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LARGE DEVIATIONS OF FUNCTIONS OF MARKOVIAN
TRANSITIONS AND MATHEMATICAL PROGRAMMING
DUALITY!

By GeEunGg-Ho KM aND H. T. DAvVID
Iowa State University

The duality-related point of view of Hoeffding for ii.d. large deviations is
extended to the Markov case. This reconciles Koopmans’ “function-analytic”
view of Markovian large deviations with Boza’s “information theoretic” view,
and extends the validity of the latter to the not-necessarily-finite case.

1. Introduction. Koopmans [20] has considered the rates of decay of probabili-
ties of “nonlocal” (in the sense of Chernoff [8]) errors of sequences of likelihood
ratio tests discriminating between two Markov processes P and Q. In Koopmans’
setting, where P and Q are discrete-time and stationary, these rates of decay are
expressible in terms of a certain extremal dominant root. Koopmans® work in effect
determines the rate of decay of the probabilities of large deviations of the sample
averages of the function In[q(x;|x;_,)/p(x;/x;_,)] of observed transitions; i.e., of
the probabilities of events

E,: {2?=1 ln[Q(‘Xil‘Xi—l)/p(‘Xil‘Xi—l)] > 0}'
Slight modification of the argument in [20] verifies that the rate of decay of the

probabilities of events
F,: (S1-ia(X,_,, X)) > 0},

a(x, y) not necessarily of the form In[g(y|x)/p(y|x)], similarly is expressible in
terms of an analogous extremal dominant root.?

A related investigation, by Boza [6], dealing with the comparison of tests of
hypotheses concerning finite state space stationary Markov chains, involves the
rate of decay of probabilities of certain events G, defined in terms of transition
counts; specializations of these events G, are of the form F,,. Boza found the rate of
decay of the probabilities of the events G, (and hence of the events F,) to be given
by a certain extremal information functional.

Thus two expressions, one function-analytic or spectral [20] and the other
information theoretic [6], are available for the rate of decay of the probabilities of
events F,, with the second restricted to finite state space.
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2R. R. Bahadur has pointed out to us the asymptotic equivalence, in analogy to the i.i.d. case (cf. [2]),
of the forms a(x,y) and In[g(y|x)/p(»|x)], based on the transformation of our Remark 3. Thus
Koopmans’ L? setting [20] would be at least as appropriate for us as the setting of [15] adopted below,
provided it could be shown to allow part (iii) of Theorem 1.
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Also available in the literature are corresponding “function-analytic” (Chernoff
[8], Bahadur and Rao [3]) and information theoretic (Sanov [23]) rates of decay in
the analogous i.i.d. case (with the validity of neither restricted to the finite case),
and reconciliations of the two, essentially using mathematical programming dual-
ity, by Hoeffding [16] and Whittle [24]. See also general expositions (e.g., Barn-
dorff-Nielsen [4], Borovkov and Rogozin [5], and Efron and Truax [12]) which
contain at least implicitly related duality ideas.

This paper, expanding on [19], brings the duality approach to the Markov case.
Our objective here is not only to extend to this case the “direct” duality point of
view of [16] and [24]; it is, in addition, to extend the work in [6] to the not-neces-
sarily-finite case. This roundabout approach to extending [6] (by way of [20] plus
duality) may not be entirely unnatural, since the argument in [6] is combinatoric.

Assumptions are laid out in Section 2. In Section 3, some properties of the
relevant dominant root A, are examined, in a manner analogous to Koopmans’.
Among these is an expression for the derivative A, of A, of use in the later
development. We also compute the rate of decay of the probabilities of the event F,
in terms of A,, in a manner entirely analogous to that in [20]. Section 4 implements
the program of the previous paragraph; the point of view here is essentially
Hoeffding’s, extended to the Markov case and viewed in the light of mathematical
programming duality.

2. Assumptions. Let (S, B, p) be a finite measure space. Following Harris [15]
consider a transition probability density kernel p(y|x) that (a) is B X R -
measurable, and (b) has the property that there are real numbers ¢ and d, and a
positive integer N, such that the Nth iterate p™(y|x) of p(y|x) satisfies

(A1) 0<c<p™M(ylx) <d< +oo.

By Theorem 10.1 of [15], the kernel p(y|x) has a bounded left eigenfunction ¢(x)
corresponding to the dominant root 1.
Now consider a % X % -measurable function a(x, y) satisfying

(A2) la(x,y)| <M < + on S XS,
(A3) ffa(x, y)p(y|x)$(x)dp? <O,
and, for some ¢ > 0,

(A4) €ss lnfx[f{a(x,y)>e}p(y|x)dy‘(y)] > 0.

Also define kernels K,(x,y) = e™Y)p(y|x), —oo <t < + 0. In view of (Al)
and (A2), K, satisfies as well the assumptions of Theorem 10.1 of [15] for all ¢, so
that K, possesses a positive eigenvalue A,, and corresponding left and right eigen-
functions ¢, and v, that are bounded and uniformly positive. Furthermore, if ¢, and
y, are normalized so that [¢,y, du = 1, which will henceforth be assumed, then, for
(x,y) €S XS,

(2.1) Kt(”)(x’ y)= ?\,”z,lx,(x)¢,(y)[l + g(x,y; n)]’ Vi,
where | g,(x, y; n)| < A}, with 0 < A, < 1.
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Some remarks on assumptions (A3) and (A4) also are in order; (A3) is used
below in conjunction with (A2) to guarantee that A, is decreasing near zero, while
(A4) is used to guarantee that A, tends to + oo with ¢ In the i.i.d. case, analogous
conditions have been used by Bahadur [1], to ensure the “standard condition.”

3. The decay rate and the dominant root A,.. Let {X;}7>, form a Markov
process over state space S with initial density p,(x) and transition density p(y|x).
Let M,(¢) be the moment generating function of S, = 37_,a(X,_,, X).

THEOREM 1. Under assumptions (Al) and (A2),

() lim,[M,(0)]'/" = A, V.
(ii) A, is convex and analytic, V't.
(ii)) A = [fa(x, »)K,(x, )b (X0 (y)du?, V.
Under assumptions (A1)-(A4),
(iv) A, achieves a unique minimum at t*, 0 < t* < + oo.

ProoF. (i) We shall in fact prove the slightly stronger
(3.1) lim,(M,()/N") = 4, V1,
where 4, = [[$,(x)¢,(»)po(x)du® > 0. Now M,() = [[K"X(x, y)po(x)du® = N(4,
+ B, ), with B, , = [[{,(x)é,(»)g,(x, y; n)p(x)dp?, where the first equality is by
definition, and the second holds in view of (2.1), which also entails lim, B, , = 0.

(ii) Convexity follows from (i), and the fact that M,(¢)!/" is convex for all . As
for analyticity, following Koopmans [20] consider the bilateral Laplace transform
H,(z) of F(x)=Pr{S, < x}, and, for any r > 0, let T, = {¢: |¢| < r}. In view of
(A2), |[H,(2)]'/"| < eM for every z with real part in T,, and for every n =
1,2,- - - . Hence each [H,(z)]'/" is analytic in the infinite strip J,: {z = ¢ + iu,
t € T,}. Thus (i), the uniform bound e™" for |[H,(z)]'/"|, and Vitali’s theorem
imply that lim,[ H,(z)]'/" is analytic in the interior of J,; hence that lim,[ H,(£)]'/"
= lim,[M,(¢)]'/" = A, is analytic in the interior of 7.

(iii) Let 8 > 0, and consider

(32) Mws = Mas(x) + Al das(x) — %(x)]
= Nsos¥irs(X) = A (x)
33)

= [K 4 5(x ) [Y+5(¥) = b(¥)]du(y) + [[ €% = 1] K(x, y)¥(»)dp(y),

where the second equality follows from subtracting and adding [K,, 5(x,y) -
¥,(y)du(y). Now, multiplying (3.2) and (3.3) by ¢,,s(x), integrating w.r.t. x
(using Fubini’s theorem for the first addend of (3.3)), and rearranging, (A, 5 — A,)

= MNvs = MU rs(x) = YNy s()Au(x)} = [[(e%57 — DK(x, y)d, 4 5(X)Y,
(»)du®. Rearranging again and dividing by 8,

(34 Wvs = M) = [[(e2* — 1)8 Wy (x, y)du?,
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where ky(x, ) = K,(% 7)1 5O b4 5 (X (x)din(x)]) . Simmilarly,
(3.5) N = A)87 = (1 = e7%CM)§ "Nk y(x, y)dp®.

Now A =lim, 445 — A)8 ™" > limg_offa(x, )ks(x, )dp® = [f a(x, y)
ko(x, y)dp?.

Here the first equality is due to the fact that A, is analytic.

The second equality follows from the uniform (in (x, )) convergence of k; to ko,
since a(x, y) is bounded and u(S) is finite; this uniform convergence of k; in turn
follows from the uniform (in x) convergence of ¢,,; to ¢, since the other
components of k; do not depend on §; finally, the uniform convergence of ¢, ;
follows from a straightforward application of the arguments in Theorem 2.4.2 of
[10] or Theorem 5.2 of [21], with (K™, K4}), |8| < 1/ M, replacing (M,, M, ));
cf. [18] for the details.

The inequality follows from (3.4), from the fact that the limit exists, and the fact
that e% — 1 > éa.

Similarly, using (3.5) and the comparison 1 — e =% < g,

N < [fa(x, y)ko(x, y)du?.
(iv) (A3) and part (iii) imply that

(3.6) Ao = [fa(x, y)p(y|x)o(x)du® < 0.
Now, by (A4), 3 > 0 3 ess inf,[f (a(x, yy>e) P( y|x)du(»)] > m. Hence, assuming
f¢tdf~" =1,
(3.7) A= [[e"®Ip(y| x)¢,(x)dp?

> [ ate, >y " p(y| ) d( ) |6 (x) diu( x)

>e"m— +owast— +o0.

(3.6), (3.7) and convexity assure that A, achieves its minimum in (0, + o), the
uniqueness of which is guaranteed by the fact that A, being analytic for all ¢,
cannot be flat in a proper subinterval without being flat everywhere.

The remaining part of this section is to verify that

(3.8) lim, Pr{S, > 0}'/" = A..

To begin with, analogously to the argument in Lemma 5.1 of [20], Theorem 1(i)
yields lim sup, Pr{S, > 0}!/" < .. Next, again analogously to the argument in
[20], note that, in view of (ii) and (iv) of Theorem 1, for any #, > ¢* and any b > 0,
there is an s > 0 such that

(3.9 Mp—s/Ng <1 and A, /A, <e®,
and also, as in Lemmata 5.2 and 5.3 of [20],
(3.10)

Pr(S, > 0}'/" > e UM, (N[ 1 — M, (1 — 5)/M,(t) — e "Mt + )/ M,(1)]"",
forall >0,5s >0 and ¢ >0.
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Now, in view of (3.1) and (3.9), the right-hand side of (3.10) with ¢ = ¢, tends to
e~%\, with n, so that lim inf, Pr{S, > 0}'/" > e~*\, . But b > 0 was arbitrary,
so that lim inf, Pr{S, > 0}!/" > A, > A..

4. The two mutually weakly dual problems. As indicated at the end of Section
1, this section brings the direct duality-related point of view to our Markov setting,
by equating the decay rate In A,. of the previous section to a not-necessarily-finite
analogue of Boza’s information theoretic decay rate. This equality, combined with
(3.8), extends the validity of Boza’s rate expression.

For a bivariate density f(x, y) on § X S, let A(x) and g(y|x) be the marginal
density on S and the essentially unique conditional density kernel on S X S
respectively. Now let the set &, of densities f satisfy

(4.1) Jf(x,)d(y) = [y, x)du(y), aa. x€E€S
42) Sfa(x, y)f(x, y)du* > 0,

and

(4.3) [ [ g(y|x)/p(y]x)] f(x, y)du? < +oo.
Define

I(f,p) = /] n[ g(¥|x)/p(¥|x)] f(x, y)au?, f€E F,.

THEOREM 2. Under (Al)-(A4),
(4.4) I(f,p) > —In A, forf € G, andt € (0, + ).

ProoF. Note first that (4.1) implies that, for any bounded measurable function
s(+),
(4.5) [Is()fCx, y)dp® = [[s(y)f(x, y)d’.

Now write

(46a)  I(f,p) > Jf In[ g(y|x)/p(¥|x)] 8(¥|x)h(x)du’

(4.6b) =11 W[ $,(»)/ ¥ (x)] 8(r|x)h(x)dp?

(4.6¢) —tffa(x, y)g(y|x)h(x)dp?

/I = [ p(y|x)/e(2|x)- () /¥(x)-€"“=] g(y|x)h(x)du’

—In [[4,(»)/¥(x).€”Pp(y|x)h(x)dp?
= —InA,.

Vv

(4.6d)

The first inequality is due to the fact that (4.6b) is zero in view of (4.5), and (4.6c¢) is
nonpositive in view of (4.2). The second inequality is Jensen’s, and the last equality
follows by integrating first w.r.t. y and then w.r.t. x, and appealing to definitions of
Y, and A, given in Section 2.
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Now let #* be the unique minimizer of A, identified in Theorem 1(iv), and define
h*(x) = Y(x)(x)
(4.7) g*(¥1%) = Kuo(x, )¥e( 1) /Aot (x)
(%, ») = h*(x)g*(y]x).

CoROLLARY 1. minscg I(f,p) = I(f*, p) = — In A = max,c g ,[—In A].
ProOOF. In v956 66 Theorem 2, it is sufficient to verify that f* € % and that

I(f*,p) = —In A, ie., that equality holds in the statement of Theorem 2 for
f=/f* and ¢ = ¢* (cf. Remark 1 below). That f* € ¥, is easily verified. That
equality holds in Theorem 2 for f = f* and ¢ = * follows from verifying equality
in (4.6a) and (4.6d). Regarding (4.6a), one needs to verify only that expression
(4.6c) equals 0 when f= f* which follows from Theorem 1(iii), (iv), which
prescribe that (—t*As ") [ fa(x, Y)Ku(xX, Y)bu()Y()dp? = (— t*N\s YA, = 0. Re-
garding (4.6d), the argument of In(-), namely e’ *™”p(y|x)y,.(»)/&*(¥|X)a(x),
equals the constant A,., in view of (4.7).

REMARK 1. The argument used in fact exploits the concept of weak duality of
mathematical programming in the following way: if U is the problem of minimiz-
ing u(q), w.r.t. ¢ over Q, and V is the problem of maximizing v(r), w.r.t. r over R,
then the pair (U, V) is said to be mutually weakly dual if u(g) > v(r) for g € Q
and r € R. Now, if in addition a pair (¢*, r*) satisfies u(g*) = v(r*), then (g*, r*)
are optimal solutions, solving respectively U and V.

REMARK 2. As suggested by [16], mutually dual problem pairs typically admit
certain irregular parametric cases for which ¥ is “unbounded” and U is “infeasi-
ble.” This feature is present also here, if (A4) is replaced by (A4): [ (a(x, y)< —€)
p(y|x)du(y) =1, for all x € S. In this case, (a) J, is empty, and (b)
SUP, e, w) ~INA] = + 0.

To see (a), note that (A4)’ implies that [ [a(x, y)p(y|x)h(x)du* < 0, for any h(x),
which, together with (4.3), implies that ffa(x,y)g(y|x)h(x)du® <0, for any g.
To show (b), observe that (A4) implies that A, = [fe“™p(y|x)d,(x)du? < e~ ",
t>0.

The symmetric alternative, with unbounded U and infeasible ¥, cannot be
exhibited in view of nonnegativity of I(f, p) (i.e., U admits a natural lower bound).
However, the parametric case where minimization of I(f, p) achieves the lower
bound 0 can be tied to the case where Ay > 0. For suppose that (A3) is replaced by
(A3): [fa(x, y)p(y|x)¢(x)du? > 0. Then min,e g I(f, p) = 0, trivially with f(x, y)
= p(¥|x)¢¢(x), and sup,o[—In A] = —In A, = 0.

REMARK 3. The parametrized family { f(x, y), ¢ > 0}, f(x,y) = K(x, y)$(x) -
¥(») - A, ', is a Markov analogue of a construct that has repeatedly been used for
the i.i.d. case, for example by Cramér [11], Khinchin [17], Chernoff [8], [9], Bahadur
[1], [2] and Feller [14].
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REMARK 4. The restriction (4.1) is in fact an ergodicity-related condition, since
it is equivalent to the condition that 4 is an eigenfunction of g corresponding to the
root 1.
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