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A STABILITY CRITERION FOR ATTRACTIVE NEAREST NEIGHBOR
SPIN SYSTEMS ON Z

BY LAWRENCE GRAY AND DAvVID GRIFFEATH

University of Minnesota and University of Wisconsin

We study attractive nearest neighbor spin systems on the integers having
“all 0’s” and “all 1’s” as traps. A necessary and sufficient condition for stability
under small one-sided perturbations of the flip rates is established.

1. Introduction. This paper deals with the stability of certain stochastic spin systems
under perturbations. The reader is referred to a concise survey by Liggett [10] for
references to the extensive literature on spin systems, and for the framework and basic
notation adopted here. Specifically, the processes we discuss are the attractive nearest
neighbor spin systems on the integers, a class studied in Liggett’s paper [11]. Intuitively,
the {0, 1}%-valued process (£) consists of interacting two state continuous time Markov
chains &(x), one at each site x € Z, where the @-matrix at x at time ¢ is given by

— _Bij Bil
Ql(x) - ( Bij _Bij ’
with i = &(x — 1), j = &(x + 1). Thus the birth rate 8 and death rate é at the site x are

functions of the states of the chains at the two nearest neighboring sites x — 1 and x + 1.
The dynamics are evidently translation invariant. The attractiveness assumption is:

Bi; is nondecreasing as i + j increases,
8,; s nonincreasing as ¢ + j increases.

1)

Intuitively, the more 1’s on the neighbor set of x, the greater is the tendency for a 1 to
occupy x. The eight values B;,, 8, (i, j = 0 or 1), called the flip rates, uniquely determine
the transition mechanism of ().

The ergodic theory of spin systems is concerned with identification of invariant measures
and their domains of attraction. Let .# denote the class of invariant measures for a given
system, .% its extreme points. The main result of [11] asserts that if (&) is one of the spin
systems on Z described above, and if the positivity assumption

(2) ,Bij+8ij>0 (l,]=0 or1l)
is satisfied, then
|£]|=1 or2

(Condition (2) rules out the possibility of degenerate invariant measures other than pe and
11, which are the two measures concentrated at the states 0 = “all 0’s” and 1 = “all 1’s”
respectively.) When |.% | = 1, the system is called ergodic; if v is the unique invariant
measure, then

P(&E.)=v» as t—

for any initial state £. If | % | = 2, the system is nonergodic. It has been widely conjectured,
but not proved, that if

(3) min{ﬁoo, 611} > 0,

(i.e., all the flip rates are positive), then the system is always ergodic. If (3) does not hold,
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68 LAWRENCE GRAY AND DAVID GRIFFEATH

say if Bo = 0, then nonergodicity can arise. The most widely studied example of this
phenomenon is the basic one-dimensional contact process of Harris [5], which (up to a
change in time scale) has flip rates of the form

Bii=i+Jj
(4)

(Sf‘j =¢&.

Here ¢ > 0 is a parameter. For this model it is known that | %| = 1 if e = 1 (see [5]),
whereas | % | = 2 when & < % (see [7]). One extreme invariant measure is clearly po. For
large ¢, po is the only invariant measure, but for small ¢ there is a nonatomic extreme
steady state »; such that

®) P& €)= v # o as t— oo,
Monotonicity arguments establish a critical value e, such that
| £|=1 fore> e, |£| =2 fore<e..

The value of ¢, and the behavior at ¢ = ¢, are not known.

If Boo = 811 = 0 and (2) holds then | .% | = 2 since po and p; are both extreme invariant.
One way of viewing the contact model (4) is as a one-sided e-perturbation of the system
with flip rates:

Bij=i+]
(6) BijEO.

Note that (4) is derived from (6) by adding ¢ to all the death rates. If (5) holds, we say that
the state 1 is stable with respect to such a perturbation. In fact, if P* governs the contact
system (&) with parameter ¢, one can show that

(7) lim,.o supe=0P1(£:(0) = 0) = 0.

By analogy, given any rates B;;, 8;, with Bep = 811 = 0, one can consider the one-sided
perturbation:

Bij= Bij
(8)
8?,‘ =4 j+ &
and ask the same question:
9) Is 1 stable, i.e. does (7) hold?

If (7) does hold, then it follows from attractiveness and Liggett’s Theorem that for
sufficiently small positive ¢, #5 = {0, »1}, whereri =lim, ..Pi({i € ) # po. Since attrac-
tiveness implies the existence of a critical constant &, such that

| £l =1 for e>e, |Fi|=2 for e<e,
(we allow ¢, = 0, in which case the second alternative is vacuous), (9) is equivalent to:
Is & > 0?

Our object in this paper is to settle (9) for any attractive nearest neighbor system with
Boo = 611 = 0. We will consider rates of the form (8), which we call e-perturbations. It is not
hard to identify a necessary condition for stability, namely

(10) Bor + Bio > o1 + b1o.

If (10) fails, then in the e-perturbation, a block of 0’s of size 2 or more decreases by one at
rate o1 + Bio and increases by at least one at rate 8o; + 810 + 2¢e. Thus blocks of 0’s tend to
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grow. Using translation invariance it is not hard to show that for every ¢ > 0,
(12) lim,.P5(£50) = 0) =1,

so that #* = {po}. In particular, (7) fails. The reader should have no difficulty supplying a
rigorous proof that (10) is necessary for stability, based on the above heuristics.
The main result of this paper asserts that condition (10) is also sufficient for stability:

THEOREM. Let ({) be an attractive nearest neighbor spin system on Z with By = 611
= 0. Let (¢}) be the one-sided perturbation with flip rates (8). If

Bor + B1o > do1 + 10,
then 1 is stable, i.e. (7) holds.

The proof of the Theorem is quite involved; it is based on the so-called “contour
method” of percolation theory. Roughly speaking, we think of the space-time set

{(x,8) EZ X R":4u(x) =1}

as representing the flow of liquid in Z X R™. In order to show that 8,(0) = 1 with large
probability, one observes that if the origin is not wet at time ¢, then the flow must be
blocked by a barrier, or contour. Thus it suffices to prove that such a contour can only
exist with small probability. As far as we are aware, this methodology has not been applied
previously to continuous time systems. For certain discrete time deterministic operators
under one-sided perturbations, a similar approach has been exploited extensively by Toom
[13], [14], [15]. In the oriented percolation setting, this technique is due to Hammersley
[4]. At least in spirit, one is also reminded of the Peierls argument for phase transition in
the two-dimensional Ising model [12], [3]. Our work here is most directly inspired by
Toom’s beautiful theory of “eroders” [15]. For his models, 1 is stable if the unperturbed
deterministic process reaches 1 from any state that has only finitely many 0’s. Quite
remarkably, his analysis yields necessary and sufficient conditions for stability in any
dimension d. We note in passing that the notion of stability of deterministic operators
subject to random noise goes back to Von Neumann [16]. An outline of von Neumann’s
theory may be found in [1]. For us, matters are not so nice: major complications arise from
the fact that the unperturbed system (&) is already random. Clearly (10) is the correct
“eroder condition” in the one-dimensional nearest neighbor case, but even here the
problem is barely tractable. For non-nearest neighbor or higher dimensional systems it
seems unlikely that a manageable theory will emerge.

In order to give structure to the proof of the Theorem, we have divided it into four
parts. Section 2 contains relatively concrete representations of the systems under discus-
sion. To facilitate computations, we define (£,), as far as possible, with the aid of a
substructure of Poisson processes. Our construction may be viewed as a generalization of
Harris’ graphical representation of additive systems (cf. [6] or [2]) to cases where the
processes with different initial configurations do not fit together quite so well. In Section
3 we define the contour I'r surrounding (0, T') in the space-time diagram of (£;). Using the
construction of Section 2, we are able, in Lemma 8, to obtain a function which is an upper
bound for the probability density for contours of a certain description. At this point, for
the sake of clarity, the proof of the Theorem is divided into two cases. It turns out that if

(12) B11 = Bor + Bro,

then a relatively straightforward calculation, based on Lemma 8 and some combinatorics,
yields the stability property (7). In this case one can actually determine a numerical lower
bound for ¢.. Harris’ basic contact process (4) satisfies (12); for that model we obtain the
estimate

(13) =14 - 8V3 = .14.
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This is not as good as the remarkable Holley-Liggett bound &, = .5, but percolation
methods are notoriously crude. Section 4 contains the proof of stability assuming (12). We
elimimate the hypothesis (12) in Section 5, but in order to do so we must resort to
unpleasant surgical operations on the contour which obfuscate the essential idea. When
(12) fails, our proof is.too complicated to yield any calculable positive lower bound for e..

2. A representation of (£). In this section we show how to use Poisson point
locations on the space-time graph Z X [0, «) to construct any translation invariant nearest
neighbor spin system with given attractive flip rates 8;; and §;,. Recall that a Poisson point
location (P.p.£) on R* with density p > 0 is a random set of points # = {X;, X;, ---} C R*
such that X;, X; — Xi, .- - are i.i.d. exponential random variables with mean p .. If p = 0,
then # = &. To begin the construction, let 8. and 8x, 0 < & < 3, be the 8;; and J;; arranged
in increasing order. Define

mij=k if Bi=pe
n;; = k if 8i,' = 8k.

For each x € Z, and 0 < k < 3, let %,(x) and Zi(x) be P.p.#’s on {x} X R* with densities
Br — Br-1 and 8. — 8,1 respectively, where B_; = §_; = 0. Take all the P.p.£’s to be
independent on a common probability space (2, % P;). Next, introduce

B;j(x) = Uosk=m,; Be(x),  Dij(x) = Uosk=n, Da(x),

F(x) = Uy (Br(x) U D (x)).

Note that %,;(x), 2i;(x) and ¢ (x) are P.p.£’s on {x} X R* with densities 8;;, 8;; and B:1 +
800 respectively.

We will now define the desired spin system (¢), starting from 1 = “all 1’s”, on (2, &,
P,). First, we need some finite approximations. For each finite A C Z, inductively define

Ty =inf(t > 18:(x, t) € F(x) forsome x€ A)
(r8 = 0). Introduce the process (££) given by
(14) thx) =&Y x)  tE[1h, Tav),

where the right side of (14) is identically 1 for x € A, and for x € A is defined inductively
by:

£04x) = 1,
and when ¢ 4(x — 1) =i and £"4(x + 1) =,
g A(x) =1 if &%) =0, (x, i) € By (x);
=0 it £4(x) =1, (x, Th41) € Dy (x);
= £m4(x) otherwise.

It is easily verified that (£7)) is the spin system which starts in configuration 1 and has flip
rates at x equal to B;;1a(x) and §;,14(x). Thus ( g‘,‘) can be identified with a finite Markov
chain on {0, 1}4. It is also easy to see that for each finite A and B, (£, £F),=0 is the basic
coupling of (¢8) and (£F) (cf. section 2.1 of [10]). Since the flip rates are attractive, it
follows that whenever B C A,

(15) £B(x) = £ (x) forall x,¢

with probability one. To avoid null sets as much as possible, it is convenient at this point
to redefine (£, % P;) by removing the following sets of measure zero:

{w:|£x)N ({x} X[0,T]) =0  forsome x and T},
{w:(x,t) E F(x) and (y,t) E Z(x) for some x#y and ¢},
{w: (15) does not hold for some B C A}.
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We now define
(16) £ (x) = limayz £8(x) (for all w).

It is not hard to see that (&) is a process with the desired flip rates.

LEMMA 1. Foranyx€ Z, T >0,
(17) limayz supeepo,ry | &i(x) — £2(x)| =0 (for all w),
and hence the process defined by (16) is a spin system with flip rates B;; and §;; and with

initial state 1.

(We omit the easy proof. A convergence theorem of Holley and Stroock (Theorem (2.3) of
[8]) can be applied once (17) is established.)

The construction just completed allows us to make use of the underlying P.p.£’s in our
analysis of (£). The lemma which follows shows the relationship between points in the
P.p.£’s and the times of various types of transitions of the system (). It will be exploited
in the next section.

LEMMA 2. Givenx € Z,u>0,letfu(x — 1) =i, &u(x + 1) =J.
(1) Suppose that lim, -, & (x) # u(x). Then
(x,u) € B(x) if Lux)=1
(x,u) € Z;(x) if fu(x)=0.
(ii) Suppose that lim, », & (x) = £.(x). Then
(x, u) & D if &x)=1
(x, u) € Bj(x) if &(x)=0.

Proor. By construction, the lemma holds if (£,) is replaced by (£7') for any finite A
C Z. Property (17) guarantees that the claims (i) and (ii) hold in the limit as A 7 Z.0

3. The contour estimate. In this section, let (£) be an attractive spin system with
flip rates B:; and §;j, such that
BOO = 0)

constructed as in Section 2. Our first objective in this section is to define the contour I'r
surrounding (0, T') in the space-time diagram for (£;), and to establish P;-a.s. equality of
the events {£7(0) = 0} and {T'r > &}. Embed Z X R* in R X R™ in the natural way. Let

O = interior of {(r, 1) ER X R :4(x) =0 and |x—r|='% for some x€Z},

and, for T > 0, let Or = D if (0, T'), &€ O and if (0, T') € O let Or be the component of
0N (R x [0, T]) whose boundary contains (0, T'). The contour I'r surrounding (0, T') is
defined by

I'r = the boundary of Or if 0, T)€ 0,
=0 if (0, T)¢& 0.
LEmMMA 3. {£7(0) =0} = {I'7 # O} P;-as. for each T > 0.

Proor. Easy. Recall that our ultimate goal is to prove (7) assuming (10). According to
Lemma 3, it suffices to show that

(18) lim, o suprso P1(I'r # Q) =0,
where I'r = I'y is the contour surrounding (0, T') for (£5). We will verify (18) by analyzing
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probabilistically the possible shapes for nonempty contours. Some preliminary observa-
tions concerning I'r are summarized in the next lemma. The terms right, left, up, down,
horizontal and vertical will have their usual meanings throughout this paper, where we
think of R X R* as embedded in R? with the standard orientation. Thus, for example, up
means increasing the R* (i.e. time) coordinate with the R (i.e. space) coordinate fixed.

LEMMA 4. Let Q7 = {w: Or is bounded}. Then P1(Qr) = 1 for each T > 0. Moreover,
for any w € Qr, either I'r = & or the following four properties hold:

(i) I'r consists only of vertical and horizontal line segments.

(ii) Any horizontal segment in I'r N (R X (0, T')) has unit length and a midpoint
(x, t) with x € Z and (x, t) € #(x).

(iii) I'ris a simple closed curve.

(iv) T'r N (R X {T}) is a connected segment of positive integer length containing
o, T).

Proor. By the definition of ¢r and Lemma 2,
Qro{AxeZ,yeZ :L(x)=&(y)=1 forall ¢t€[0,T]}
d2{3xez,yezZ™:f(x)N ({x} x[0,TD) =4 (») N ({y} X [0, T]) =2}.

The last event has probability one by Borel-Cantelli, so P;(2r) = 1. Assuming I'r # &, we
now verify (i)-(iv) for w € Qr. Property (i) follows from the definition of I'7, (ii) from the
definition of I'r and Lemma 2(i).

To prove (iii), recall from the definition of ¢ that ¢ is open and connected, so (iii) holds
unless O is not simply connected. It is not hard to see that if ¢ were not simply connected,
then there would be some site x where a birth occurred between two 0’s. This is impossible

-by Lemma 2(i) and the fact that Zo(x) = &. Similar reasoning also implies (iv). 0

Our next objective is to formulate the manner in which the shape of I'r gives information
about the underlying P.p.£’s. In order to facilitate analysis of the contour, we orient it so
that I'r N (R X {T'}) is directed to the right. Thus, if you walked around the contour
following this direction, you would always see a 0 on your right and a 1 on your left. Let

%r = {oriented yCR X R*:I'r(w) =y  for some w € Qr},
Y = Urso %r.

At this point we need a good deal of descriptive notation to encode the oriented shape of
a contour. Given y € %r, define

Ho=yN (RX({T}),
o = the right endpoint of Hy,
N = the number of horizontal segments in y — Hp.
Forl=i=N+1,set

Vi = the ith vertical segment in v, starting with the
vertical segment which contains py, and indexing
around y according to the orientation.

Forl1=i=< N, put

H; = the horizontal segment of y connecting V; to V.,
(x:, t;) = the midpoint of H;.

Each segment of y inherits an orientation; use the letters ¢ r, u, d for the orientations left,
right, up and down respectively. For 1 < i < N, write
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A; = the ordered triple of orientations corresponding to (V;, H;, V1),
A= (4, -, An),

o. (A) = if A; =
o1 (d, 4 d)
Bo (d,r, d)
S10 (u, 4 u)
Bro (u,r,u)
oo (u, 4 d)
o1 (d, 4 u)

With the aid of Lemma 2, we are now ready to show the connection between the A; and
the substructure of P.p.£’s.

LEMMA 5. IfT'r=vy,and1<i<N, then
(i) pi(A) = & implies (x,, t;) € D, (x;)
(ii) pi(A) = B implies (x,,t;) € Bx(x;), j#k
(i) A; cannot equal (d,r, u)
@iv) A, cannot equal (u,r, d).

ProoOF. (i)-(iii) follow from Lemma 2(i), (iii) because %y (x) = @. Since (0, T') € Tz,
if A = (u, r, d), then (0r U T7) N (R X {¢}) must contain two disjoint horizontal line
segments. By translation invariance we can assume x = 0, in which case T, violates Lemma
4 (iv). Hence (u, r, d) cannot occur, so (iv) holds. 00

LEMMA 6. Suppose I'r = y. Let V = V; — {the endpoints of V;} for some i:1<i=<
N + 1, and let o € {u, d, r, ¢} be the orientation of V;.
(i) If (x + %, t) € Vand o = d, then (x, t) & Boi(x).
(i) If (x + %, t) € Vand o = u, then (x, t) & Dio(x).
(i) If (x — %, t) € Vand o = d, then (x, t) & Doi(x).
(iv) If (x — %, t) € Vand o = u, then (x, t) & %Bo(x).

Proor. (i) By the definition of I'r and Lemma 2(ii), (x, t) & %,,(x), where i =
&(x—1)andj = &(x + 1) = 1. Since %11(x) D Boi(x), the claim follows. The arguments for
(ii)-(iv) are analogous. 0

LEMMA 7. Let y, V and o be as in Lemma 6, and let V' = V; — {the endpoints of V;}
for somej:1<j<N+ 1.

(i) If (x—Y%,t) EV, (x + %, t) € V' and o = d, then x & Doo(x).

(i) If (x — %, t) EV,(x + %, t) € V' and o = u, then x & B, (x).

ProoF. (i) Since o = d, it is not hard to see that V’ must be oriented up. Hence, by
definition of I'r and Lemma 2(ii), &(x — 1) = &(x + 1) = 0 and (x, £) & Doo(x). The proof
of (ii) is similar. O

Given I'r = v, let
A=Ay, oo, AN), where A; = the lengthof V,,1<i=<N.

In order to economize on notation, we will use the symbols N, A, and A to denote both the
functions of y defined above, and also to denote canonical values of these functions. Which
meaning we have in mind will be clear from the context. For each possible pair of N-tuples
A and A, there is a whole class of curves y with direction vector A and length vector A;
these curves are all (space-time) translates of one another. Therefore, quantities which
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depend only on the shape of y may be thought of as functions of A and A. For N a positive
integer, write
9n = {A:A(y) = A for some y € ¥ such that N(y) = N},
and for A € 9y, let
PA)={Ae (R")N:forsome T>0and yE % A(y) = A and A(y) = A}.

Given T > 0 and A € 9y for some N > 0, define a finite Borel measurep4 on (R*)" by

(19) p2(-) = Piu(po(T'r) = (%, T), A(Tr) = A, A(T'7) € -).

The main result of this section is an upper estimate foru#. To state it, we need to introduce
(20) p(8) =T pi(A).

Also, write

I,(A) = {i: the first coordinate of A; = u},

I;(A) = {i: the first coordinate of A, = d}.
Finally, if y is any of the translates such that A(y) = A and A(y) = A, introduce
@) @A) =Tz r(t:3i€LQ),/EL(A)  such that ‘

(x — %, t) € VI(y) and (x + %, £) € V](y))}.

Here » is Lebesgue measure on R*, and V? = V, — {endpoints of V;}.

Recall that P;(I'r # &) is the probability that a contour prevents the occurrence of a 1
at site 0 at time 7. The numerical bounds for P;(I'z # &), to be derived in the next two
sections, will be based on the following result. In its statement, and throughout the
remainder of the paper, we will write

B = Bo1 + B, 8 = o1 + b

LeEMMA 8. Let (&) be an attractive spin system with flip rates B,; and §,;, starting,
from 1. Assume that Bo = 0. Given any T > 0 and A € Dy, if p% is defined by (19), then
u’ is absolutely continuous with respect to N-dimensional Lebesgue measure vy. More-
over,

) TN =p@ran  rez@)
=0 A& ZLA),
where p(A) is given by (20) and for o = (§ — 8u)*,
(23) f(A,A) = exp{—(B + 8 — a) Yier,o) AiYexp{—(Bu1 — B + €)b(A, \)}.

ProoF. Since p% (£(A)) = 1, it suffices to prove (22). Fix A € #(A), and let v be the
unique curve in %r such that A(y) = A, A(y) = A and po(y) = (%, T'). Put b(A, A) = b. For
each x € Z, define

Us ={(x,t):3i€ L(A) with (xx%,¢t)E Viy)},
Di={(x,t):3i€ L;A) with (x+%,t)€ V'y)},
A.=D:NU;, B.=DinU;.

These sets divide those points on {x} X R™ that are next to a vertical segment of I'r into

six classes according to the values of & (x — 1), &(x), and & (x + 1). By Lemmas 6 and 7,
{I'r = v} is contained in the intersection over all x € Z of the events

E, = {(U: — B:) N Bo(x) =} N {(Df — B,) N Boi(x) = D)
N {B. N %u(x) =} N {(Us — A:) N Dio(x) = T}
N {(Dx — A;) N Doi(x) =D} N {A: N Doo(x) =T}
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The six events which define E. are independent since they evaluate the P.p.£’s over
disjoint sets, and all the E.’s are independent as well. Letting », be 1-dimensional Lebesque
measure on {x} X [0, ©), we have

Py(Nrez Ex) = [[rezdexp{—Biovx(Ux — Bx)}exp{—Bow:(D7 — B.)}exp{—Bur(B.)}
-exp{—d10r:(Uz — Ax)}exp{—dow:(Dz — A:)}exp{—Soo:(A.)}].
Since vy is a simple closed curve,
2 v (UZ) = Yo v:(Uz) = Lo (D7) = Y v(D3),

and the common value is ¥, ez A.. Note also that Y. v.(B.) = b. Thus, one easily obtains
the bound:

(24) Pi(Nsez Ex) < exp{—(B + 6 — a) Yier ) M Jexp{—(Bu — B + a)b}.

Next, abbreviate (x.(y), t:(y)) = (x;, &), and observe that by Lemma 5, {I'r # &} is also
contained in the event N, F,, where F, = {(x;, t;) € B (x:)} if p:(A) = Bk, and F; =
{(xi, ;) € Dy (x:)} if pi(A) = §a.

Exploiting the independence properties of P.p.£’s, we see that N., F, has probability
density p(A) dA; dAs- - -+ -dAy, and moreover, we can combine this with (24) to get the

A
upper bound in (22) for%’:}iz. Further details are left to the reader. O
N

4. Proof of the Theorem assuming (12). We now prove (7) in the special case when
(12) holds. Our argument will be based on Lemma 8 and some simple combinatorics. The
next three lemmas are preparatory to the main result of the section.

LEMMA 9. Let (&) have flip rates B,, and 8;; such that
Boo =0, Bu=B.
For any A € 9y, with a = (8 — 8x)™,

Pi(po(I't) = (%2, T) and A(I'7) = A) < p(A) (l I;:IA)|) B+8—a)™.

Proor. Note that
L) CL'A) = AE RN Tictaw,imne \i > Yier,@ A}

Hence, by Lemma 8 and the extra hypothesis (12),

pHL(A)) = pHZL Q) < p(A) J exp{—(B + 8 — a) Yicr,m \i} dA.

£'(8)

The integral equals

N-1 _
(I Id(A)l _ 1)(B+ d—a) N’

as can be seen by making the change of variables

A= Gierm Ay Az, -+, An).

Since <Z : % ) = (Z), the proof is complete. 0
At this point it is convenient to introduce, for any A € 9y, the quantities:
L@A) = |{i:&i=(d, 4d)}|, R@)=|{i:A=(d,r,d)}|
M@A) =|{i:A =, 4u)}, W(A) = the length of H,
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(Ho = Hy(y) for any y such that A(y) = A). Define
9=9(N,W,L,R,M)={A€ 9v:W(@A)=W,LA)=L, RA) =R, MQA) = M).

We can now evaluate p (A) as follows.

LEMMA 10. For A € 9, and p(A) given by (20),
N+W N-W

— -L-2M+1 ——-R
0(A) = 8§ 8858102 " B1o? S¥1sM.

Proor. Write Ny = |{i:Ai = (u, 4 u)}|, No = |{i:A, = (u, r, w)}|, N3 = |{i:A, = (u, 4 d)}|.
According to (20), we need only verify

N+W _N-W_

—L-2M+1, N, =

(25) N1 R, N3 = M - ]..

Let y satisfy A(y) = A. Since Vi(y) is directed down and Vy.1(y) is directed up, y changes
directions from down to up one more time than it changes direction from up to down. The

triples (d, 4 u) correspond to changes of the former type, (u, 4 d) to changes of the latter
type. Hence N3 = M — 1. The values of N; and N, are now determined by the equations

L+R+M+ N +N;+N;s=N and L+M+ N +N;s—R—-—N,=W. 0

The final lemma of this section estimates the number of direction vectors A having
given values of N, W, L, R and M.

LEMMA 11, |@|SC/<L+JI'CY+M)’ where

N!
N-W N+ '
L'RIM\(M — 1)!( 5 —R)!( 5 W—2M—L+ 1)!

(Interpret the right side as 0 if any of the terms in parentheses is negative.)

(26) C=C(N,W,L,R,M)=

Proor. Let A, be the subsequence of A comprised of A, € I, A, the subsequence of
A; € I,. 1t is easy to see that any pair (Ag, A,) determines a unique A, since the two
subsequences fit together in only one possible way. Thus, with N;, N. and N; as in the
previous lemma,

(L+R+ M) (Ni+ N+ N;)!

| 21 = [{Aa{l-BAS| =—Frmmn Ni!N!N!

The claim follows. 0

We are now ready to prove that (10) implies (7) in the special case when (12) holds.
Thus, let (&) satisfy the hypotheses of the Theorem. There is no loss of generality by
assuming, in addition, that

(27) 800 = 810 + Bos;

for if (27) fails, then 1 is “less stable” in the modified system (£;) with 8y = 6, and with all
other flip rates unchanged. This can be proved by using the “basic coupling” of Section 2.1
of [10] to construct (£§) and (&) on the same probability space in such a way that

E(x) = &(x), V¢ e
Then stability for (£;), which satisfies (27), implies stability for (£).
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As already noted, it suffices to check (18). Fix ¢ > 0, T'> 0, and write P = Py, I'=T%,
= (%, T'). Check that Lemmas 9, 10 and 11 apply to (£) (i.e. the system with flip rates
(8)). By translation invariance and those results,

(28) PT#Q)=Yw-1 W.P(WAT)) = W, p(T) =p)
= ZW,N,L,R,M W.C(W, N, L, R, M) II¢ (W, N,L, R, M),
where C is given by (25) and

N+W _ N-W_
_ (801 + €)X B8 (810 + &) 2 Blo (300 + g)M 1M
B B+o+e¥ :
Now observe that C can be written as
N+W N-W N+W
oo N — (ZM _ 1) 3 . 2M + 1
N+W oM — 1 M R L

Hence, summing on L and R in (28), and using the bounds

N
N-WwW =2V and <2A§W 1) = 22M-1’
2
we get
N+ W MW o1 YW
N 2 2 1(8+28) ? +:8 2 (8o + ) MM
Rewrite the sum as
ZW,NW'zN
N—F N; W e M—@M—l)] N-w
: (800 + €) EM (2Ve(8o0 + 8))2M_1(8 + 2¢) 2 B 2 (B+8+ N
2M -1
N+W N-W

O +)ZWNW2”&Jd Fe)+0+2) 282 (B+o+9N

_ e 2 VB (2 Ve(oo + &) + & + 292N
(800 + ) Ln B+o+e

'{Zw W[(z Ve@wo +€) + 8 + 28)1/2]””}

B
01 02
1-o01(1-0p)*’

this last provided o; < 1 and 0, < 1. (Here, 6 = ve/(80 + €) and 6, and o3 are the quantities
in the square brackets.) If 0 < & < 8 — §, then (0s/01) = (B+68+¢€/28<1,5s00; <o
Thus, to establish (18), it suffices to check that

(29) lim, 0 01(e) < 1 and lim._o 8(e)oi(e) = 0

= 0{Zﬁ=1 of’}{Z%ﬂ W‘sz} =40
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If 800 > 0, then

[\
§
(=2}

lim,_ 01(e) = <1 and lim._,0() = 0;

B+
if 8po = 0, then 8 = 0 by (27), so
lim,_00:1(e) =0 and lim,,068(e) = 1.
In either case (29) holds. Thus, assuming (12), the theorem is proved. 0

REMARK. By a standard percolation argument (see, for example, Toom [13]) it can be
shown that 1 is stable for any € < €*, where

e* =sup{e € (0, 8 — 8) :01(c) < 1}.
For example, if (&) is the basic contact process with flip rates (4), and if

32¢

Zror b

oi(e) =

then 1 is stable. This yields the bound (13) for the critical constant mentioned in the
introduction.

5. Proof of the Theorem when B1; < Bo1 + B1o. Our task in this final section is to
prove the theorem when

800=6 and ,311 < ,8

The first inequality is (27); as already noted, there is no loss of generality by making this
assumption. The second inequality identifies the case when (12) fails. The difficulty here
is due to the presence of the term

exp{—(Bi1 —B + &)b(jA, A)} >1

in f(t, A), which is contributed by the sets B. of the proof of Lemma 8. We call these sets
bottlenecks. Each bottleneck is a rectangular set of width 1. Depending on the position of
a given bottleneck, it plays the role of either an isthmus or a peninsula in the region
bounded by I';. To deal with the bottlenecks, we treat them as connectors between
successive generations of a branching structure, as described below.

Given y € %, let 0 be the inside of y (i.e., the bounded component of y°). Every line R
X {t} intersects @ in a (possibly empty) set of disjoint horizontal line segments of integer
length. Let

% = the union of all such segments of length one.

Then £ is a disjoint union of closed rectangles of width one. These rectangles are the
bottlenecks of v; b(y) = b(A(y), A(y)) is the sum of the heights of the bottlenecks. Let

%’ = the union of the bottom segments (i.e., the bases) of the rectangles in 4.
The segments in 4’ cut ¢ into smaller pieces; let

G = {the boundaries of these pieces} (i.e., {the boundaries of the bounded components
of (y U %')%}).

We group the curves in G into generations as follows:
Yo = the unique curve in G which contains (0, T'),
Go = {yo},

and continuing inductively, for n = 0,

G+ = {all curves in G — U<, G which have nonempty
intersection with some curve in G,.}.
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Also, let
m = m(y) = the cardinality of Gi,
g =g(y) = max{n:G, # J}.

Our interest will center on yo, the m curves in Gi, and the m curves representing the total
progeny of each of these m curves in G;. Thus, write

B" =& N 0.

The set (y\v0) U #” consists of m disjoint simple closed curves which we call yi, yz, - - -,
¥m (use the ordering inherited from the orientation of y). Each of these curves surrounds
one of the curves in G; together with all of its offspring. Furthermore, yo € %, while each
of the curves yi, - - - , yn is a translate of a curve in %r. Therefore, any of the quantities we
have considered which depend only on the shape of y € %r can be defined as well for o,
Yis oo Ym.

We will eventually be able to derive a contour estimate p, (¢) for the probability that
any one of the curves yi, - -+, y» has at most n generations. The multiplicative nature of
these estimates will allow us to mimic branching process techniques, in order to show that

lime_,o linln—wo DPn (8) = 0’

and then to prove (18). Very roughly speaking, we view the sets G, as generations of a
branching process which has gone extinct. When & is small, this branching process becomes
supercritical so that the probability of extinction (and hence the probability that there is
a finite contour) is less than 1.

We will start with a precise definition of the functions p, (¢). For A € 9,, N = 1, and
n=0,let

Z%B)={te £(A):AyE Y with g(y)=n and A(y) =t}.
Let p© and f* be the functions p and f corresponding to the flip rates for (£5), as defined in
Section 3, and put
Yu(W, M) = Yawa=-w,ma-u  p°(8) (A, A) dA.
AEZ,(A)
Then we define
(30) Dnl(e) = Y Yn(2, M) for n=0.

The following lemma establishes an inequality between supr=o Pi(I'r # @) and the
functions p, (e) which is similar in spirit to the simple fact from the theory of branching
processes that the probability of extinction equals the limit as n — o of the probability of
extinction within n generations.

LEMMA 12. Form =0, let
Zi = (’—j)m S W Satem <f‘,{) S5 (W, ).
If pn(¢) is given by (30), then for any ¢ > 0,
(31) Pil'r # D) = limy . Y=o Zin(pa(e)) ™, T>o0.
PrOOF. Fore, T'> 0, writeI'=T%and p = (%, T). Then

(32) PiTC#0) = .
lim, e ¥m-0 Xw W-P(W(A')) = W, poT') =p,gC) = n+ 1, m(T) = m).
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Now consider a curve y € ¥ such that g(y) = n + 1 and m(y) = m. As in the proof of
Lemma 8, we associate a probability density p*(A)f*(A, A) dA with the event {I' = y},
where A = A(y), A = A(y). Of course the density involves a Radon-Nikodym derivative; for
the sake of brevity and clarity we omit the formal details. Let y; = v;(y), 0 < i < m, and put
A; = A(y:), Ai = A(y:). It is easy to see that

(33) fi(A,A) =Y f(Ai, N).
We also need to determine the relationship between p°(A) and the p°(A;). This involves
the manner in which yo is connected to each of the y;, i = 1, and so is not quite

multiplicative. Let H{ = yo N y;, i = 1. Then H{ is a horizontal segment of length one
belonging to a unique horizontal segment H, of length two in v;. If we write

Bi= Bu when H/ is the left half of H,,
=B  when H/ is the right half of H;,

then, in fact,

(34) P (A) =& ™o (Ao) [T, Bip*(A)).

i=1

The term ¢ ™™ is present because A, contains m triples (d, ¢, u) which do not correspond to
triples (d, ¢, u) in A. We note in passing that the factorizations in (33) and (34) will help
us to mimic a branching process analysis. Combining these two equations, one gets

(35) p*(A) f(A,A) = ™o (Ao) f* (Ao, No) [T%1 Bip®(A:) (A AY).
Write A;; = A;(y:). Since ¥ %o N(y:) = N(y), and since the change of variables
A= (Aot, *+ 5 AoNtygs =+ 5 Amls * o+ 5 Amiviy,p)

is piecewise differentiable and measure preserving, it follows that the probability density
of {I" = y} is bounded by the right side of (35) times dAo; - - - dAnny,) . The question now
arises: given yo € 9r,, y1, +++ , Ym € % how many ways can we translate the y;, i = 1, to
get y{, i = 1, such that there is a y € %r, with yo(y) = yo and y:(y) = v/ for i = 1? Clearly
there are at most (m™%?) choices for the segments H{(y), 1 = i < m. Introduce the
equivalence relation between curves: y’ ~ y” if y” is a translate of y’. Then these
considerations show that the event

{(yo(T) =y0,m(I') =m, ys(T) ~T;, B:i(T) =B;, 1 = i=m)
has probability density bounded by

(M ‘A")) e T2 B: TI2o [0 (A F4(As, As) dA]

m
Sum over the possible B; to see that the density of
{(vo(T) =y, m(T) =m, vi([) ~ yi, 1 =i =m}
is bounded by

(36) (’—’) (M ‘A")) 120 [o° (A0 f*(As, Ao) dA:).

€ m

Note that if g(y) = n + 1, then g(y:) = n for i = 1, while g(y0) = 0. Thus Ay € % (Ao) and
A € Z.(Ai), 1 = 1. Also, for 1 = i = m, each y; must be such that W(A;) = 2. Thus,
integrating (36) over all such A and A and consulting definition (30) yields

P(W@AT)) = W,po(I') =p,gT')=n+1,mT) =m)

= (f) Ziven 36 (fn‘) (W, M) (pa (o)™
The desired result now follows from (32). 0
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The next lemma is reminiscent of the familiar recursion formula from branching
processes that relates the probability of extinction within n + 1 generations to a power
series in the probability of extinction within n generations. The proof is similar to the
proof of Lemma 12, so we omit it.

LEMMA 13. Form =0, let
Y, = (g) I (J,‘,f) 55 (2 M).
Then with p, (¢) given by (30),

Pr+1(e) = Y=o Yin(pn(e))™
In order to apply Lemmas 12 and 13, we need some manageable estimates for Z7, and
Y. To get these, we first estimate the integral in the definitions of Z;, and Y;, (Lemma

14), and then we use that result to show that Z;, and Y3, are bounded by A™ for some
constant A < « (Lemma 15).

LEMMA 14. For A€ 9(N, W, L, R, M) and any € > 0,

. N -
f’\e.%(A) (A, A) dh = CII"<L+R+M>(B ™

where C, = 2(8 + 8)/(Bu + 8).

ProoF. FixA € 2 and A € (R*)", and introduce:

I (A) = {i:Ai=(d, 4 u)}, I={+1:A=(d, 4w}
Ja(A,A) = {i € Lau:Ai =< Aiv1}, Ju(Q,N) = (i€ I Ai= Xt}
Kqi(A, N) = 1o\ Ja, K.(A,A) = I3\,

Ii(AAN) =daU J,.

If g(y) = g(A,A) =0, then b(A, A) = ¥ .es, Ai. Since in this case, | Iy | = | Ia. | = M, there are
2" possible sets J C I, (A) such that J;(A, A) = J and once J, is determined, so are J/,,,
K4, K, and I,. Now note that %,(A) C #,(A), where

ZLo(d)={A€E (R+)N:2ielu\lgu,i#N+l Ai + EieK.,,z#N-i—l Ai — Aims
=< Yietatn ANi + Yicks Ai — Air1}.

Make the change of variables
Ai—> A = i1, 1€ K,
- A — Ay, iE K,
- A otherwise
followed by the change of variables
Ai, = & = Yielpd N lo=min{i:i € I)\Ja},
Ny = b= Yier, Jo=min{i:i € Jq},
A— N otherwise.

Then for each possible J = J, estimation of f°(A, A) yields

©

J'A s (A, A) dA sf e-(ﬁ+6+e)gf e—(ﬁn+s+2e)h[J || d)\,-] dh dg
ELu(A):Ju (A, N)= =0 o \esenm
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where
S(g, h) = (A :Tieninj Ai = RS Yicrpdpicig Ni S 8 Dicl\d i=N+1 Ai < &)

Evaluating the integrals and summing over o/, we get

FaN dv = (2 ) () (g5 emm
AEL(A) ’ T \But+8+ 2 [ L] '

- 2 " N —(N-M)
= (oss) (oo

2(8 +6)

Bt .0

This proves the lemma, with C; =

LeEmMMA 15. Let Z;, and Y, be defined as in Lemmas 12 and 13. Then Y, < Z5, for all
m =0, &> 0, and there is a constant A < o, depending only on B;; and é;, such that Z;,
=A™ m =0, for all sufficiently small ¢ > 0.

Proor. It is easy to see from the definitions that Y3, < Z;, for all m =0, ¢ > 0. By
Lemma 14 and the analysis of Section 4,

B

€

N

2= T = < ) Sw W Satam 2% Swz.n aca p @) CY < LR+ M)(,B +8)™

= <'§> Yw W Su=m 2C1)Y Yn1r C-TI°,

where I1¢ is [* with (8 + 8 + ¢)" replaced by (8 + &)~ in the denominator. For m = 0, the
last expression above is majorized by

Swiniry W-C-T1*9¢ < 0(2C1e) {Tnv 67 (2C16) } (Tw W03 (2C1¢) },

where 8(¢), 02(¢) are as in Section 4, and i (¢) is 01(¢) with 8 + 8 + ¢ replaced by 8 + 8 in
the denominator. Since

?< Llimeo6i(e) <1,  and lim,.o 8(c)G:(c) = O,
1

we conclude that there is an g > 0 such that
(37) 75 <1 forall ¢€ (0, &].
Next, note that

&

=) Z3]0 asm— o,
(5)

these terms being the tails of a convergent series. Thus, for suitable & > 0, depending only
on B, and §;;, we have

B

Finally, since Z¢, is evidently increasing in ¢, it follows that

<2> Zu <1 forall m=0.

ansZ;sZ_ﬁ’,<<E)

&

for all ¢ € (0, &]. The lemma is proved, with A = 8/¢,. 0
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Lemmas 12 and 15 have the following easy corollary:
(38) suprso Pi(I'r # @) = Z5 + lim,, .« Y 7=1 A"D7 (€),

where A is a finite positive constant defined in Lemma 15. Therefore, (18) follows from
(37) and (38) if lim,_,¢ sup, p.(e) = 0. Since (18) implies stability, we are done once we
have proved:

LEMMA 16.

(39) lim,_,o sup, p(e) = 0.

Proor. By Lemmas 13 and 15,
Pr+1() = Y5+ pa(e) Yi + Tm=2 A™(pa(e))™
Supposing we could show that
(40) lim,,o Y5 =0 and
(41) lim sup,o Yi < 1.

Then by taking some ideas from the theory of branching processes, we could prove (39) as
follows. Put po(e) = po(e), and for n = 0, define p, (¢) inductively by

Dnr1(€) = Yo + Yipa(e) + Tm=z A™(Pnle))™.
Then
(42) Dn(e) =pn(e)  forall n,e.
Introduce ®.(x) = Y5+ Yix + Y =2 A™x™. By (40) and (41),
lim,_.0 ®.(0) =0, lim sup,_o ®:(0) < 1.

Hence, for sufficiently small positive ¢, there is a least positive solution x. of ®.(x) = x,
such that

(43) lim,;_>0 Xe = 0.
An argument analogous to the fixed point analysis for Galton-Watson processes yields
(44) limn—mo p-n (E) = Xe.

The desired result (39) now follows from (42), (43) and (44).
Thus, it remains to prove (40) and (41). The proof of (40) is quite easy:
€

Y85Z6=<B>Zis%A

by Lemma 15. Now let ¢ — 0 to get (40).
The proof of (41) is much more involved. First note that

Ya=<§> Sw=s M55 (2, M)
while

¥s = EZE M) s 0, M)

2 = . M=2 2 0 5 .

Thus

Yi- 2(%)% = ('g)[Zﬁ 2, 1) + Tu=2 2M — M?) 35 (2, M)] < (E> 2o (2,1).

€
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Hence, for ¢ small enough that Lemma 15 yields Y5 < Z§ < A%
Ys = 2(%),42 + (g) Y5 (2, 1).

To prove (41), it therefore suffices to show that
(45) lim sup,_o ('g) ¥6(2,1) =0.

Nowif A€ 2(2, N, L, R, 1) and A € %,(A), then y = y(A, A) assumes a particularly simple
form. M = 1, so N3 = 0. Thus there is only one change of vertical direction. The transition
takes place at a unique i, € Issuch that A;, = (d, 4, w). .= {i=i,}, L, = {(N=i> i},
|Ia|=L+ R+ 1and|Il,|]=N—L — R — 1. As in the proof of Lemma 14, we consider the
cases A;, = A, +1 and A;, > A; +1 separately. Denote Is, = {i:A; = (d, r, d)}, La,= {i:A; =
(d, 4, d)}, Ly={i:Ai-1 = (u, r,w)}, L,= {i:Ai-1 = (u, £, u)}. (Note the use of A;_; in the
definitions of I, and I,,. In particular, i,+1 € I, U I,,). Then if we abbreviate

-1 N+1
Lo=Yi" Ay L,=Y:li+2 Ay,

we arrive at the equation,

B —Boin
(; Toen =BY1EvLr Y | wxnacomarrnacsn,m<t, it (Bue ™™ dA)
(46)

[Liers, ((8or + e)e™ o+ @A) [Lier, (Broe ™ dAi—1) [Lien, (810 + e)e™ 0 dh;_y)

. e—()\._+|—)\;_)(ﬂm"‘auﬁ'é‘)e—(Bll+8+25)>".dxi }

(47) +B{ }..

Here { }:has the same form as the quantity in brackets in (46), except that L, and L, are
interchanged, the exponent —(A;,«1 — A;,)(Bio + 810 + &) is replaced by —(A;, — Ai.+1)(Bn
+ 8o + ¢), and the exponent —(B1; + 8 + 2¢)A;, is replaced by — (811 + 8 + 2e)A;, 1.

Now consider (X7, X7'), a pair of independent continuous time random walks, starting
from (-1, 1), such that

X7 has increments: +1 at rate Bo;
—1 at rate 8o; + ¢,
X has increments: —1 at rate Bio,
+1 at rate 810 + ¢.
Let 7 = min{¢: X; — X; = 1}. Then some thought reveals that (46) equals

F%EP”T < 0, X! jumps at ¢ = 7),
while (47) equals
BF%'EP“T <, X; jumps at t = 7).

Hence

B\w o B )
<;>20(g,1)_3“+8+2spr(7< -

Finally, (X; — X ) is a random walk with increments:

+1 at rate 8, —1 at rate § + 2¢,
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so by the gambler’s ruin formula (applied to the imbedded difference chain),

Pr(r<w)=Pr(Xf —X; =1 forsome ¢)= max{—a—%—zf, 1}.

Since B > §, we conclude that

. )
lim sup.-.o (é) Zf’ 2,1) = [,

(B > & implies B1; > 0.) Thus (45) holds, as desired. 0

<1

Added in Proof. The first author has now proved that (3) implies ergodicity for
attractive systems.
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