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OPTIMAL PREDICTION OF CATASTROPHES WITH
APPLICATIONS TO GAUSSIAN PROCESSES!

By JACQUES DE MARE
Chalmers University of Technology

An alarm system is optimal if it detects catastrophes with a certain high
probability and simultaneously gives a minimum number of false alarms. In a
general context an optimal alarm system is derived and then the method is
applied to Gaussian processes.

0. Introduction. In some applications critical events occur when a time depen-
dent random quantity {X(#) : ¢ € R} exceeds a high level . An alarm system is a
system which predicts in advance when such an event will take place. A usual
approach when designing such a system is to construct a predictor process
{X (t) : t € R} where the value X(¢) is the conditional expectation of X(z) given
the information available ¢, time units before the time point ¢ (for some fixed
constant ¢, > 0).

In a paper Lindgren (1975a) pointed out that such a predictor need not be
optimal when prediction occurs from a random time pomt e.g., when the predic-
tion takes place at the time when the predictor process X upcrosses an alarm level.

On the ISI session in Warsaw Lindgren (1975b) argued that an optimal alarm
system should be judged from its ability of giving a minimum number of false
alarms and undetected catastrophes rather than predicting the actual path of X.

Formal definitions of the concepts of catastrophes, false alarms and optimal
alarm systems are given in Section 1. In the subsequent sections an optimal alarm
system is derived in a general context and then applied to Gaussian processes.

1. Definition of an optimal alarm system. As an applied example where alarm
systems have been used, consider the recorded sea level height x = {x(¢):¢
=-.--101,2,- -} above the mean level. The problem is to forcast when
the height will exceed some level u. In this situation a catastrophe occurs at time ¢
if x has an upcrossing of u at ¢, i.e., x(¢ — 1) < u < x(?).

One approach to forcast a catastrophe ¢, time units ahead is to condense the
information available in a prediction £(¢) of x(¢z) and give an alarm for a
catastrophe at ¢ if and only if X has an upcrossing of some specified alarm level # at
time ¢.

When judging the performance of the alarm system it is not very interesting how
close X is to x in the mean, but an important feature is the ability of the system to
detect catastrophes without making too many false alarms. We say that a
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catastrophe at time ¢ is detected ¢, time units ahead if there is an alarm at time
t — ty. On the other hand we say that an alarm at time ¢ — ¢, is correct if a
catastrophe actually takes place at time ¢. An alarm system has a high ability of
detecting catastrophes if the proportion of detected catastrophes out of all
catastrophes is close to one. If, at the same time, the proportion of correct alarms
out of all alarms is as high as possible then the alarm system is said to be optimal.

Let 7, 7, - -, 7, be the time points of the upcrossings of x in [0, 7'] and let
71, T, + +, 7, be those of X. Then the proportion of detected catastrophes is

P, = #{v : Jpwith 7, = 'r,,}/n
and the proportion of correct alarms is ‘
Pr = #{p:Ivwithr, =4} /a.

If the processes have a suitable ergodic behaviour when T tends to infinity these
quantities converge,

Prob{alarm & catastrophe}

=P 1 h
P, - Prob {catastrophe) rob{alarm||catastrophe}
5 Prob{alarm & catastrophe}

= Pr tastrophe||al .
P Prob{alarm] ob{catastrophe||alarm }

The event that x has an upcrossing of u at ¢ is denoted by
C = {x(t—-1) <u<x(1)}
and the event that £ has an upcrossing of # at ¢ by
A, = {#(t—-1)<d<x(1)}.

In this approach the problem is to find that predictor process X and alarm level
which maximize the conditional probability, P(C,|| 4,), that an alarm is correct
under the constraint that the detection level P(A4,||C,) is equal to some prescribed
value.

It may happen that not even the best predictor process X gives a satisfactory
alarm system because of the rather rigid condition that the upcrossing of the
X-process must occur exactly at the same time as the upcrossing of the x-process.

A better alarm system can be obtained by using a wider class of events than level
crossings at time ¢ in the predictor process. The most general class of events is all
events we know of at time ¢ — ¢,. The best alarm system is obtained if we choose in
this larger class that event 4, which on the given detection level P(4,|C,)
maximizes the conditional probability of correct alarm P(C,| 4,). We shall here
pursue this idea in a rather general setting.

Let X be a stochastic process in one-dimensional continuous or discrete time.
For each time point ¢, let C, be a measurable set of sample functions. Then we will
say that a catastrophe occurs at time ¢ if X € C,. When X is real-valued, examples
of C, are

C,={x:x(t—¢e)<u<x(t+e)}
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and
C, = {x:x(t) <u<x(t+s)forsomes, 0 <s<e}.

Here typically ¢ is a small positive number and u a high level.

The problem is to predict ¢, time units in advance if C, will occur or not. Let our
information available at time ¢ — ¢, be condensed in the value at time ¢ of a
stochastic process Y. This process can be finite-dimensional, e.g.,

Y(t) = (X(¢t— 1), X'(t — t,))
(if X is differentiable) or infinite-dimensional, e.g.,
Y(¢) = {X(s):s<t—t}.

The o-algebra generated by Y(¢) is denoted by
9, = o[Y(2)]

and define an alarm system @ as a family of t-indexed sets 4, which are %-
measurable, i.e.,

@ = {4,} where 4, € F, for each ¢.

We say that there is an alarm for a catastrophe at time tif Y € 4,. If Y € 4, but
X & C, we will say that the alarm is false and on the other hand if X € C, but
Y & A, we will say that there is an undetected catastrophe at time ¢. This means
that the catastrophe at time # is not detected ¢, time units in advance.

An alarm system @ = {4,} is optimal if for each ¢

P(C,“A,) = sup{P(C,llB,) : B e (‘)};and P(B,”C,) = P(A,IIC,)}.

Hence an alarm system is optimal if it gives a maximal probability of a
catastrophe when alarming out of all systems with the same ability of detecting a
catastrophe.

2. Optimal choice of alarm systems. The formal similarity to power considera-
tions in test theory and to the signal detection problem indicates that some
likelihood ratio quantity should be crucial in the problem of designing an optimal
alarm system. The following theorem prescribes which likelihood ratio is of
interest. The stochastic process which carries the information is denoted by Y as in
Section 1 where the concepts of a catastrophe, C,, and of an alarm system,
@ = {4,}, are defined. Use the notation Py, (- ||C,) for the marginal distribution
of Y(¢) conditioned on C,. Let the function

_ dPy(:)('”C:*)
dPy(r)(' ||C¢)

denote the density of the marginal distribution of Y(¢) conditioned on C}* the
complement of C,. The density is calculated with respect to Py, (- ||C,).

THEOREM 2.1. The alarm system @ = {A,} defined by

A, = {y:p[y(1)] <k} withk < o0
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is optimal, i.e.,
P(C,||4,) = sup{P(C,||B,) : B, € 9,and P(B,||C,) = P(A4,]|C,)}.
Proor. Take any event B, € %, with P(B,||C,) = P(4,||C,). Then
P(CIIB) < P(Cll4,) = P(C*||B) > P(C*||4,)
© P(B|IC*) > P(A,||C*).
The last inequality follows from Bayes’ theorem
P(B,||C*)P(CH)
P(B,||C*)P(C*) + P(B,||C,)P(C,)
N P(4,]1C?)P(C})
P(4,1C*)P(CY) + P(B,||C)P(C,)
and this inequality is true if and only if P(B,||C*) > P(A4,||C*). (We have
P(B,||C) = P(4,]|C))
To prove P(B,||C*) > P(A,||C*), note that
P(A,|IC) = [4, dP(-|IC,) = [, dP(-|IC,) = P(B,||C,)

P(C*B) =

= P(Ct* ”At)

implies
fA,nB,' ar(- || Cr) = fA,'nB, ap(: ||Cr)
and hence
Jow : yeansnP APy 11C) < [iy0y: yearnnyP @Pyry(- 1C,)-
Thus

P(A,||C,*) = f(y(x):yeA,)P dPY(x)(' ||Cz)
< f(y(r):yen,)P dPY(:)(’ ||C¢) < P(Bx”Cx*)
which concludes the proof.

ReEMARK 2.2. The first part of the proof implies that it is the same to maximize
P(C,|| B,) over all possible B, € ¥, as to minimize P(B, | C*). But in the degenerate
case when C, has probability zero, the latter quantity alone is of interest and then
P(B,||C*) = P(B,). When C, has probability zero we will say that an alarm system
is optimal if

P(4,) = inf{P(B,) :B,€9Y and P(BC)= P(A,”C,)}.

In this case we prefer that alarm system which has minimal probability to give an
alarm out of all systems with the same detection ability.

3. Applications to Gaussian process. In this section the attention will be
focused on stationary and continuous real-valued Gaussian processes. In the
stationary case it is natural to consider a family of catastrophes which is shift
invariant. Hence

C,={x:x(-t)ecC)
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for a suitable set C. A further simplification is to consider only the degenerate case
when

C = {x: x has an upcrossing of the level u at zero}
= {x:Ve>03s,, 5, €]0, e[ with x(—s,) < u < x(s,)}.

Here, as in the introduction, we think of u as a high level. For this family of
catastrophes and these kinds of processes it is possible to give an explicit descrip-
tion of the probabilities when conditioning on a catastrophe at time ¢, (cf. Slepian
(1962), Lindgren (1972), Geman and Horowitz (1973), and de Maré (1977)).

ExampLE 3.1. Let X be a Gaussian Markov process with mean zero and
covariance function r,

r(t) = exp(—|t|), t ER.
By the (strong) Markov property it is natural to define Y through
Y(t) = X(t—t,), t €ER, (1> 0).

Then the conditional distribution of Y(#) given a catastrophe (a u-upcrossing) at
time ¢ is given through

Y(t) =guexp(=|to]) + m.
The stochastic variable n is Gaussian with zero mean and variance A =1 —
exp(—2|#,|), (cf. de Maré (1977)). Now P(C,) = 0 which implies that P(- ||C*) =

P(-), and hence
P ‘ . t‘
[ (t)] d ¥( )( 1C*)

dPY(x)(’ ||Cx) [y(t)]

. exp[ — 12(1)]

= Ai ; ) .
exp{ —3[ (1) — wexp(~ |10 ]*/A }
Since A = 1 — exp(—2|¢,|) the following alarm region is obtained,
4, = {y: [»(1) —uexp(|to)]* < K}

If u = 4 then X will exceed the catastrophe level 3- 1073% of the time. Since Y(?)
is Gaussian conditioned on C* as well as on C,, though with different means and
standard deviations, one obtains directly the following conditional probabilities

P(4,]C) = 93%

P(A,]IC*) =23%

forty = —In0.75 = 0.3 and k& = 100/9 = 11.1. For an interpretation of P(4,|C*)
see Remark 2.2 and Figure 3.2.

After this introductory example assume that (X, Y') is a stationary Gaussian
process where the first component X is real-valued with mean zero, and differentia-
ble. Choose time-scale and level-scale so that

EX?(0) = EX'*(0) = 1.
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My (1)
Alrrm area

3, (1)=X(+-1)

FiG. 3.2. Alarm occurs when X enters the alarm area. With a probability of 93%, X is found in the alarm
area ty = 0.3 time units before X enters the catastrophe area.

The second component Y which carries the information is supposed to be sta-
tionarily correlated with X and the covariance matrix of (X(z), X'(¢), Y(¢)) is
denoted by

1 0 3,
(3.3) E = O l 223 .
23] 232 233

Then it is possible to calculate the conditional density of Y(¢),
— dPY(t)(' ”Ct*)
dPY(x)(’ ||Cz)

It should be noted that conditioning on C, is the same as conditioning on a
u-upcrossing in the X-process. This means that the process at the time points when
C, occurs is steeper than usual which gives the derivative a Rayleigh distribution
conditioned on C, (cf. Slepian (1962), Lindgren (1975a, b)). This phenomenon does
not take place in Example 3.1 since the process is nondifferentiable.

In the nondifferentiable case both Py (- [|C,) and Py (- ||C*) are Gaussian
and hence either equivalent or orthogonal but when X is differentiable Py, (- [|C,)

(3.4)
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is not Gaussian in general. In this case the third possibility that Py,(-||C,) and
Py (- ||C,) are neither orthogonal nor equivalent, may occur.

THEOREM 3.5. Let (X, Y) be a finite-dimensional and stationary Gaussian process
with a real-valued first component which is differentiable in quadratic mean. Let C,
denote a u-upcrossing in the X-process at time t and ¥, = a(Y(t)) be the o-algebra
generated by Y(t). Then Py, (- [|C,) and Py, (- | G*) are equivalent if and only if no
nonzero linear function of X(t) and X'(t) is 9-measurable.

PrOOF. It is no loss of generality to assume that Y(¢) has a nonsingular
distribution with covariance matrix Z; since otherwise the number of components
in Y(¢) can be reduced until a nonsingular distribution is obtained.

We start by proving that when no nonzero linear function of X(#) and X'(¢) is
%,-measurable, the conditional distributions Py,,(-||C,) and Py(-[|C*) are
equivalent. This is because £ in (3.3) is then invertible. Assuming zero mean, the
following formula is obtained (cf. (3.4) page 230 in Lindgren (1975b))

exp| —111y(D)I3,]

detA )
J2oexp] = Ipt) — 2251131 | -z exp( - 322) dz

(3.6) rly(n)] = (det233

withy,(1) =y(t) —uZj3and A = 233 — 25,39, — 35,35 (and, e.g, | y(1)|| 35 =
y(£)25'y7(2)). Hence the “if’-part is established.

Conversely, assume that n = aX(¢) + bX'(¢) is %,-measurable. Then conditioned
on Cr, the random variable 1 is Gaussian distributed but conditioned on C, it
follows a one-sided Rayleigh distribution on a subset of the real line and hence the
two conditional distributions are equivalent only if a = b = 0. This concludes the
proof of the theorem. ¢

COROLLARY 3.7. Assume that no nonzero linear function of X(t) and X'(t) is
%,-measurable and use the notations in formula (3.6). Then an alarm system @ = {A,}
is optimal in the sense of Remark 2.2 if

A, = {y Iy O1R - — I3y — 2 (L[ »,(0)]} < K}

( for some constant K').

Here
Ly ()] = y,(t)L = p, (1) A7'Z5, /7
with
y=(1+ ZzsA—lzsz)%
and

V(x) = [ [ e™ Y dz] x €R.
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Proor. Carry out the integration in formula (3.6) and obtain

o (etA ) exp[ 3 17(Dl 53]
ply(@®)] =~ (det 233) exp[—%||yu(t)||§_._LL,],¢{L[yu(t)]}.

COROLLARY 3.8. The theorem holds even when Y is infinite-dimensional.
Proor. Write Y(¢) = (Y,(2), Y,(2)) with
Y, (1) = E[(X(2), X'(+))IIF,] and Y,(¢) L Y(¢).
Then the distribution of Y,(#) is unaffected by conditioning on (X(¢), X'(¢)) and

the infinite-dimensional problem is reduced to the finite-dimensional case.

ExaMPLE 3.9. Let X be a stationary solution of the stochastic differential
equation
X” + aX' + bX = B’
where B is Brownian motion. Then it is natural to consider
Y(2) = (X(t — 1), X'(1 — 1,)).
Slepian (1962) derives the following explicit expression for the conditional distribu-
tion of Y(¢) given a catastrophe (a u-upcrossing) at time ¢

{ Yi(2) =X(t = ty) =g u-r(ty) + §-r'(20) +my
Yy(2) =X'(t — tg) =¢ —u-r'(tg) = §-r"(2,) + m,

where ¢ and n = (n,, 1,) are independent. The distribution of { is Rayleigh and
that of u is bivariate Gaussian with mean zero and covariance

A =l 1= r3(29) — r'*(t,) r(to)r'(tg) + r'(t)r"(2,) }
r(to)r'(te) + r'(t)r"(to) 1= r"(t) — r"*(t,)
To obtain a numerical example we specialize further,
to = 1.0, r(ty) = 75, r'(ty) = —.35,r"(¢y) = 0
which yields

- .27 .88
The alarm region 4, = {y : (y,(¢), y,(¢)) € D}, where from Corollary 3.8
D = {(my + .75u, ny + 35u) : L4n] + L7qm, + 4n3 — 1.5um, — Tun, — Tu?
< K+2Iny(—12n, — 4n,)}.

If we, as in Example 3.1, choose u = 4 the process visits the catastrophe area
3-1073% of the time. The mean number of catastrophes per time unit is 0.5- 107*
and if we again accept

A=[ 31 —.27].

P(A|C*) = 23%
we now obtain the detection probability
- P(4,11C) = 96%.
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We have here evaluated an alarm system which spends a minimum proportion of
its time in an alarm region out of all systems with the detection probability of 96%.
In Figure 3.10 it is also indicated what will happen if the alarm system is based on
the usual mean square predictor

/\’}(t) = r(to)X(t —ty) — r'(tx)X'(t — t,).

It is noted that in this particular example the mean square predictor has an almost
optimal performance.

4. Conclusions. In Section 2 it is emphasized that the problem of constructing
alarm systems is analogous to the problem of testing hypotheses. This view leads to
an optimal alarm system which is based on an alarm region with a curved
boundary. However, in an example this region has an almost linear boundary at
that part of the plane where the probability is concentrated.

A natural question to ask is when this will happen and another question in this
direction is when the boundary of the alarm region is well approximated by a level
curve of the mean square predictor. )

The probability tools which are needed in order to calculate the alarm regions
are mostly developed for stationary processes. However, in a variety of applications
the processes of interest have a nonstationary component. Lindgren (1979) outlines
a development of a model process for a stochastic process which is the sum of a
stationary Gaussian process and an almost periodic deterministic function. The
model process gives an explicit description of the behaviour after an upcrossing.

To develop the alarm system we use a model process for the information process
Y given a catastrophe in the X-process. But to examine the property of the
X-process after the entry of the Y-process in the alarm region, a model is needed

X(t)
oo Catastrophe_area _ _ _ _ _ _ _ _ _ _ _ _ _ r
2 Alarm area ,
1 —+->1
15 0 23,725
247

F1G. 3.10. Alarm occurs when Y(t) belongs to the alarm area and a catastrophe whenAX (t) enters the
catastrophe area. The dotted line indicates where the mean square predictor X(t) = 1.7,(X(¢) = .75X(t —
1) + .35X'(¢t = 1)). .
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conditioned on the event that Y hits the boundary of the alarm region. This
problem is discussed in Lindgren (1980).

A quantity which is of interest is the waiting time between an alarm and a
catastrophe. Usually this waiting time is substantially larger than the time ¢,
because the system is designed to grant that a catastrophe will not happen earlier
than ¢, time units after alarm.
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