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SOMEl PROBABILISTIC PROPERTIES OF
BESSEL FUNCTIONS

By JouN KENT
University of Leeds

The Bessel function ratios (b/a)*K,(ast)/K,(bs?) (@ > b > 0,ve R) and
(b/a)*1.(ast)/1,(bst) (0 < a < b, v > —1) are infinitely divisible Laplace trans-
forms in s > 0. These results are derived as hitting times of the Bessel
diffusion process. The infinite divisibility of the ¢-distribution is deduced
asa limiting result. A relationship with the von Mises-Fisher distribution
is also demonstrated.

1. Introduction. Inarecent paper Grosswald [6] proved the infinite divisibility
(ID) of the r-distribution. The r-distribution of 2y degrees of freedom (v > 0

real) has density
_ L) ()
10 = iy (14 3)

and characteristic function

fs) =

1

2
I(

5 (K512
Grosswald’s method was to show that f(st) is an ID Laplace transform (LT).
Hence f(s) is the characteristic function of a variance mixture of normal densities
with ID mixing distribution. He used analytic methods to prove the ID off(si).
We shall use probabilistic methods to deduce some related results and Grosswald’s
theorem will appear as a limiting case. See Corollary 3.1.

In later sections we explore a connection with the von Mises-Fisher
distribution. '

2. The Bessel process. Let g be any real number. Consider the Bessel diffusion
process on [0, oo] with infinitesimal generator

A, = 3d*dx* + Lx7'(q — 1)djdx .

By a slight abuse of notation we shall call g the dimension of the process because
if ¢ = 1 is an integer, then the Bessel process represents the radial motion of a
standard Brownian motion (BM) in Re.

Using the terminology for diffusions described in Mandl[12] (with that of It6
and McKean [8], page 108 in parentheses), here is the boundary behavior. For
all real g, oo is a natural (not exit, not entrance) boundary. For g < 0, 0 is an
exit (exit, not entrance) boundary. We shall adopt the convention that once a
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TABLE 2.1
D(Ay) ) o
g<0 {(fe Z4: Agf(0+) = 0} f(0+) exists floo—) exists
A f(0+)=0 Aqgfloo—) exists
0<g<2 {fezy:xi-1f"(x)—0 as x—0} f(0+) exists floo—) exists
Aq f(0+) exists Aqfloo—) exists
xt-1f!(x) -0 as x—0
q=2 2, f0+) exists floo—) exists
A fl0+) exists Agfleo—) exists

diffusing particle reaches an exit boundary, it stays there forever. For 0 < ¢ < 2,
0Ois a regular (exit and entrance) boundary, which we make instantaneously reflect-
ing. For g = 2, 0is an entrance (entrance, not exit) boundary. For a description
and proof of these properties see Mandl [12], pages 13, 24-25, 67.

Associated with the g-dimensional Bessel process is a strongly continuous
contractive semigroup of operators {T,} acting on the space of functions C =
C[0, oo] = bounded continuous functions on [0, co]. The infinitesimal operator
of this semigroup is A, acting on a domain Z(A,). Table 2.1 describes Z(4,)
for various values of ¢. In this table &, = {fe C: 4,feC}. By 4,fec C we
mean f is twice differentiable on (0, co), and the limits A, f(0+4), 4, f(co—)
exist and are finite. The boundary behavior listed under 2%, and <%, reiterates
the description under Z(4,).

3. Hitting times for the Bessel process. Let0 < a, b < co. Start the Bessel
process at a and let 7,, denote the first time at which the process hits 5. Let
#:,(s) denote the LT of 7,,. (Weshall see that v = (¢ — 2)/2 is a more convenient
index than q.) ‘

Lets > 0. If a < b, then to calculate ¢:,(s) it is sufficient to find a twice
differentiable function f(x) such that

(3:1) f) =1
(3.2) A f—sf=0 0<x< o0
(3.3) [ satisfies 5

where <%, is the relevant boundary condition at 0. Then ¢:,(s) = f(a). See for
example, Mandl [12], page 62, Itd and McKean [8], page 129, or adapt the
argument of Lemma 5.2 below. Similarly, if @ > b, it is sufficient to find a
twice differentiable function f(x) satisfying

(3.4) flb) =1
(3.5) A f—s5f=0 0<x<
(3.6) [ satisfies <Z, .

Then again ¢;,(s) = f(a).
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Before displaying the formulae for ¢,(s) let us note the following properties
of the modified Bessel functions /,(x), K,(x). Both functions satisfy the differential
equation

Xul'(x) + xw'(x) — (¢ + U =0 0<x< oo
Also
djdx[x~*1,(x)] = x1, (%) .

Their asymptotic behavior is given by

X~ﬁ)y——— X — v -
I(x) o6+ 1) ( 0) for v> —1,

K_(x) = K,(x) ~ Eg_”l (X2 (x—0) for v>0,
Ky(x) ~ —logx (x—0),
I(x) ~ (2nx)"te® (x — o0) veR,
K,(x) ~ (l)é er (x — o0) veR.
2x
See Watson [16] pages 77-80, 202-203.
THEOREM 3.1. Write v = (¢ — 2)/2. Then forallge Rand 0 < b < a < oo,

o _ (b Kufa(2s)?) \
(3.7) #ial) = () % (6290 >0.
For g > 0 (hence v > —1)and 0 < a < b < oo,
o (6 L@@2s) ;
%) Pa(s) = <’J> 7,(6(25)?) >0

Further, these LT’s are ID.

Proor. Using the properties of Bessel functions described above, it is easy
to see that these functions satisfy (3.1)—(3.3) and (3.4)—(3.6) respectively (as
functions of a).

To show ID let ¢ be between a and 4. Then r,, = 7,, + 7,,, and further 7,
and r,, are independent by the strong Markov property. By putting more and
more points between a and b, we may express 7,, as the limit of a null triangular
array (Feller [4], page 550). Hence 7, is ID.

REMARK. Notice that this reasoning tells us that any distribution which arises
as the (one-sided) hitting time of a one-dimensional diffusion is ID.

CorOLLARY 3.1. For v > 0 and each a > 0, [['(v)]7'2'~*(a(25)%)* K (a(2s)}) is
an IDLT.

Proor. Leta > b > 0. Note that for v > 0 ¢%,(s) — (b/a)* < 1ass — 0, so
there is positive probability that r,, = co. However, (a/b)*¢:,(s) is the IDLT
of a proper probability distribution on [0, co] (that is, no mass is assigned to o).
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Now a pointwise limit of IDLT’s is itself an IDLT. Thus

. * K, (a(25)t) _ 21~
3.9 lim,_, (i) — 254V K (a(2s)?
(3.9 me (5) Riaagn = 1) @@ EA)
is an IDLT (which is easily seen to be proper also). Alternatively we may regard
(3.9) as lim,_, ¢¥(s)-

CoROLLARY 3.2. Ky(a(2s)) is an IDLT of a a-finite measure on (0, o).

Proor. Let b — 0 in (3.7) after multiplying ¢%,(s) by —log . Note that this
corollary is the one place in the paper where we refer to a LT which is nor the
LT of a probability distribution.

CoroLLARY 3.3. Forv > —1 and each b > 0, (36(25)})*/[1,(b(25))'(v + 1)]
is an IDLT.

Proor. Let a— 0in (3.8).

4. The BMB, process. Consider the following 2-dimensional diffusion defined
on (—o0, ) X [0, o). In the first component is a 1-dimensional BM X,(7) with
infinitesimal variance 1 and drift # > 0. In the second component is an inde-
pendent (¢ — 1)-dimensional Bessel process X,(r). We shall call this process
X(7) = (Xy(9), Xy(?)), the g-dimensional Brownian motion-Bessel (BMB,) process.
Throughout Sections 4—6 we shall require g > 1.

Let £ = 0 and ¢ > 1. Call the distribution on [—1, 1] given by the density

4.1 a(q)e(x, g)er(1 — ut)ta=97 —I<u<1

the g-dimensional projected von Mises—Fisher distribution. Here

a(g) = = (q/2)/T (g — 1))
is a normalization constant associated with the weight function, (a(q) {1, (1 —
u)a-92dy = 1), and

e(x, 9) = (£/2)*[[T(q/2)1(x)]

is a normalization constant associated with this particular distribution (Magnus
etal. [11], page 221). Notev = (¢ — 2)/2 and interpret ¢(0, g) = ¢(0+, ¢q) = 1.

Our terminology is motivated by the von Mises-Fisher (VMF) distribution
defined on the unit sphere Q, in R? (integer g = 2). Let e, denote a unit vector
in R? pointing in the x, direction. Then the VMF distribution oriented about
e, has a density, with respect to Lebesgue measure on Q,, proportional to
exp(rx - ¢), x € Q.. If this distribution is projected into the x,-axis, one gets
the density (4.1). See Mardia [13] for more details about this distribution.

Let S denote the semicircle S = {x e R*: x* + x, = 1, x, = 0}. Our interest
in the BMB, process comes from the following theorem.

THEOREM 4.1. Consider the BMB, process (g > 1 real) started at the origin
X’ = 0. Let 7 denote the first hitting time of the process on the semicircle S. Then
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(i) Xi(z) has a g-dimensional projected VMF distribution with parameter £ = p.
(ii) The LT of r is given by
. T2 L)

4.2 0.5) = gufss gy = | LA 2] .
3 e e D (ZESe 5D
(Here v = (q — 2)/2. Interpret ¢,(s; 0) = ¢,(s; 0+).)

(iii) X(z) and t are independent.

(iv) 7 isID.

Proof. This theorem was first proved for ¢ = 2 by G.E.H. Reuter (unpub-
lished). Our proof is based on his method. The bulk of the proof will occupy
Sections 5—6. Here we lay the groundwork.

We shall use the Legendre polynomials (sometimes known as the Gegenbauer
or ultraspherical polynomials when renormalized and indexed by v = (¢ — 2)/2).
The Legendre polynomial of degree m = 0 (integer) in ¢ > 1 (real) dimensions
is given by the Rodriguez formula

— (_1\m I‘(%(q - 1)) 2 “*Wﬂﬂ _ 2\(em+q-3)/2
Punlt) = (=4 g BT (1 — o S0 — w9 ].
See Muller [14], page 17 or Magnus et al. [11], pages 218-221. Note P, (u) = 1.
For g = 2, there is the identity P,,(cos #) = cos mf. These polynomials are
useful because they are orthogonal on (—1, 1) with respect to the density
a(q)(1 — u?)9=972dy. They are normed by P,, (1) = 1 and satisfy the differential
equation

2

26 P, .(cos ) + (¢ — 2) cot @ diié P,.(cos b)) + m(m + q — 2)P,,(cos §) = 0.
To prove Theorem 4.1 we shall set the problem up in a bit more generality.

Let Ddenote the semidisc D = {x € R*: x>+ x,* < 1, x, = 0}, let x be an arbitrary

starting point in D, and let ¢ = r, denote the first hitting time on S. Write

U =X(r) - e, = X,(r). We shall calculate the quantities

G,n(X) = EJexp(—st, — pU)P(U)] s>0,m=0,1,2,...,

which determine the joint distribution of X(z) and . Notice it does not matter
that U is undefined on the set {r = oo} since e=** = 0. Using the properties of
Legendre polynomials described above, we see that the theorem will follow if
and only if

(4.3) Gon(0) = (it )p(s) m =0

We shall deduce the ID of ¢(s) later. To calculate G,,(X) we turn to semigroup
theory.

5. Semigroup theory for the BMB  process. Let {T,} denote the strongly
continuous contractive semigroup of the BM X(¢) acting on C, = C[—oc0, oo]



PROPERTIES OF BESSEL FUNCTIONS 765

with infinitesimal operator
A, = L d*ldx}? + pdldx,

acting on the domain Z(4,) = {fe C,: 4,fe C}. Similarly, let {T,®} be the
strongly continuous contractive semigroup of the (¢4 — 1)-dimensional Bessel
process X(f) acting on C, = C[0, o] with infinitesimal operator

A, = } d*ldx}? + $x,7(q — 2) d/dx,

acting on the domain given in Table 2.1.

Suppose f,*(x,) € C*(R) is an even function of compact support. Let fy(x,) =
f2*(%)]4,20- Checking that f; has the appropriate boundary bebavior near 0 (in
particular x,7'fy(x,) tends to a finite limit as x, — 0) we see that f, ¢ 7(4,).
(Remember g — 1 > 0.) More easily we see that if f(x;)e C(R) has compact
support, then f, € Z(4,).

Let {T,} denote the transition semigroup of the BMB, process. Define C =
C([—o0, oo} X [0, co]). By approximating any function fe C uniformly by a
finite sum of the form 7., f,%(x,)f,’(x,) where f,ie C,, i = 1, 2, one can easily
show that {T,} forms a strongly continuous contractive semigroup on C. Denote
its infinitesimal operator by A acting on a domain Z(4).

Using our knowledge of &(4,) and Z/(4,), we can describe a sufficiently large
class of functions in Z(4) to prove Theorem 3.1. Let 4’ denote the differential
operator

A = 4[d*/ox? + 9%[ox,® + x,7H(q — 2) 8/0x,]) + p 9/0x,

acting on C*(R?).

We are careful to distinguish between 4 and A4’ because they act on different
classes of functions. (We did not emphasize this distinction in Section 2 because
the infinitesimal operator of a 1-dimensional diffusion is defined precisely on a
subset of twice differentiable functions.)

LEmMMA 5.1. Let f*(x,, x,) € C¥(R?) be a function of compact support, even in x,.
Set f = f*|,,20- Then fe Z(A) and Af = Af.

Proor. First, itis not difficult to show that if f\(x,) € Z(4,) and f(x,) € Z(4,),
then f, fye Z(A) and Af, f, = Af, f, = fids [y + [ A, fi-

Secondly, by using standard approximation theorems it is possible to approxi-
mate fand all its partial derivatives up to order 2 uniformly by functions of the
sort f,(x) = X7 fi.(x,)fi.(x,) where f7,, i = 1, 2, have the properties described
in the second paragraph of thissection, for j =1, ..., nandn = 1,2, ... (Treves
[15], page 409). Then because 9/dx, f,(x,, 0) = 0 and because 6%/0x,? f,(x,, x,) is
bounded as n — co uniformly in x, it follows that Af, = A'f, — A'f uniformly
for xe (—o0, 00) X [0, o0).

Since A is a closed linear operator (Dynkin [3], page 23), we see that f € &(A)
and Af = A'f.
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The next lemma tells us how to find G,,(x). Let R, = {7 e*T,dr denote the
resolvent operator of {7',}. Recall that the resolvent is a bijection R,: C— Z/(A)
with inverse (s/ — A).

LemMMA 5.2. Let v(X) be a function defined on S and let g* € C*(R*) be a function
even in x,. Set g = g*|, ., Suppose g satisfies

(i) Ag— 59 =0 xe(—o0, ) X (0, o0);

(ii) f(x) = v(x) x€S.

Then g(x) = E (e *v(X(r)) for x e D.

ProoF. Let h*(x) € C*(R?) be a function even in x, with compact support satis-
fying h*(x) = 1 for [[x]| < 1. Set § = g*h*|,,.,€ Z(A). Then A = A’ and
d(x) = g(x) for xe D. Set f(x) = (sI — A)§(x). Noting that E, denotes inte-
gration with respect to the underlying probability measure P,(dw), we see by
Dynkin’s ([3], page 132) formula that for x ¢ D,

g(x) = R,f(x) = {7 =T, f(x) dt
= E, {7 e f(X(1)) dt
= Jieco {5 €7f(X(n)) dt + {7 e7f(X(1)) d1} P,(dw)
+ Sieew) {§5 €7(X(1)) d1}P(dw) .
Since X(7) € D for t < 7, we see that f(X(¢)) = (s/ — A)§(X(r)) = 0 forr < r and
hence the first and last integrals vanish. Letting & _denote the o-field of events
generated by BMB, process up to time 7,
9(%) = §iecw E[§5 €70 f(X (e + 1)) dt | 7 ]P,(dw)
= Siccmr (67 15 € By, f(X(z + 1)) dr)P(dw) (strong Markov property)
= | &R, f(X(r))P.(dw)
= EJem§(X(v))] = EJev(X(7))] -
6. The formula for G,,(x). We are now ready to solve for G,,(x). We wish
to find a function f satisfying the following conditions:
(i) Af—sf=0 xe(—o0, ) X (0, c0),
(ii) f(X) = Pon(%) €Xp(—pxy) X €S,
(iii) f can be extended to all of R* to be twice-continuously differentiable and
even in x,.
It will then follow from Lemma 5.2 that G,,(x) = f(x) for xe D.
To solve these equations introduce polar coordinates (rcos § = x,, rsinf = x,)

and solve (i) for g(r, 0) = exp(ur cos 6)f, using separation of variables. Noting
the boundary conditions (ii) and (iii) we reach the solution

Lo (r(p? + 28)Y) _,,
6.1 G, (X) = =t 2r=*P .(cos @ —prcos @) .
(6.1) (x) 1, ((F + 29 om(COs 0) exp(— pr cos §)
The power series formula

v — Y (r*[4)*
<2> loin(r) = i L(v +m+ k + 1)k
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in r* = x> 4+ x;’ and the fact that r"P_,(cos §) is a polynomial in x, and x, with
only even powers of x, ensure that the boundary condition (iii) is satisfied.
Letting r — O gives us (4.3) and hence parts (i)—(iii) of Theorem 4.1 follow.
The ID of ¢,(s) can be deduced probabilistically. Let r denote the first hitting
time of the BMB, process, starting at 0, on S. Picka, 0 < a < 1. Let 7, denote
the first hitting time on aS and set r, = ¢ — r,. By the strong Markov property,
7, depends on {X(#): r < r,} only through the value X(r,). Since part (ii) of
Theorem 4.1 tells us that r, is independent of X(r,), we see that z, and r, are
independent. By inserting more and more semicircles with radii between 0 and
1, we can express 7 as the limit of a null triangular array, and hence 7 is ID.

REMARKS.

(1) If p = 0, then as we expect, ¢(s; 0) equals the LT in Corollary 3.3 (with
b=1).
(2) If 4’ is replaced by the operator

5‘2_” [02/0x,2 + 3ox2 + x,(q — 2) 8Jox,] + p )%, ,

and S by aS (a > 0), then Theorem 4.1 remains valid with changes in the
constants. More specifically, a='X,(r) has a projected VMF distribution with
parameter £ = pafo?, and is independent of =, which has IDLT

s[, — 7 Y Jv(‘r)
(S) - < ) _Iy‘(—) )
where r=20 ’a(p’/az -+ 25)5.

7. The case ¢ = 1. Since 0 is an exit boundary of the 0-dimensional Bessel
process, a BMB, process started at 0 is equivalent to its first component. The
results of the last sections have their counterpart in this simpler situation.

THEOREM 7.1. Let X(t) be aone-dimensional standard BM with drift p = O started
at 0 and let = denote the first hitting time on {+1}. Then,
(i) P(X(r) = 1) = }e*/cosh p, P(X(r) = —1) = {e~*/cosh p,
(ii) 7 has IDLT

cosh ¢

Y0 = o (e 2

(iii) X(r) and t are independent.

ProoF. The proof follows the same lines as the proof of Theorem 4.1, but is
simpler because the boundary contains only two points. Note that Bessel func-
tions do not appear explicitly in the solution because of the identity

I_y(x) = <3>% cosh x

X
(Watson [16], page 55).
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8. Some further probabilistic properties of Bessel functions. So far we have
considered LT’s in which the Laplace variable enters the argument of Bessel
functions. It is also possible to prove results in which the Laplace variable enters
the order of Bessel functions.

THEOREM 8.1. Let 0 < a < b < oo and write I(k) = I(v; k), K,(r) = K(v; K).
Then the following functions are IDLT’s (in s = 0).

(i) (st a)/I(s*; B))H(O; b)/X(0; a)),

(i) (K(st; b)/K(s; a))(K(0; a)/K(0; b)),

(iii) I(s; a)/I(0; a),

(iv) K(0; a)/K(s?; a).

For a proof see Hartman [7]. Parts (iii) and (iv) are limiting results as b6 — co. .
A direct proof of (iii) can also be given. See Kent [10].

A notion of convolution (and hence ID) may be defined for distributions on
[—1, 1] for any real ¢ = 2 dimensions (though not for 1 < ¢ < 2). Forg=2
this notion corresponds to the usual addition mod 2z of axially symmetric random
angles on the circle. It can then be shown (Kent [10]) that the projected VMF
distribution of (4.1) is ID for all real g > 2.

9. Bessel functions in densities. So far, we have looked at Bessel functions
appearing in LT’s. However, Bessel functions also appear in densities. We limit
ourselves to an example arising from the Bessel process. See Feller [4] for others.
Define

9.1 *(t, x, y) = t7 1 Xy {__1_ 2 2}, v+1
CR) pHx,y) = 70l () exp{ = (2 + )y
where v = (¢ — 2)/2 > —1.

THEOREM 9.1. The probability transition density of the q-dimensional Bessel
process is given by (9.1).

PrOOF. Let p(t, x, y) denote the ptd of the Bessel process. We wish to show
p=r*

Let ¢,(x) = (x(2s)})71,(x(25)}) and ¢y(x) = (x(25)*)~*K,(x(25)?) denote the solu-
tions of (3.2)—(3.3) and (3.5)—(3.6), which are unique up to a constant factor.
Then from It6 and McKean [8], page 150, the resolvent density r(x, y) =
(o e *p(t, x, y)dt is given by the formula

ri(x, y) = B7'¢(x)p(y)m'(y) xSy
= B7'¢,(y)po(x)m’'(y) x=y.

Here m’(x) = 2x™*! is (the density of) the speed measure, p'(x) = x~%~* defines
the natural scale, and B is the Wronskian

B ) B0 _ g $00)
100 2100 — g0 S
= (25)‘” .
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(See Watson [16], pages 79-80.) Thus,

9:2) F(%,¥) = 22y (x(25) DK (1(25)Y) x<y
= 2x7y UL (p(25)1)K,(x(25)?) y<x.

Standard formulae for Bessel functions. (Bateman [2], page 200) tell us that
r*(x,y) = \¢ e~ p*(t, x, y) dr also has the form (9.2). Thus by the uniqueness
of the Laplace transform, p = p*.

It is easy to derive an ID density from (9.1). Setting )* = v, ix* = ¢ and
t = 1, we obtain the density

(9.3) f(w) = (v/e)2I,(2(cv)})e=" v>0
with LT
(9:4) B(s) = (s + ) exp[ —se/(s + 1]

(Bateman [2], page 197). Since ¢™(s) has the same functional form (and hence
isa LT) forall m = 1, we see that (9.3) is an ID density. For an interpretation
of (9.3) as a compound Poisson distribution, see Feller [4], page 415.

Note that for ¢ = 0, (9.3) becomes a gamma density.

10. Final notes.

(1) Theorem 4.1 can also be approached using likelihood ratio martingales.
The underlying idea behind this method is that the sample paths of 1-dimensional
BM with drift have an absolutely continuous density with respect to BM without
drift. Suppose that parts (i)—(iii) of Theorem 4.1 are known for ¢ = 0. Then
using this likelihood ratio approach, one may easily prove (i)—(iii) for ¢ > 0.

Note that for integer ¢ = 2, parts (i) and (iii) are obviously true with p =0
because of the symmetry of g-dimensional BM. Also, we can suppose the formula
for ¢,(s; 0) is known from Section 3. Thus, for integer ¢ = 2, the likelihood
ratio approach leads to a simple proof of Theorem 4.1.

For the details of the likelihood ratio approach applied to the proof of part
(i) of Theorem 4.1 for ¢ = 2, see Gordon and Hudson [5]. In passing we com-
ment on a point of priority concerning the main result of [5]. The result is not
new, but was proved several years ago by G. E. H. Reuter (see the proof of
Theorem 4.1 above). Indeed, Reuter’s work has been acknowledged by D. G.
Kendall in the author’s reply to the discussion of [9], page 416. Also, another
proof of parts (i)—(iii) of Theorem 4.1 for ¢ = 2, using the same approach as
Gordon and Hudson has been given by D. Williams (unpublished).

(2) Hitting time results similar to those of Section 3 have also been obtained
by Barndorff-Nielsen [1].
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