dimensions we could probably replace by ¢ in the denomi-
nator in (13.4).

Letting p,(y) = P(§.°(y) = 1), we find from (10.4) that for a suitable constant
¢ > 0 we have

Zn>0;(n integer) Zﬂilﬂlzvn Pn(.y) < o

showing that sup,., |£,°|/n* < oo a.s. The result can be extended to continuous
time and finite initial sets so that

(13.10) P, {sup@ll—i‘l <ol =1, 6] < oo .

This is to be expected from the results of Richardson [21].

14. Individual ergodic theorem. If x, is a Markov process in a state space E
with an invariant probability measure g, and if fe L(z), then for a.e. (p)x,
P, {lim (1/T) §7 f(x,) dt exists} = 1. Further information is needed before it can
be asserted that the limit is constant, and without some absolute continuity prop-
erties that do not usually hold for E-valued processes if Z is infinite, we cannot
assume that for some specified x the limit exists. In the case of the processes
considered in Section 8 of [11], where there is a unique invariant probability
measure, the limit can be shown to exist and be a.s. constant for all initial &, if
[/ is continuous, by means of the special coupling used there.®

For processes with two or more invariant measures the situation is more com-
plicated. Theorem 14.3 below applies to additive processes having an invariant
measure besides d,. The result is in terms of the set D* of Definition 14.1, which
relates to the associate process. Later in this section some elements of D* will
be identified for certain processes. The condition (c) of Theorem 14.5 indicates
why the growth rate established in Section 13 is important.

(14.1) DEeFINITION. If {§,} is any E-valued process with an associate {£,*},
taken to be right continuous, let D* be the set of 7 ¢ & with the following prop-
erty: for each &, 0 < |£] < oo, we have

(14.2) P*{&* £ Vsufficiently large ¢|&,* never @} =1.
5 Two copies of the process with different initial values are defined on the same probability

space with a contact process, in such a way that when a coordinate of the latter is 0, the corre-
sponding coordinates of the other processes are equal.



ADDITIVE SET-VALUED MARKOV PROCESSES 373

(As the referee has noted, (14.2) implies that PW{& $8)} — P&, &) > 0if pe D*
and |§] < o0.)

(14.3) THEOREM. Let {§,} be a right continuous additive process in Z,. Then
weak lim,_, P(t, Z,, +) = v exists, and for each y ¢ D* and each f € C we have

(14.4) P L ESE) A~ L @ ) = 1.

Proor. The existence of v is known for processes with associates, since if
|§] < o0, P{6, 4} =P {6 4 Z)isa decreasing function of ¢.

We shall use the representation of Section 9 for {£,} and its associate.

Fix 7 € D*. For the proof we first take f(§) = £(0). We construct the random
function {£,7, t = 0} as in Section 9, and also for each ¢ > 0 we construct {,&,*°,
sz 0} Puté, =&, 6% = £, LetQ, = {w: now,, hasanatomat r}. Then

{Et#O}:{:Et*#W}, weQ, nQ, t=>0.

Let X,, be the indicator of the event {,£,* 7 Vs> b},1>0,5>=0. Then
Xy = U, X, where U is the shift defined in Section 9, and {,£,* # 7} D {X,, = 1},
0<b<t< . Letting S, be the set of all atoms of every w,, of w, we have
forT =z b, weQ,

1 1 1 1
T §5 ft(o) dt = T S(b,T)ms(,,)c Et(o) dr = T S(b,T)n(S,,,)c Xy dt = T §; U Xy, dt .

From the Birkhoff theorem and the mixing property of the flow we have

1

lim inf,_ v

6 6(0)dt = Py*{§* 8y Vs =0}, b>0.
Since 5 € D*, we can take b sufficiently large so that, for a given ¢ > 0, we have
lim inf,.__ % {7 £,(0) dt = p.*(0) — ¢

where p*(§) = P*{§,* never @}. Since ¢ is arbitrary and since p,*(0) =
lim,_, Py*(§,* 4 Z,) = lim,_,, Pzd(ét % 0) = { £(0)v(df), we see that

P”{liminf% \7£(0) dr = SE(O)dv} =1, peD*.

Let Y,(») be the indicator of {£,* #+ »,0 < 5 < b}. Then

1

lim sup; .., - §7 ,(0) dr < lim sup % Sorrnisye U Yy dt

:Po*(oga*i @?Oéséb)'

Since the last quantity — p,,*(0) asb — oo, the theorem is proved for f(£) = §(0).
A similar argument applies if f = 4, r finite, and the proof is completed by
taking limits. []
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Call 5 R-dense if each ball in Z, of radius R contains a point of 7. Call 5 dense
if it is R-dense for some R > 0.

(14.5) THEOREM. Let {§,} be an additive process such that
(a) {&, never @} C {|¢;| —» 0} a.s.;

(b) for each x, y, and t > 0, P,{&,(y) = 1} > 0;
(c) Pfinf,.,|5.|/t > 0} > O whenever & + (.

Then for each dense y and each § + @
P&, &0 V sufficiently large t|&, never @} =1.
REMARK. Hence 5 e D* if (a), (b), and (c) are satisfied by {&*}.

ProoF. We omit the details. Since P(finf|§,|/r > 0|&, never @} = 1, given .
e >0and § + @ we can find « > 0 such that (n is an integer) P{|£,| = an
V n|§, never @} > 1 — ¢. We can also find 8 > 0 such that

P${|E'n| g an, |En+1 n 7]| é ‘Bn i.O.} =0 s

implying P{|, N 5| < Bni.o.|§, never @} = 0, and it is easy to extend the
result to continuous ¢. []

ExaMpLE. Let {§,} be an additive contact process with basic neighborhood N
and parameters pzand 0 = 2, 4, - -+, 4,, n = |N|. Suppose 2, > 0, and N con-
tains each of the 24 unit vectors. Using Theorem 13.5, we see that {£,} and {£,*}
satisfy (a), (b) and (c) of Theorem 14.5 provided the ratios 4,/p, k = 1, - -+, n,
are sufficiently large, or ¢ = 0. It follows from Theorems 14.3 and 14.5 that
(14.4) is true for {&,} provided 7 is dense.

15. Survival and extinction. Following Section 9 of [11] we call a E-valued
process permanent if

(15.1) liminf, , P{(x) =1} >0, E+ @, xelZ.
This obviously implies
(15.2) P&, never @} >0, &+ @,

but there are processes for which (15.2) holds but not (15.1); see, [13], Section
10. We shall see that for certain self-associate contact processes in Z,, the
parameter regions where (15.1) or (15.2) hold have the same interior (in one
simple case the regions are identical). For Z, this goes beyond Therem 10.1 of
Harris[13], because |§| = co isallowed in (10.1c) of [13], as we see by examining
the statements negating (15.1) and (15.2).

For simplicity we state the result for the self-associate contact process {§,} in
Z, with ¢ = 1, and basic neighborhood N = {—K, —K +1,..., —1,1,2,.. -, K},
where K > 1, and with 2, = j2, 0 < j < 2K. We suppose K fixed and consider
the effect of varying 2. We use the notation &,/ if 2 = ', etc. For {£.} the basic
W’sof (8.2) are W, —K < i < K, i # 0 (each with intensity 1) where iW, = O Ui
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and xW,; = x otherwise; and W, (intensity 1), where OW, = @ and xW, = x
otherwise.

(15.3) THEOREM. If (15.2) holds for {§,'} with parameter X', then (15.1) holds
for {§/"} with parameter X" provided X' > X. If K = 1, (15.2) implies (15.1) for
the same 2.

Proor. In [26] it was shown that for an analogous discrete-time process,
(15.1) and (15.2) hold in a certain parameter region, although the relation be-
tween (15.1) and (15.2) was not studied. To do this we use some ideas of [26]
as well as correlation inequalities from Section 7. In case K > 2 we must handle
the additional problem that when two active paths cross, it is not always possible
to form a single active path using part of each.

In the language of [5], Section 4, we are showing that weak and strong large-
range connectivity are almost equivalent.

We shall carry out the proof for K = 2, which shows the basic ideas. There
is also no harm in assuming &, = O.

We need some definitions and a lemma.

(15.4) DEerINITIONS. Let 6 = inf,,, Po{§, = @}. Let L, L,*, L,~ be the set
of all points (x, r), x € Z,, or those with x = 0or x <0 respectively. Let Z+
(Z~) be the nonnegative (nonpositive) points of Z,.

(15.5) DEerINITIONS. We use the probability space of Section 9. Fix T > 0.
Let D be the event that there exists an A-path (i.e., active path; see, Section 9)
from L, to (0, T) containing an arrow (x + 2,s) to (x,s) for some x¢ Z,
0 < s < T and there exists an 4-path from (0, 0) to L, containing a vertical
interval (x + 1, ') to (x 4 1, s"), 5" < s < s” (this interval need not be maxi-
mal). Let D, be the same as D except that the phrases “L, to (0, T')”” and *(0, 0)
to L,” are interchanged. D~ is the same as D except that x + 2 and x 4 1 are
replaced by x — 2 and x — 1 respectively. D,~ is related to D~ as D, is to D.
Let E,, be the event that there is an A4-path from (0, 0) to (0, T'). Then E, =
{6:°(0) = 1} = {16,*°(0) = 1} (see, (9.4) and (9.5)). We will henceforth put
§°0 =&, and ;§,*° = £,*.

REMARK. From symmetry, P(D) = P(D,) = P(D~) = P(D,”). (Note that D
becomes D, if we reverse all arrows and turn the graph upside down.)

(15.6) LeMMA. P{§,(0) = 1} + 4P(D) = d*/16.
PrOOF. Assume ¢ > 0. From symmetry
(15.7) P{A-path from (0,0) to L,*} = 4d/2.
From the construction of {£,}
P{A-path from (0,0) to L,*, A-pathfrom (0,0) to L, A-path
(15.8) from L,* to (0,T), A-path from L~ to (0,T)} = P(E}
=327, 60827, (Uezo €07 £ 0, (U0 607 £ 0}
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where E is defined by the context in (15.8). From symmetry and Lemma 7.2
(transferred by limits to the case of countable Z) we have (note that |J,,$,” =
£,7%, etc.)

(15.9) P(E) = (6/2)*.

Suppose w € E. Then some A-path, say =, from (0, 0) to L, intersects some
A-path, say n*, from L, to (0, T). Note that this does not imply the existence
of an A-path from (0, 0) to (0, T'), although it would in the case K = 1. Let
(x, 5) be the last point of #*, going up from L,, which is on 7. Suppose now
we En (Ey)°. Then necessarily 0 < s < 7.

Caske I. (x, s) is interior to a vertical segment of =. Then (x, 5) lies on an
arrow ¢* of z* from, say, (x’, s) to (x”, 5) where |x’ — x”| = 1 or 2. We can-
not have x’ or x"” = x since x’ = x contradicts w € (E,)° and x”” = x contradicts
the definition of (x, s). Hence we must have |x' — x”| = 2 with x strictly be-
tween x’ and x”’. Hence we D U D-.

Case II. (x, s) lies on an arrow ¢ of = from, say, ()’, s) to (y"', 5). Asin case
I, x must be strictly between )’ and y”. Hence we D, U D,~. Since I and II
exhaust all possibilities we have

(15.10) Ec E,uUDUD-UD,UD,,
whence, using (15.9),

4
(15.11) % < P(E,) + 4P(D)

= P{£,(0) = 1} + 4P(D),
proving Lemma 15.6.

In what follows we use the familiar fact that if {#;} is a Poisson point process
in R, with intensity p and if each point independently of the others is allowed
to remain with probability p or is “deleted” with probability 1 — p, the remain-
ing points {,'} and the deleted points {1,”’} are independent Poisson point processes
with intensities pp and (1 — p)p. It is hoped that readers familiar with Poisson
processes will accept this and similar statements, which can easily be rigorized
by an enlargement of our probability space.

Let W+ be the additive transformation defined by yW* =y u O if y =1 or
2; yW* = y otherwise. Let W, * be W+ shifted to x as in (8.4). We defined W
above Theorem (15.3). ‘

CONCLUSION OF PROOF OF THEOREM 15.3. Let {£,}, {§,”}, and {&,} be processes
like {£,} with parameters 2’ < 2" and 1 = 4(2’ + 2”), constructed as in Section
9 with initial state 0. Define p by (1 — p)2 = 2. Construct a process {3}, with
7, = O, by modifying {£,} as follows: whenever W,, is applied in the construc-
tion of {£,}, replace it by W,* with probability p, and leave it unchanged with
probability 1 — p. This means that in the graph construction of {&,} a single
arrow from (x + 2, s) to (x, 5s) has probability p of being replaced by a double
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arrow from both x = 1 and x = 2 to x. We show
(15.12) Prob {,(0) = 1} = p54/80 s

where § is the left side of (15.2) if 2 = Aand &€ = 0. In fact (15.6) implies
max {Prob (£,(0) = 1), Prob (D)} > ¢*/80, where D refers to the construction
of {£} (see (15.5)). Since {£,(0) =1} c {9,(0) =1}, (15.12) is true if
Prob {£,(0) = 1} > §*/80. Ifitis < 6*/80, then P(D) > */80. We observe that
we may construct {»} by first constructing {¢,}, later making certain arrows
double. If D occurs, every arrow which applies in the definition of D has a
probability p of becoming double; with a little care in the formulation one can
say that the transformations to double arrows are independent events. After
any of these arrows becomes double, an active path exists from (0,0) to (0, T).
This proves (15.12).

We complete the proof by showing that if f(£) is a continuous increasing func-
tion of &, then

(15.13) EES) = Ef(ne) 5

implying Prob {¢,""(0) = 1} = pd*/80 and proving the theorem. To show (15.13),
note that the generator of {y,} is 3; .57, (see, (8.1)), where (N was defined pre-
viously in this section)

S2of(€) = AAE) + XAf(§) - §(N) + (2 — )Af(§) - ()
+ (A= DAf(E) - 0(8) >

A7) = fIE\0)=f(&), Af(€) = f(§ U O)—f(§), and N" = {—2, —1, 1}. The gene-
ratorof {§,"}is 3} .%7,", where &7,/"f(§) =A~f(§)+ A"&(N)Af(§). Then 57,""f(£) =
Af(E) + N(8) - Af(E), 7 f(8) = Af(E) + A(E) - Af(€), where A” and A are
positive increasing functions of § and A"'(§) > A(&‘). Using the method of proof
of Lemma 5.8 of [11] or using Theorem 9.9 of Sullivan [24], we see that (15.13)
holds, proving the theorem except for the special result when K = 1. This follows
readily if we note that if K = 1, the event E of (15.1) implies the existence of
an active path from (0, 0) to (0, 7). [
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