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We characterize the class of linear operators on a finite dimensional inner
product space which are the exponents of a full operator-stable law. This
answers a question of Paulauskas [6] concerning those operator-stable laws
whose characteristic functions are the exponential of quadratic forms. The
symmetry group of such laws must be conjugate to the group of all orthogonal
transformations on the space.

1. Introduction. Operator-stable distributions are the analogues of stable distribu-
tions in n dimensions. Let V be a finite-dimensional real inner-product space. A nondege-
nerate distribution p on V is called operator-stable if there exist independent identically
distributed random vectors {X,} taking values in V, nonsingular linear operators {A,},
and vectors {a,} in V such that the sequence {A, }7 X — a.} converges in law to p. In
this work, attention is restricted to full measure, that is, measures which are not concen-
trated on a hyperplane in V. In his fundamental paper [8], Sharpe proved several results
concerning full operator-stable measures u. He proved that p is infinitely divisible. Thus if
f(y) denotes the characteristic function of u and if ¢ > 0, then fi(y)‘ is the characteristic
function of the infinitely divisible distribution ‘. Sharpe showed that there is a nonsingular
linear operator A on V and there is a function a: (0, ) — V such that for all # > 0

u'=tux8(alt))

where t"=exp(AInt) = Y%_o (Alnt)*/k!and t*u =t ™. Such an A is called an exponent
of u. Ingeneral, this exponent is not unique. In this paper we give necessary and sufficient
conditions for an operator-stable distribution to have a unique exponent. We also study a
class of operator-stable distributions with multiple exponents. These results are direct
extensions of those in Hudson and Mason [3].

Let ¥ (p), the symmetry group of p, be the set of all nonsingular linear operators B on
V such that for some b € V, u = Bux8(b). (Bu denotes uB~' throughout.) It follows from
Theorem 1 of Billingsley [1] that if u is full, then & (u) is a compact subgroup of the
general linear group, GL(V). A classical result (see for example Theorem 5 of Billingsley)
says that there exists a closed subgroup ¢, of the group O of orthogonal linear operators on
V and there exists a positive-definite self-adjoint linear operator W such that & (u) =
W@, W™, (Any compact subgroup of GL(V) is of this form.) In other words, . (1) is
conjugate to (. Let &(p) denote the set of all linear operators on V which are exponents
of . In our first result, we relate & () to the tangent space T (% (p)) of & (u); T (¥ (1)) is
the set of all linear operators A on V such that A = lim d;'(D, — I) for some sequence
{D,} C ¥ (n) and some positive real numbers d, — 0. (I denotes the identity operator on
V)

THEOREM 1. Let p be full and operator-stable on V. Let B be any exponent for p.
Then

&(p) =B+ T(F(p)).
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As an easy corollary to this theorem, we have the following.

COROLLARY 1. Let p be full and operator-stable on V. Then u has exactly one
exponent if and only if & (u) is discrete.

Proor. From Theorem 1 we see that p has exactly one exponent if and only if
T (% (n)) = {0}. Now it is well-known ([7] page 40 or the appendix) that the image of
T (G), where G is a closed subgroup of GL(V), under the exponential map contains a
neighborhood of I. Furthermore, T (G) is a vector space and the exponential map is
continuous. Thus {7} is open in & (u) if and only if 7' (¥ (1)) = {0}. ]

Our next two results consider the case where & () is conjugate to the full orthogonal
group 0, i.e. ¥ (u) = WO W' for some positive-definite self-adjoint linear operator W on
V.

THEOREM 2. Let u be full and operator-stable on V and assume & (p.) is conjugate to
0. Then there is a real number ¢ = ' such that cI is an exponent of p.

THEOREM 3. Let pu be full and operator-stable on V and assume & (u) is conjugate to
O. Then there are a in V, y in (0, 2] and B > 0 such that fory € V

fi(y) = exp{i(a,y) — B| Wy |7}.
Conversely, if i is of this form, then & (n) = WO W™, i.e. & (p) is conjugate to 0.

COROLLARY 2. Assume & (u) is conjugate to O and let ¢ be as given in Theorem 2.
Then ¢ = Y implies p is purely Gaussian and ¢ > s implies u has no Gaussian component.

Theorem 3 gives an answer to the question raised by Paulauskasin [6], pages 362-363.
He said: “Thus the theorem and examples show that there are many stable distributions,
the characteristic function of which cannot be expressed by means of quadratic forms.
What is more, it is very difficult (at any rate it seems so to us) to describe all the cases
when we can do it.” By Theorems 2 and 3, if u is full and operator-stable and if & (u) is
conjugate to ¢, then u is multivariate stable (i.e., norming only by multiples of I is
permitted) and i may be expressed in terms of nonnegative-definite quadratic forms.
Conversely, if /i may be expressed in terms of such quadratic forms, then (1) is conjugate
to 0.

COROLLARY 3. If ¥ (u) is conjugate to 0, i.e. & (n) = WO W™ where W is a positive-
definite self-adjoint linear operator on V, then

E(w)y=cl+ W2 W,

for some ¢ = %, where 2 is the set of all skew-symmetric linear operators @ on V, i.e. @
+ Q* =0.

Proor. By Theorem 1, &(u) = T (¥ (u)) + B for any B in & (p). By Theorem 2, ¢l €
&(u) for some ¢ = %. Set B = cl. Since () = WOW™, #(W'u) = 0. Hence
WS (W 'u) W™ = (). Therefore T (¥ (n)) = WT (L (W n)) W' = WT(0)W™ =
W2 WL, The last equality follows from the well-known fact that 7' (¢) = 2. (This may be
seen as follows. Let D € 2. Then ePe’™" = ¢'P?*P" = [ for all t. Hence e‘” € ¢ for all ¢. By
differentiation, D € T(0). Now let D € T (). Then e € 0 for all t. Hence I =
ePe’ = ¢!P+PY By differentiation, D € 2. Therefore T (¥) = 2.) 0

According to Theorem 4 of Sharpe [8] and Theorem 1 of Hudson and Mason [4], V' is
the direct sum of two independent subspaces V, and V,. Furthermore, p is the convolution
of a Gaussian measure ; concentrated on V; and a measure p; concentrated on V, having
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no Gaussian component. If & (u) is conjugate to ¢, then by Corollary 3 every exponent B
of u is of the form B = cI + WQW ™ where @ is skew-symmetric. It follows that every
eigenvalue of B has real part equal to c. From Theorem 1 of [4] it is easy to see that if ¢
= 14, then y is purely Gaussian, and if ¢ > %, then u has no Gaussian component.

From this decomposition we also obtain the following Corollary to Theorem 3, using
the above notation.

COROLLARY 4. Assume & (u2) (on Vs) is conjugate to the group of orthogonal linear
operators on V. Then B
fiy) = exp{i(a, y) — (Cy,y) — B| Wy |1}
wherea € V, y € (0, 2), B= 0, Cis a linear operator on V such that C restricted to V is
positive-definite and self-adjoint on Vi and W is a linear operator on V such that W
restricted to V, is positive-definite and self-adjoint on V.

REMARK. The operator C does not necessarily vanish on V, nor does W necessarily
vanish on Vi, but dim range C = dim V;.

ProOF. We have p = p;*pup. As in [8] or [4], we have 11(y) = exp{i(ai, y) — (Cy, y)}
where a; € V; and C is a linear operator on V such that the restriction of C to V; is
positive-definite and self-adjoint on V;. Since p. is full and operator-stable on V, and
satisfies the hypothesis of Theorem 3, there is a positive-definite self-adjoint linear operator
W on V; such that ji2(y) = exp{i(az, y) — B| Wy|'} for y in V,, where a, € V5, >0,y €
(0, 2). Define Won Vby W(y) = W(y) fory € Vo and W(y) = 0 fory € V*%. |

Sections 2, 3 and 4 are devoted to the proofs of Theorems 1, 2, and 3. In Section 5 we
discuss a special case, namely V = R® The case V = R” was fully discussed in Hudson and
Mason [3]. For the convenience of the reader, we provide an appendix with some
information concerning the Lie theory of matrix groups which is used throughout this
paper. All the results in the appendix are well-known.

2. Proof of Theorem 1. For each ¢ > 0 let G, be the set of all linear operators A on
V such that for some a in V, u* = Ap*8(a). Set G = U;5G,. Define a map n: G — (0, »)
by n(A) =t if A € G,. Sharpe showed that G is a closed subgroup of linear operators and
that 7 is a continuous homomorphism from G onto the multiplicative group of positive
numbers ([8], page 58). The tangent space T (G) of G is the set of all linear operators D
such that D = lim,_.»(g. — I)/d, in the operator norm topology where {g.} C G, I is the
identity map on V and {d,.} is a sequence of positive numbers converging to zero. It is
well-known ([7] page 40 or the appendix) that T (G) is a vector space and that the
exponential map E defined by E(A) = Y %-¢ A*/k! for A in T(G) is analytic and takes
T (G) into G. Define amap L: T (G) — R' by L(A) =In(n(E (A))) We will show that L is
a linear operator on T (G).

First, we show that for any real number ¢, L(¢A) = tL(A). Let n be an integer. Then
E(nA) = E(A)", so n(E(nA)) = (n(E(A)))". Thus, L(nA) = nL(A). Now, let n be a
nonzero integer. Then L(A) = L(n(A/n)) = nL(A/n), and so L((1/n)A) = (1/n)L(A).
Thus L(tA) = tL(A) holds for all rational numbers ¢ and by the continuity of L, the
equation holds for all ¢.

Next, we show that if x, y are in T (G), then L(x + y) = L(x) + L(y). To do this, we
select an open neighborhood N of zero in T (G) such that E~! exists and is continuously
differentiable on E(N)-E (N) = {E(x)E(y):x,y € N}. This is possible since E’(0) = I is
invertible and multiplication in G is continuous ([7] page 40 or the appendix). Define Z:
NXN — T(G) by Z(x, y) = E"YE(x)E(y)). We claim

1
lim,_,OEZ(tx, ty) =x+y.
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To see this, note that Z is differentiable at (0, 0). Now Z(0, 0) = 0 so

| Z(x, 0) — Z(0, 0) —x|_

| x| B

and hence Z’(0, 0)(x, 0) = x. Similarly, Z’(0, 0)(0, y) = y. Since Z’(0, 0) is linear, Z’(0, 0)
<(x,y) =x +y. Now

0

| Z(tx, ty) = 20,0 = 2/0, 0)(tx, )] _
[(tx, ty)|
so lim |(1/¢)Z(¢x, ty) — (x + y)| = 0. This proves our claim. Since L is continuous,
L(x + y) = lim_oL((1/)Z (tx, ty))

lim, o

>

= lim,_.o(1/t)L(Z(tx, ty)) = lim, .o(1/t)ln (4 (E (¢x)E (ty)))

= lim,_o(1/¢)(L(tx) + L(ty)) = L(x) + L(y).
This shows that L is a linear operator on T (G).

We know that &(u) C T(G) since A € & (u) implies that t*is in G for all ¢t > 0 and
A is the derivative of t* at t = 1. We now show & (1) = {4 € T(G):L(A) = 1}. It is clear
that for A € & (u), L(A) = 1. Let A € T (G) with L(A) = 1. By linearity, L((Int)A) = In ¢
for all ¢ > 0 and thus 5 (¢*) = ¢ which implies A € & (p). Thus 6 (n) = {A € T(G):L(A)
=1}.

Finally, we show that T' (% (u)) = ker L. Since & (1) = G, and E(T (% (u))) C ¥ (),
T(¥(un)) Cker L. Let A€ ker L. Then L(tA) =0 for all t > 0. Hence, n(E (tA)) = 1 which
implies e'* € G,. Thus A € T (¥ ().

These last two results show that & (u) = T (< (n)) + B for any B in E (u). O

3. Proof of Theorem 2. Assume .¥(u) = (. Let 2 denote the set of all skew-
symmetric linear operators on V,i.e. @ € 2 ifand only if @ + @* = 0. Let L, G, T (G) and
Z(x, y) be as in the proof of Theorem 1. For x, y € T(G), set [x, y] = xy — yx. For real
numbers s and ¢ sufficiently small, Z (sx, ty) has a power series expansion given by the
Campbell-Baker-Hausdorff formula (appendix or [7], page 61) and the coefficient of st in
that expansion is a constant multiple of [x, y]. On the other hand, L(Z(sx, ty)) = L(sx) +
L(ty) = sL(x) + tL(y), so L([x, y]) = 0. Thus for all x, y in T(G), [x, y] € T (¥ (pn)) =
T(O) = 2.

Now let B € &(n) and @ € 2. Then [B, Q] € 2 so [B, @] + [B, @]* = 0. That is, BQ
— @B+ (—@QB* + B*Q) =0, or (B + B*)Q = Q(B + B*). Thus B + B* commutes with
every @ € 2 and hence with every rotation, since every rotation is of the form e® for some
Q € 2. (This latter fact is easy to see from page 274 of Curtice [2].) The only subspaces
invariant under all rotations are {0} and V, so by Schur’s Lemma (Lang [5], page 173) B
+ B* = cI for some number c. Define @ to be (¢/2)I — B and note that @ € 2. By Theorem
1, (¢/2) = B + @ is an exponent for p.

Now assume .%(u) is conjugate to (¢, ie. for some positive-definite self-adjoint W,
S (n) = WOW™', Then ¥ (W 'u) = . Hence, for some real number c, cI is an exponent
for W~'u. Thus, W(cI) W' is an exponent for p. But, W(cI) W' = cL.

We know that ¢ = % since the eigenvalues of an exponent for u must have real parts
greater than or equal to %. 0

4. Proof of Theorem 3. First assume (p) = (. By Theorem 2, there is a number ¢
= Y% such that cI is an exponent for . We consider two cases, ¢ > : or ¢ = 4. When ¢ >
%, u has no Gaussian component, so let M be its Lévy measure. By Theorem 2 of [4], there
exist a vector a € V and a finite Borel measure K on the unit sphere U in V such that for
everyy e V

ay) =exp{i(a,y> +j f <e“’ -1 ‘%)t“lﬂdu) dt} :
0 U



606 J. P. HOLMES, W. N. HUDSON AND J. D. MASON

Since L(u) = O, p = Oux8(r) for all O € O, where r = r(0) € V. It follows that M = OM
and hence K = OK for all O € 0. But this implies that K is proportional to the Haar
measure on U, i.e. K(du) = y,du for some y; > 0, where du is Haar measure on U.

Let J(y) denote the integral in the above representation of i(y). It suffices to show
J(y) = —B|y|" for some B > 0, where y = 1/c € (0, 2). By a change of variable, we have

” t(u, y) \,-
J(y) = ww _ J B0 gy gy,
)= L L <€ T30 u

To evaluate this integral we consider three cases: y<1,y> 1,y = 1.
First, y < 1. Since

f (,y) du=0, J(y) =y j J' R
v 0 U

By interchanging the order of integration, we find
J(y) = {Y2 J' (u, y)'du + YZJ' | (w, y) | du}
U, U,

where real part of y, is negative, U; = {u € U: (1, y) =0} and U, = {u € U: (u, y) <0}.
So,

J(y)=YY1|J'|y{Y2J’ (u,y’)’du+fzj I(u,y')lydu}
U, U,

where y’ = y/|y|. But these two integrals have the same value and they are independent
of y’ € U. Letting 8 = —2yy1(Re v2) [u, (¥, y’')" du, we obtain J(y) = —8|y|” with 8 >0
as desired.

For y > 1, an easy calculation shows that

J(y) =yy1{iyaJ (w, y) du+y4J’
U U,

1

(u, y) du + ﬂJ’

U,

| (w, y) | du}

where y; € R', Re y4 < 0. As before, this yields J(y) = —f]|y|" for some 8 > 0.
Now for y = 1, another calculation shows that

(<] .t
f <e”‘"’” —1-2 ® yz) ) t7%dt = — 2 | (u, y)| — i, Y)In | (w, ¥) | + iys (&, ¥)
A 1+¢ 2

where y5 € R'. Upon integrating with respect to u, the second and third terms vanish
while the first term yields a negative constant times |y|. Hence, again J(y) = —8|y|, for
some 8> 0.

Therefore, fi(y) = exp{i(a, y) =B |y|"} when ¢ > % and #(u) = 0.

Now, assume ¢ > % and L(u) = WOW ™! for some positive-definite self-adjoint linear
operator W. Then (W) = 0. Hence, (W™'p)"(y) = exp{i(a’, y) —B |y|"} for some
a’ €V,8>0,y € (0,2). But, i(y) = (W 'n) (Wy). Therefore, i(y) = exp{i(a, y) —
B| Wy|"}, where a = Wa'.

Now, assume ¢ = %. Then p is purely Gaussian. Hence, i(y) = exp{i(a, y) — (Cy, ¥)},
where C is a positive-definite self-adjoint operator on V. Assume a = 0 and H(u) = 0.
Then for every O € 0, ji(y) = L (O*y) = exp(—(OCO* y, y)). Therefore, OCO* = C, i.e.
OC = CO for every O € (. By Schur’s Lemma, there is a real number 8 such that C = 1.
Since C is positive-definite, 8 > 0. Therefore, i(y) = exp(—8 |y [?). In case a # 0, by the
above (u*8(—a)) (y) = exp(—8|y|?, so fi(y) = exp(i(a, y) =8 |¥]?.
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The final case to consider is when ¢ = % and #(u) = WOW™. Arguments like the
preceding yield fi(y) = exp(i(a, y) — 8| Wy|?).

Now we prove the converse of the theorem. Since (W‘lu*ﬁ(—W_la))A( y) =
exp(—B |y|"), AAW™'n) = 0. Therefore, W 'ux8(—W'a) = OW 'ux8(—OW'a) which
implies u = WOW 'u*8(a — WOW'a) for all O € O. Thus, #(p) = WOW™. §]

5. V=R® We know that ¥(u) is conjugate to a closed subgroup ¢ of 0.
LEMMA 1. The dimension of T((0,) is either 0, 1 or 3.
Proor. We know that T'(0) is 2, the set of all skew-symmetric operators. Since ( is

a closed subgroup contained in @, T'(() is closed under [-, -] and contained in T'(0).
Define the linear transformation f from R® onto 2 by

0 —a -b
fla,b,c)=|a 0 —c]|.
b ¢ 0

Note that for x and y in R [f(x), f(¥)] = f(x X y), where X is the cross product on R’.
Hence, (R?, X) is isomorphic to 2. Therefore, T(%) = {0}, dimT (%) =1lor G =0. O

When dim T'(¢) = 0, u has a unique exponent. When ¢ = ¢, Theorem 3 and Corollary
3 describe ji and &(u). We now consider the case where dim T'((%) = 1.

LEMMA 2. Let O be a closed subgroup of O with dim (¢, = 1. Then

0 — O
T(G)=3lc 0 0|:ceR!
0 0 O

with respect to some orthonormal basis for R®.

Proor. We know dim T'((%) = 1, so let {@} be a basis for T'(¢). Then @ € 2. Since
det @ = det(—Q*) = (—1)°det @, det @ = 0, i.e. @ is singular. Let u € R® be such that | u|
=1 and Qu = 0. Let this u be the third member of an orthonormal basis for R®. This is the
basis needed in the Lemma. By skew-symmetry the third row and third column are all
zeros, and by skew-symmetry the diagonal is all zeros and the (1, 2)-element is the negative
of the (2, 1)-element. Since {@} is a basis for T'((), we have the stated result. O

Since #(u) is conjugate to such an ¢, select W to be positive-definite and self-adjoint

so that
0 — O
T(LW'n)=4]lec 0 0|:ceER'
0 0 O

with respect to some orthonormal basis for R®.

THEOREM 4. If T(S(u)) is neither {0} nor conjugate to 2, then there is a positive-
definite self-adjoint linear operator W on R® and there are real numbers a, b = Y such

that
a —c 0
EWly)y=1lc a 0]|:ceR'
0 0 b

with respect to some orthonormal basis for R®.
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ProOF. Since ¥(u) is conjugate to a closed subgroup (¢ of 0, select the W so that
F (W) = (. By Lemma 2,

0 — O
T(FW'w)=49lc 0 0|:ceR'
0 0 O

with respect to some orthonormal basis for R?. Use this basis for all matrix representations.
Let B € §(W™'u) with the representation (b,,). As in the proof of Theorem 2, BQ — @B
Eker L =T(F(W'u)) for all @ € T(H( W'n)), ie.

0 —c O
o] 9)-(2 g)B=(c : 0)
0o 0 O

(o -1

=8 %),

This implies that b3 = bz = b1z = bes = 0 and by2 = byy. It only remains to show that b1,
= bzz.

We now know that B’ = diag. (b1, ba, bs) is in &(W™'). Since B’ commutes with
every @ in T(S(W™'u)), as seen in the proof of Theorem 2, we have that diag. (bu1, b22)
commutes with every 2 X 2 skew-symmetric matrix. Again, as in the proof of Theorem 2,
this implies that diag. (611, b22) is a multiple of the identity. Hence, b1 = b2. ]

for some ¢ € R', where

In our last result when dim 7'(%(u)) = 1, we characterize the Lévy measure. We say
that a Lévy measure M is B-stable if B is a nonsingular linear operator and t5M = t-M for
allt>0.

THEOREM 5. Assume \

0' — 0
T(#w)=3]c 0 O0|:ceR'},
0O 0 O

u has an exponent B whose matrix representation is diag (a, a, b) with respect to the
usual basis, where a and b are both greater than ‘4, M is the Lévy measure of u. Then we
have that ¥(u) = ', where O is the subgroup of O generated by all orthogonal
transformations which leave the z-axis invariant. Furthermore, we have that there isa
finite Borel measure v on [—w/2, /2] such that for Borel A C R*\{0}

w2 (2m poo
MA) = J' J J L (t%x 8, ¢)) t2dt div (dyp),
—as2JoJo

where x (0, ) = (cos 6 cos g, sin § cos @, sin ).

Conversely, if v is a finite Borel measure on [—n/2, m/2] and if for Borel A C
R\ {0}, M(A) is defined by the previous triple integral with x (6, ¢) as before and B as
diag(a, a, b), with a and b greater than ‘4, then M is a Lévy measure and is B-stable with
F(M) C O

REMARK. In the converse part of this theorem, we can not conclude that B € &(u)
implies () = ¢'. That is, p may have an exponent which is diagonalizable even though
H(u) is discrete.

ProoFr. By the assumed form of T'(.¥(u)), we have ¥(u) = O'.
The first task is to construct ». For A a Borel subset of U, let K(A) = M({t®x:x € A,
t >1}). Since B is diagonal, each orbit of ¢” hits U exactly once. Thus, K is a finite Borel
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measure on U. For x € U, ¢ > 0, define T'(x, t) = t°x € R\ {0). It is easy to see that T is
a homeomorphism of U X (0, ) onto R*\{0} when R*\{0} has the usual topology and U
X (0, ) has the product topology. Let M be the measure on U X (0, ) given by M =
K X v, where dy = t%dt on (0, ).

LEMMA 3. M = TM.

Proor. Let D= {t°x:x € C,r <t<s}. Then

TM (D) = J dKXy)= J J t7%dt dK = (1/r — 1/s)K(C) = M(D).
T-1(D) CcJr

Hence, M and TM agree on all sets of the form C X (r, s], so they agree everywhere. []

Next we show that there is a finite Borel measure » on [—#/2, #/2] such that K =
A X v, where A is Lebesque measure on [0, 27). Let R (6) denote the counterclockwise
rotation about the z-axis through an angle of 6 radians. Let D and E be Borel subsets of
[0, 27) and [—7/2, m/2], respectively. Since ¥ (M) = 0’, R()K(D X E) = K(D X E). Set
ag(D) = K(D X E), for E fixed. Then ag is a finite Borel measure on [0, 27) which is
invariant under rotations, so ag = a(E)-A, where a(E) is a constant depending on E. But,
a(-) as a function of E is a finite Borel measure on [—7/2, 7/2]. Set v(E) = a(E). Clearly,
K = X X v. This establishes the stated representation for M.

Now, we prove the converse of the Theorem. We first show that M is a Lévy measure.
Clearly, M is a measure on R?\{0} so it remains to show that [ (Jx|* A 1)M(dx) < oo,
where ¢ A d means the minimum of ¢ and d. Clearly, for 0 < ¢ < 1, || ¢?|| < 3¢, where a =
a A\ b and || - | is the operator norm. Thus

/2 27 1
f (xPADMdx) <k + ks j j (| t3x@, )P A 1)t 2 dt ddv (dop)
0 0

—m/2
for some constants %, and k.. But

1

1
j (| %8, )P A Dt 2 dt= 9J 2 dt < oo
0

0 -

since a > %. Hence M is a Lévy measure. ~
Using Lemma 9 of [4] we obtain that M is B-stable. Finally, we have & (M) C O’ since
the defining integral is invariant under transformations in ¢’ a

Appendix: Lie theory of matrix groups. Denote by gl(n) the algebra of alln X n
real matrices and by GL(n) the group of invertible n X n matrices and choose a norm for
gl(n). If G is a subgroup of GL(n), denote by T (G) the subset of gl(n) consisting of those
x in gl(n) such that x = lim,e;'(g, — I) for some sequence {g,} in G and some sequence
{e.} of positive numbers with limit zero, where I is the identity matrix. The set T (G) is
called the tangent space to G at I. The first theorems show that T (G) plays the role of a
Lie algebra to the Lie group G.

THEOREM 1A. If G is closed relative to GL(n) and x is in T (G), then E(tx) isin G
for each number t. (E:gl(n) — GL(n) is the exponential function defined by E (x) =
lim, (I + x/n)" = lim, Y7-, x*/k.)

Proor. Letxbein T (G) and choose sequences {g,} in G and {e.} of positive numbers
with limit zero so that x = lim e;'(g, — I). Choose the integer sequence {n.} so that
n,—1=<e;'<n.foralk=1.
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Define the sequence {d;} by —d, = x — nx(gr — I). Then {d,.} has limit zero and
I+ ni'(x + di))™ = gi

is in G for each £ = 1. Thus {g}*} has limit E(x) and since E(x) is in GL(n) and G is
closed, we have E (x) is in G.

It is clear that if x is in T'(G), then so is tx for each positive ¢. Hence, E (tx) is in G for
those ¢. The rest of Theorem 1A follows from the observation that E (tx) ™' = E (—tx). O

From the definition of T (G) we see that if fis a differentiable function from R® into G
and f(0) = I, then f’(0) is in T'(G). We now see that for each x and y in T (G) we have the
functions f and g defined by

f(t) = Etx)E(ty), gt)=EWNtx)ENty)E=Vtx)E(—ty)

mapping into G. Hence, each of x + y = f’(0) and [x, y] = xy — yx = g’(0) is in T'(G). Thus
T (G) is a linear subspace of gl(n) which is closed under the “Lie bracket” or ‘“commutator”
product. The importance of [, ] will be seen below.

The function E satisfies E’(0) = I and hence by the inverse function theorem there is
a neighborhood % of 0 so that E| % is reversibly continuously differentiable onto the
neighborhood E (%) of I.

THEOREM 2A. If G is closed relative to GL(n), then E(T(G)) is a neighborhood of I
in G.

PrOOF. Suppose not. Choose the sequence {g,} in G N E(%)\E (T (G)) so that {g.}
has limit I. Let the sequence {x,} be defined by E (x:) = g. Let p be the linear projection
from gl(n) onto T (G). Note that

.|| E(xx) — E(pxa)|| _

lim 1
| xx — pxe ||

and

i LE () = E(pxi) — E'(0) (o = px)l| _

I
Il e = paci ||

0.

Also, the sequence {x; — px,}, and hence the sequence {E’(0)(xx — pxx)}, has limit 0 since
both {x,} and {px:} does. Since each x; is not in T (G), x, — pk. is never 0.

Thus, the sequence {(E (xx) — E(px:))/|| xx — px:||} is bounded and without loss of
generality we may assume it converges to some y in gl(n) with ||y|| = 1. But
E (xx)E(—px) — 1

| % — paxe ||

y=Ilim

since {E (—pxx)} has limit I, and from the above
Xr — DXk

y = lim — 2™
| xe — px |

Thus, from the first, y is in T (G) (since E (x;)E (—pxx) is in G and || xx — px:|| — 0) and
from the second, py = 0. This is impossible since ||y || = 1. d

We now turn to the problem of stating the Campbell-Baker-Hausdorff Theorem. Let
% be chosen as before and let L = (E|%)". Since E is analytic, by the inverse function
theorem so is L. The function V contained in (gl(n) X gl(n)) X gl(n) defined by V(x, y)
= L(E(x)E(y)) is hence analytic on some neighborhood of (0, 0) and has a power series
expansion about (0, 0) with a positive radius of convergence. Theorem 3A, the Campbell-
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Baker-Hausdorff Theorem, has a surprising thing to say about the coefficients in this
power series expansion for V.

THEOREM 3A. Independent of n, the typical coefficient (1/k!)V*®(0, 0)(x, y)* for k =
2 is a certain linear combination of summands of the form [ai, [az, - - - [ar-1, ar] «--]]
where each a, is either x or y. For example, V®(0, 0)(x, y)* = [x, y] and V®(0, 0)(x, y)®
= (I/Z)[x’ [x) y]] + (1/2)[.)" [yv x]]

Theorem 3A may be proved by actual calculations.

The most obvious consequence of Theorem 3A is that the function V’s restriction to G
X G is determined by a knowledge of [, ] restricted to T(G) X T(G) and hence the
multiplication of G is determined near I by [, ]. Thus, many nonlinear problems concerning
(G, ) can be translated into linear problems concerning the Lie algebra (T (G), +, [, ]).

For example, we have the following set up. Let G be a closed subgroup of gl (n), H be
a closed subgroup of gl(m) and f be a continuous function from G into H. There is then
defined a continuous F on some neighborhood of 0 in 7' (G) into some neighborhood of 0
in T (H) satisfying E°oF = foE. (One E denotes the exponential map on gl(n) and the
other on gl(m).)

THEOREM 4A. With f and F as above, f is a local group homomorphism (f (xy) =
fx)f(y) for x and y near 1) if and only if F is the restriction of a Lie algebra
homomorphism T to some neighborhood of 0 in T(G), (T is linear and [Tx, Ty] =
T ([x, ¥])).

Proor. Denote by Vi and Vy the restrictions of the appropriate V’s to neighborhoods
of (0,0) in T(G) X T(G) and T (H) X T (H), respectively. If f is a local homomorphism,
then EF = fE implies

F(Ve(x,y)) = Vu(Fx, Fy)

for (x, y) sufficiently near (0, 0). It is elementary to see that since f(E (tx))f(E (sx)) =
f(E((t + s)x)) for x in T'(G) and each s and ¢ sufficiently near 0, we have for appropriate
x (all x in some neighborhood of 0) and all ¢ in (—1, 1) that f (E (¢x)) = E (¢F (x)) and hence
that F(tx) = tF(x) for these x and ¢

We have then for (x, y) in some neighborhod of (0, 0) that F/(V¢(tx, ty)) = Vy(tF(x),
tF(y)). But, V4(0,0) = 0 and V%(0, 0)(a, b) = a + b so lim,_o(1/t) Vu(tF (x), tF(y)) =
F(x) + F(y). On the other hand, F(x + y) = lim,o(1/t)F(t(x + y)) = lim,_oF((1/t)
- Vil(tx, ty)) since F is continuous. Hence, F'(x + y) = F(x) + F(y) and continuity ensures
that F is locally linear. Finally, it follows that the coefficient of st in the power series
expansion for F(Vg(sx, ty)) is F([x, y]c) and is also [Fx, Fy]g. It is then clear that F is the
restriction of a Lie algebra homomorphism.

Assume now that F'is the restriction of an algebra homomorphism. Since F'is linear, we
see that

F(Vo(x,y)) = X (1/RYF(VE(0, 0)(x, y)*).

But from the Campbell- Baker Hausdorff Theorem and the fact that F([x, y]) =
[Fx, Fy], we see that F(Vg (0, 0)(x, »nhH = Ve, 0)(Fx, Fy)* and f is a local
homomorphism. 0

We have applied theorem 4A in this paper in the following form. Let f be a continuous
homomorphism from G to H and choose the Lie algebra homomorphism 7 from T (G) to
T (H) so that fE = ET near 0in T (G). It is clear that the L function maps a neighborhood
of I in ker(f) = f~'(I) onto a neighborhood of 0 in ker(T') = T'~'(0). On the other hand,
T ([x, yle) =[Tx, Tyla = [0, y]a = 0 if x is in ker(T"), so ker(T') absorbs algebra products
on either side. This shows that each closed normal subgroup of G is paired with an algebra
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ideal in T'(G). It is harder to see that each algebra ideal in T (G) is paired with a normal
subgroup of G.
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