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SMALL DEVIATIONS IN THE FUNCTIONAL CENTRAL LIMIT
THEOREM WITH APPLICATIONS TO FUNCTIONAL LAWS
OF THE ITERATED LOGARITHM

BY ALEJANDRO DE ACOSTA

Instituto Venezolano de Investigaciones Cientificas and
University of Wisconsin, Madison

We prove a small deviation theorem of a new form for the functional
central limit theorem for partial sums of independent, identically distributed
finite-dimensional random vectors. The result is applied to obtain a functional
form of the Chung-Jain-Pruitt law of the iterated logarithm which is also a
strong speed of convergence theorem refining Strassen’s invariance principle.

1. Introduction. In his classical paper [5] Chung proved the following remarkable
results:

(CI) If {W(¢):t = 0} is real-valued Brownian motion, then
LLt\"*
lim inft_,m(—r) max.< | W(s) | = 7/8"2

(here and below LL stands for “log log”);

(CII) If {X;} are real-valued, independent, identically distributed random variables
such that EX; = 0, EX} =1 and E | X:|® < © and if S; = Y%, X;, then

lim inf, . (LLn
n

172
) maXy<n | S| = 7/8Y2

Since the appearance of Chung’s paper in 1948, in successive papers by several authors
the condition E | X; |* <  was gradually relaxed; this development culminated in 1975 in
the work of Jain and Pruitt [12] (see references therein), where it was proved that a finite
second moment is enough for (CII). The result (CII) is sometimes referred to as the other
law of the iterated logarithm, in contrast to the Hartman-Wintner law.

In a separate line of reseach, Strassen obtained in a now classical work [20] the following
deep results on the (usual) law of the iterated logarithm:

(SI) (Strassen’s functional law of the iterated logarithm for Brownian motion) If
{W(t) : t = 0} is real-valued Brownian motion, then

P {lim,.infex || (26LLE) 2W((-)t) — fll. =0} =1 and
Pf{for all f € K, lim inf,... || (2¢LL) 2 W((-)¢) — f | = 0} = 1,
where || g ||~ = supo<«<i | g(¢) | for g € C[0, 1] and

1
K= {fe C[0, 1]: f(0) = 0, fig absolutely continuous andf (f'@®) dt= 1} ;
0
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(SII) (Strassen’s invariance principle) If {X;} are real valued, independent, identically
distributed random variables such that EX; = 0, EX? =1, S, = ¥%_; X;, and Z, is the C[0,
1]-valued random vector defined by setting Z,(t) = Sy, for t = k/n (k =0, ..., n) (here S,
= 0 by definition) and extending by linear interpolation in each interval [(2 — 1)n ", kn™'],
then

P{lim,_..infex| (2nLLn)"2Z, — f|l.=0} =1 and
P{for all f € K, lim inf, .|| 2nLLn)"?Z, — f|l. =0} =1,

where K is as in (SI).
In a very recent paper, Csaki [7] proved some interesting results connecting (CI) and
(SI). His results are of the following nature: for certain functions f € K with [(f)* <1,

(1.1) lim inf,,(LL¢) || (2ELLE)2W(()t) = fl» = c(f)7/8% as.,

where 0 < ¢(f) < . Thus for f = 0, Csaki’s result reduces to (CI) (here c(f) = 27/?), while
in general it gives a strong rate of convergence result in (SI) for a certain subclass of K (see
Section 6 below for more precise statements). Csaki obtains also some partial results when
[(f’")? = 1. The arguments in [7] are based on the well known asymptotic behavior of the
lower tail of one-dimensional Wiener measure, the Cameron-Martin translation formula
and variations of well-known techniques in iterated logarithm proofs.

The following question arises naturally: is it possible to prove an invariance principle
corresponding to (1.1), connecting (CII) and (SII)? In this paper we answer this question
affirmatively, proving a strong invariance principle under second moment conditions, for
a broad class of functions in the set K (Theorems 5.1 and 5.5; also Theorem 5.4). The basic
tools—apart from well-known iterated logarithm arguments—used in proving the invari-
ance principles are some delicate small deviation results obtained in Section 4 (Theorems
4.3, 4.5, 4.7; Corollary 4.6); these results are of a character which appears to be new in the
literature.

It should be remarked that under the sole assumption of a finite second moment, even
in the one-dimensional case our results on the other law of the iterated logarithm are not
directly accessible to a.s. approximation methods. That is, our Theorems 5.1 and 5.5 cannot
be proved by combining Cséaki’s result for Brownian Motion (or rather, the improved
statement given in Theorem 6.1 of the present paper) with an appropriate strong approx-
imation theorem; in fact, the normalization factor (LLn/n)"/? requires an a.s. approximation
rate which cannot be achieved (see [9], pages 93 and 121). On the other hand, if a moment
assumption more stringent than E | X; |* < « is introduced, then Theorems 5.1 and 5.5 can
be obtained from Theorem 6.1 via an appropriate strong approximation theorem. (I thank
N. Jain, J. Kuelbs and W. Philipp for some exchanges on this point.)

All our results are proved for random vectors taking values in a finite-dimensional
Banach space.

We proceed now to describe the contents of each section. Section 2 is of a preliminary
character. The definition of the reproducing kernel Hilbert space H, of a Gaussian measure
1 on a Banach space and the abstract form of the Cameron-Martin translation formula are
recalled. Some useful inequalities are derived from the formula. Then we describe the
specific form of these notions in the case when p is the Wiener measure associated to a
vector-valued Brownian motion.

Section 3 is devoted to proving some limit theorems for vector-valued Brownian motion.
Theorem 3.1 generalizes a well-known asymptotic estimate of the lower tail of the
maximum of the absolute value of one-dimensional Brownian motion to the case of a
vector-valued Brownian motion based on a Gaussian measure y on a finite dimensional
Banach space endowed with an arbitrary norm. Theorems 3.3 and 3.4 give related results
for translated vector-valued Brownian motion.

The basic results of this paper—the small deviation theorems—are contained in Section
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4. The aim is to find asymptotic estimates for probabilities of the form
P{||n7Z, — auf ||= < ax'r},

where {a.} is any real sequence satisfying 0 < a, — © and n™*a2— 0,r >0, f € H, (unis
the Wiener measure associated to a vector-valued Brownian motion) and Z, is as in (SII).
The upper bound result—Theorem 4.3—is proved for all f € H, and is essentially in final
form. We prove the lower bound result—Theorem 4.5—for a large subset of H,: those f in
H, such that f’ belongs to L. However, we have been unable to overcome certain technical
difficulties and prove what appears to be the natural conjecture: namely that Theorem 4.5
is true for all f € H,. For one-dimensional random variables and f = 0 our results reduce
to a small deviation result of Mogulskii [16].

In Section 5 we combine the results of Section 4 with variations of well-known
arguments appearing in the literature on laws of the iterated logarithm—such as those in
Cséki’s paper [7]—and prove a strong invariance principle connecting the Chung-Jain-
Pruitt theorem and Strassen’s invariance principle, embodied in the lower and upper
bounds given by Theorems 5.1 and 5.5. By taking f = 0, we obtain in Corollary 5.6 a
generalization of the Chung-Jain-Pruitt theorem for random vectors taking values in a
Banach space of arbitrary finite dimension. The idea of obtaining the (one-dimensional)
Chung-Jain-Pruitt theorem from a small deviation result appears in Csorgé and Révész
[8]. Related results appear in [17].

Finally, in Section 6 we improve some of the results of Csiki [7] for one-dimensional
Brownian motion; at the same time, we generalize the results to the case of vector-valued
Brownian motion. In particular, we give a complete answer to one of the questions in
Csaki’s paper concerning the class of functions for which (1.1) is valid. As compared to [7],
our improvement is achieved by a sharper use of the Cameron-Martin formula.

NotaTtioN. Throughout the paper, B will denote a finite-dimensional real Banach
space endowed with a norm p. We will write I = [0, 1]. For f € C(I, B), the space of B-
valued continuous functions defined on I, we will write || f|l» = supwerp(f(£)). We shall
write “LL” for “log log”. For a real number x, [x] will denote the integer part of x.

2. Preliminaries on Gaussian measures, the Cameron-Martin formula and the
Wiener measure associated to vector-valued Brownian motion. Let E be a sepa-
rable Banach space, u a centered Gaussian measure on E. We recall the definition of the
Hilbert space of p (also called the reproducing kernel Hilbert space of ) and some related
notions (see e.g. [2], [14]). Since [ ¢ du < « for each £ € E’, there is a natural map 7 from
E’ into L*(E, ), or more briefly, L?(u); = is the restriction to E’ of the canonical map of
the space #*(p) of p-square integrable functions into the quotient space L*(p). We will
write E, for the closure in L*(p) of #(E’). Let

H,={h € E:{— &h) is £*(p)-continuous on E’}
and let ¢ : H, — E,, be defined by
&h) = (w(§), ¢(h)) 2w

for € E’, h € H,. It turns out that the map ¢ is linear and ‘bijective. An inner product is
introduced in H, by setting

(B, kY= (6(h), $(R))2n for h, k€ Hy;

then (H,, (-, -).) is a Hilbert space, the Hilbert space of p. The inclusion map from H,
into E is compact and therefore K, = {h € H,: || 2 ||, < 1} is a compact subset of E. If S(u)
is the topological support of y, then S(u) = H, (closure in E). The inverse ¢ ' of ¢ has a
useful description, as follows. For each n € E, the measure n(x)du(x) possesses a barycenter
A@m) = [ xn(x) du(x) € E (the integral may be interpreted either in the Pettis or in the
Bochner sense) and one has A: E, — E is linear, injective, A(E,) = H, and A = ¢ ™. We
observe that if A = Aox, then A(E’) is dense in H,.
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The following well-known result was first proved by Cameron and Martin [4] in the
case when p is the standard Wiener measure on C[0, 1] (under certain restrictions on A).
For the sake of completeness we give a short, direct proof, which J. Samur helped us
construct.

ProposiTION 2.1. Let u be a centered Gaussian measure on E. For x € E deﬁne
p«(+) = p(- — x). Then for all h € H, one has p, < p and

dpn = exp{p(h) — (%) | 2|2} du.

ProoF. In order to simplify the notation we will put || - |2 = || - || z2. Let us first
remark that forn, { € E},, Z.() = N(O, || 7 ||3) and Z.(n, {) is a centered Gaussian measure
on R?; this follows from the fact that both statements are true for the elements of E’.

Let dv = exp{¢(h) — (%) || 2 ||2} du. In order to have v = g it is enough to prove that
their characteristic functionals are equal, # = ji5. Let £ € E’. Putting n = 7(£), a = ¢(h) we
have the orthogonal decomposition in E,,

2.1) n=ta+p
where t € R, (a, 8)2 = 0. Thus « and 8 are p-independent and therefore, since || A ||, =

|l ell2,

1
i© = [ exptimesp{a - 113} d
E

22) —eof =30tz ( [ exotip) an)( [ exnii+ vy )
E E
1, ., 1. . L
=exp)—5 a3 — 3 | B3 exp(i(t — 1)x) d\(x),
R

. where A = N(0, || «||3). By an elementary calculation,

2.3) f exp(i(t — i)x) dA(x) = exp{—% t—i)?|a ||§} .
R

From (2.1)-(2.3), we have

Py 1 24 - 1 2 1
i = exp{~ Il + i = exp{ = Ll + im0}
1
= exp{i&(h) - Ef &2 du} =a(§). O
E

We prove next some inequalities which are consequences of Proposition 2.1. Similar but
somewhat simpler inequalities were used by Borell in [3].

PropPosITION 2.2. (1) Let V be a convex, symmetric, measurable subset of E. Then for
allheH,,z€E, (€ E’

ph+2z+ V) =uw(Viexp{=(& (|2 |1Z = |h — g|Ii) — &) + supsevé(x)),

where g = 3(5).
(2) Let A be a Borel subset of E, V as in (1). Then for allh € H,, { € E’,

pMpth + AN V)= (WA N V) exp{— @) (| B[+ || — g|2) + infeevé(x)},
where g = A@).
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Proor. By Proposition 2.1, for any £ € E’

W+ 2+ V) = exp{— i nﬁ} j exp—o(h)} du
z+V

(2.4)
1
= exp{— 3 22— infxezwé(x)} J’ exp{¢ — ¢(h)} du.
z+V
Now
(2.5) infre.+vE(x) = £(2) — sup,evé(y),

and by Proposition 2.1,
1
(2.6) J exp{§ —¢(h)} dp=pg—h+z+ V)exp{§ lg—h Ilﬁ} .
z+V

By a well-known property of Gaussian measures (see e.g. [2]), pw(x + V) = w(V) for all
x € E; hence (2.4)-(2.6) imply the first inequality.

In order to prove the second inequality we observe first that by Proposition 2.1 and
Jensen’s inequality,

1
Wh+ANY) = exp{— Ly } j exp(—6()} du
@7 2 Anv

1
= exp{— il 3}u(A n V)exp{—(u(A A V) f o) dﬂ} .
ANV

Putting (—A) instead of A in (2.7) and multiplying the two inequalities, we obtain
(2.8) ph+ AN VIu—h+ AN V)= exp{- | 2|7} (w4 N V)

By (1)
29) p-h+ANV)=p(-h+V)=spWMexp{-CA(2li-Ih-g ) + supsevé(x)}.

Combining (2.8) and (2.9) we get (2).0

Let B be a finite dimensional Banach space with norm p and let ¥ be a centered
Gaussian measure on B. Let {W(¢):¢ = 0} be a B-valued y-Brownian motion; that is,
{W(¢):t = 0} is a B-valued stochastic process with stationary independent increments,
W(0) = 0 a.s., W has continuous paths and £(W(1)) = . Writing I = [0, 1] and W =
{(W(t):t € I}, we define p, = &£ (W); this is the Wiener measure on C(, B) associated
with y-Brownian motion. Let us remark that since B is finite dimensional, the topological
support S(y) of y coincides with H,; in particular, y(H,) = 1. This implies that P{W(¢) €
H,forall¢=0} =1,and therefore p, (C(I, H,)) = 1. When no confusion may arise we shall
write u instead of g, .

We will give next a description of H, which will be useful later on. This description is
somewhat more concrete than that given in Kuelbs and Le Page [15]. We shall denote by
M (I, F) the Banach space of vector-valued measures defined on the Borel o-algebra of I,
taking values in the finite dimensional Banach space F, endowed with the total variation
norm || - . Let the space C(I, B) be endowed with the norm | |l = supeer p(f(¢)). On B’
we put the norm dual to p. Then the dual space of C(I, B) may be described by the
following well-known (see [19], page 193) proposition.

ProrosiTiON 2.3. For each £ € (I, B’) define 5 € (Cd, B)) by

&) =de£, (f€ C(, B)).
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Then the map § — E is an isometry of (I, B’) onto (C(I, B))'.

We shall denote by A,, Ky (resp., A,, 3,‘) the A, A maps associated with the Gaussian
measure y(resp., u) earlier in this section. We shall omit the proof of the next result; the
arguments are similar to those of the one-dimensional case, which are well-known.

PROPOSITION 24. Let B be a finite dimensional Banach space, y a centered Gaussian
measure on B. Let ji. be the Wiener measure on C(I, B) associated to y-Brownian motion.
Then

(1) H,={fe€ C(, B): f(0) =0, f is absolutely continuous and f’ € L*(I, H,)},
(f, 8= f (f'(8),8'(t)), dt for f g€ H,.
I

(2) Forallt € #(I, B'),

t

A8t = f A,(¢[s, 1]) ds.

0

REMARK. Although we will not need this fact, it may be of interest to point out that
one may show:

&(.//Z(I, B’)) = {f€ H,:f is of bounded variation}.

The following technical lemma will be useful in Section 4.

LEMMA 25. LetO=a<pB<1.
(1) For f € H,, define

fup(®) = fla+ (B —a)t) = fla), ((ED).

" Then f.s € Hy and || fuplli = (B — @ [E]F @) |5 dt.
(2) For £ € M (I, B'), define

£p(A) = (B— a){é(la+ (B — a)A) + &(B, 1]6:(A)}, A Borel in I.
Then .5 € M (I, B'), || £agllo= 28 — ) ||llo and B, (ap) = (Bu(€))ap.
ProoF. (1) follows by a routine check. The first two statements of (2) follow at once
from the definitions. For the proof of the second statement, we have from Proposition
2.4(2)

t

A& @) = f A, (s, 1D) ds
0
=B-a f A, {&([a+ (B — a)s, B] + £(B, 1]} ds
0 .
=B-a f A (o + (B — a)s, 1]) ds
0

at+(B—a)t R
= f 4, (¢([u, 1)) du

= A (a+ (8- t) — B.8)() = A.8)ap(®).0
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We close the section by stating for ready reference an immediate corollary of Proposi-
tions 2.2 and 2.4.

COROLLARY 2.6. Let u be the Wiener measure on C(I, B) associated to y-Brownian
motion. Let V= {p € C(I, B) :| 9|l = 1}, r > 0. Then
(1) ForallheH,,9oE€rV,(€ 4, B’),

ph+ o +rV) < p@rViexp{—(L) (| hIE - 12 — glid) + 2| ]},

where g = &&.
(2) For all Borel sets Ain C(I, B),h€ H,, (¢ € # (I, B'),

prVipth + AN (V) = (WA N (V) exp(—Co) (| 2|2 + |2 — gliZ) — rllé]l. 3,
where g = &&.

3. Some limit theorems for vector-valued Brownian motion. The constant c,,
given by the following result will play an important role in Sections 4 and 5.

THEOREM 3.1. Let B be a finite dimensional Banach space with norm p, y a centered
Gaussian measure on B. Let W be defined as in Section 2. Then
eyp = —lim,op”log P(|| W]l = p}

exists and 0 < ¢,,,< oo.

Proor. We first show: forallr > 0, all k € N,
3.1) P Wle=r}=(P{|W|-=< k7 r})
For x € B, let P, be the probability measure on C(I, B) defined by P, = £ (x + W); in
particular, Py = u. By the Markov property of Brownian motion, for all» >0, 2 € N,
P{|| W|lw = r} = P{supo=t=z-1nrp(W(t)) = r, supg-ne-1=e1p(W(2)) = 1}

= f Py (E)P(dw),
A

where Y = W((k — 1)k™'), A = {Supos=x-1p~p(W(t)) = r} and E = {f € C(],
B) : supo<:<x— p(f(£)) < r}. It follows that

P{|W|» <r} = P(A) supy=rP:(E).
By a well-known property of Gaussian measures (see e.g. [2]), applied to u, we have
Sup, m=rPx(E) = p(E) = P{supo==r—'p(W(¢t)) =1},
and therefore
P{|| W|l. = r} = P(A)P{supo=e=r—p(W(?)) = r}.
Iterating the same procedure, we obtain: for all » > 0, % E N,
P{|| Wl = r}-=< (P{supo==s-1 p(W(?)) = r})*.

Now (3.1) follows upon transforming the right hand side by the scaling property of

Brownian motion.
Let

L = lim sup,_opZog P{|| W|~ < p},
¢=lim inf,_0p%log P{|| W|. < p}.
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We prove now: L = ¢ In fact, let {r»}, {s»} be two positive sequences such that r, — 0,
8, —> 0, rx8," — 0 and

lim,r2log P{|| Wl|lo < r,} = L, limsilog P{|| W]« =<s,} = ¢
Then by (3.1),
P{|Wo=<ra} = (P{| Wllo =< [sar7" Ira D' < (P{|| Wl < s })lor'T, .
r2log P{|| W]« < 1} < sZlog P{|| W« =< su}((rasz"V[s.72"1%),

implying L =< ¢ and consequently L = ¢ Let —c,» be the value of the limit.
If (k + 1) '<r< k™", we have by (3.1)

r2log P{|| W|. = r} = r’log P{| Wl = ™'} = r®log(P{|| W|.. = 1})*
= r2%log P{| W||= < 1} < (k + 1) %*log P{| W] = 1}.

It follows that —c,, < log P{|| W|. =1} <O0.
It remains to show: ¢,, < «. By the Markov property of Brownian motion, for all r >

0,kEN, >0,
P{W|e=rk /= P{||W|.= rk™2, p(W(1)) < ek~ %}

3.2) = P{supo=i=s-nxp(W(t)) = rk™%, p(Y) = ek,

Sup-pa-1==1p (W(E)) < k™%, p(W(1)) < ek ™%}

= J' PY(w) (E)P(dw))
A

where Y = W((k — 1)k,
A = {supoze=a-1sp(W(t)) < rk™2 p(Y) = k™%,
E = {f€ C(, B): supo=i=xp(f(t)) = k™%, p(f(k™")) < ek™V*).
Now for any & > 0, by an argument in [21] it is possible to choose r > 0 so that
(3.3) 8 = infresmp@=Pr{|| Wl =1, p(W(1)) =} >0,
where S(y) is the topological support of y. In fact, by compactness
1 = infresmpm=LP:{P (W) =€} > 0.
Choose now r > 0 so that P{|| W/l > r — ¢} <n/2. Then
P{|Wl|e=r,p(WQ1) <&} = Pi(p(WQ) =&} — P{|| W||o >r—¢€} =n/2

for all x € S(y), p(x) < ¢, proving (3.3).
Next, for p(x) < ek~ by the scaling property of Brownian motion,

P {supoi<ip(x + W(t)) < k™2, p(x + W(k™)) < ek™%)

34 .
-) =P{|F?x+ W|o<r,pk?x+ W) =e} = 3.

Now (3.2) and (3.4) give
P{|W|.=rk*} = 6P(A).

Iterating the same procedure, we get: for all 2 € N,
(3.5) P{|W|.=rk™?} = 8"
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Ifrk™' < p <r(k— 1) then by (3.5)
p2log P{|| W« < p} = p%log P{|| W|| < rk™'} = p%k*log 8 = r’(k — 1)~%k*log 6.
It follows that —c,,, = r*log § > — . [0
REMARKS. (1) It is well-known (see e.g. [5]) that if B = R', y = N(0, 1), then Cyp =
72/8. In fact, in this case there are sharp inequalities yielding
P{|W|.=<r}~ (4/m)exp{—(7*/8)r %} asr—0,

which is a more precise result than Theorem 3.1 applied to this specific case.
2 If B=R* p=| ||~ on R* v is the canonical Gaussian measure, then it follows

easily from the previous remark that c,, = k(=?/8).
(3) In connection with the exact value of c,, when B = R*, p is the standard Euclidean
norm and v is the canonical Gaussian measure, see [6].
We shall need the following result in Section 4. The notation is as in Theorem 3.1.
LEMMA 3.2. Foreverya>0,0<e<af2,8>0,

lim infp_,0p2log(infxes(y),p(x)SBpP{|| W"m = ap, p(x + WQ)) = 6p}) = —Cyp (a — 28)_2.
ProoF. Let us first prove the following fact: if 8 + 2¢ < a, then for any § > 0
(36) o= infz,wES('y),p(z)s/},p(w)s:P{" z+ W"oo = a,p(z + w + W(l)) = 8} > 0.

In fact, suppose p(2) < B, p(w) <¢, z, w € S(y). Then by [18], pagé 46, proof of Proposition
7.1 applied to f(¢) = z + w(t € I), we have

P{lz+w+ W[|le<a—gpz+w+ W(1)) <8} >0,
P{lz+ W]e=a,pz+w+ W(Q)) =8} >0
the local compactness of B and the continuity of the map

(z,w)—> P{l|lz+ W|o=<a,plz+w+ W(Q1)) <8}

imply now (3.6).
By the Markov property, for0 <n <1

g, p) = P{|W|® =< ap, p(x + W(1)) < 8o}
3.7) = P {supo=t=1-nP(W(?)) =< ap, Sup1—==1p(W(#)) < ap, p(x + W (1)) = p }

= f Py (Ex) P (dw),
A

where Y = W(1 —n), A = {supo=i=1-,p(W(t)) < ap},
E. = {f€ C, B): supo=t=,p (f(t)) < ap, p(x + f(n)) < 8p}.

Putn=p?and let 8 < a — 2e. If y € S(y), p(¥) < Bp, then by the scaling property of
Brownian motion

P,(E.) = P{supo=:=,2p(y + W(t)) < ap, p(y + x + W(o?) < 8p}
=P{lp7y+ Wlo=<a,pl™(y + x) + W(1)) = 6}.

It follows that if p (y) < Bp, p(x) < ep, x, y € S(y) then P,(E.) = o. From (3.7) we have: if
p(x) <ep, x € S(y), then
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glx,p) = f Py (Ex)P(dw) = sP(AN {p(Y) = Bo})
AN (p(Y)=Bp)

= 0P {suposi=1-2p (W(¢)) < Bo} = oP{|| W] < Bo(1 — p*)7/*}.
Therefore, by Theorem 3.1,
lim inf,_0plog{infresw) p@=& (%, p)}
= lim inf,_op%log o + lim inf, o0%log P {|| W|. < Bo(1 — p*) %}
= —c,pB7".

Since B is any number smaller than o — 2¢, the result follows. O

The next result is a simple consequence of Theorem 3.1 and Corollary 2.6. A closely
related result has been proved by Borell ([3], Theorem 2.3).

THEOREM 3.3. Let W be as in Section 2 and let p. be the associated Wiener measure
on C(I, B). Then for everyr>0,f€ H,,

limy—.oA"log P{| W = Mo <A77} = —c,pr™ = (&) | ]l

Proor. By Corollary 2.6 (1) with z = 0,
P(|W = M« <A77} = pf + A1 V)
< pOFV)exp (—CAIMIZ — IV — Agl2) + 2A 7 A&}
and therefore by Theorem 3.1
lim sups.-A~2log P{| W = Mlle = A1} = ™% — (4) I I+ (4) I — glI2-
Since g = A, (£) can be chosen arbitrarily | - || .~close to f, we get
lim supr.A~"log P{| W = Ml = A7'r} = —¢,,r™" — (4) | f]12.

In order to get an inequality in the opposite direction we use (2.7) with A = A7'rV,
taking the convex symmetric measurable set in (2.7) to be A"'rV (V as in Corollary 2.6).
Since [y-vv ¢(f) du = 0, we have

P{IW—=Mle=AT"r} =pAf+17'rV)
= exp(—(%) | M2 uA V).
Theorem 3.1 gives now
lim infy oA 2log P{| W = Mlle = A7} = —c,por > — (%) ||fI2.0

The following slightly more general form of Theorem 3.3 will be useful in Section 6. In
order to avoid repetition, we omit the proof, which follows from Theorem 3.3 in the same
manner as that of Theorem 4.7 follows from Theorems 4.3 and 4.5.

THEOREM 3.4. In the set-up of Theorem 33,let 0 <\, — o and let {g.} C C(, B)
be such that A3 | f — &x|l«— 0 as n— . Let an ~ An, Brn ~ An. Then

limaxX?10g P{| W = angnl= = Ba'r} = —c,pr™ — (4) | fII3.

4. The small deviation theorems. Let y be a centered Gaussian measure on the
finite dimensional Banach space B. Let {X;} be a sequence of independent, identically
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distributed mean zero B-valued random vectors, Si = Y -1 X;(So = 0). Assume that Ep(X;)
¥(X1) = [ oy dy for all ¢, ¢ € B’; then £(X;) belongs to the domain of normal attraction
of y and the functional central limit theorem—Donsker’s invariance principle—holds (see
e.g. [1], [10]; also [13]): if Z, is the C (I, B)-valued random vector defined by setting

S, if t=k/n (k=0,...,n)
4.1) Z,(t) = { extended by linear interpolation in each interval
[k —Dn7, kn7,
then
4.2) LnZ,) —w p,

where . is the Wiener measure on C(I, B) associated to y-Brownian motion (see Section
2) and —,, stands for weak convergence on the space of probability measures on C(I, B).
Our aim in this section is to find asymptotic estimates for probabilities of the form

4.3) P{||n"?Z, — aufll» < ax'r}

where {a,)} is any real sequence satisfying 0 < a, — », n"'ah — 0, r > 0, f € H,. Our
method of proof exploits the independent increment property of the process {S,: n € N};
in the one-dimensional case, this idea appears in [11] and [16]. The situation we deal with
here, involving a function fin H,, is, however, considerably more complicated.

LEMMA 4.1. Let W be as in Section 2, Z, as in (4.1). Suppose K is a compact subset
of S(u) and 0 < p, — p wWith 0 < p < co.
(1) For every 6 > 0, 7 > 0, there exists no = no(8, n) such that n = no implies:

P{lyn+n""Z,—glo<pn+m} <A1+ OP{||3n+ W—glo=pn+1)

for all g € K, all { y.} C B such that p(y,) < p.(n € N).
(2) Assume 0 <r,— r,0<r < o, p = 2r. Then for every § > 0, there exists n, = n,(8)

such that n = n, implies:
P{|n7Zy — gll« < pn, P(xn + n7°Z, (1) — g(1)) < 12}

= (1= OP(| W =gl = pn, p(xn + W) — g(1)) < 1)
for all g € K, all {x,} C B such that p(x,) < rn, x, € S(y)(n € N).

ProoF. (1) Suppose the statement is false. Then there exist § > 0, n > 0 and sequences
0<ny— o, {gr} CK, {y:} C B with p(y:) < pn, such that for all k € N

(44)  P{llye + ni"’Zn, — 8rllo =< pn, + 1} > A + OP{[|ye + W — 8kl =< pn, + 1}

By compactness we have by passing to an appropriate subsequence (which we denote like
the initial sequence) g — g € K, y» — y with p(y) = p. Then it easily follows from (4.2)
and elementary properties of W that

uy | FU AT gl ot > Plly+ W= gl <o+,
P{ye+ W= gkl < pn, + n} = P{|y + W—glla=p +n)}.

But P{|ly + W—glle=<p + 2} = P{| W— g|l» = n} > 0 because g € S(u) and thus (4.5)
contradicts (4.4).

The proof of (2) is similar. We will just point out that for p(x) =r, x €S(y), g € S(w),
if we define . (¢) = tx (¢ € I), then

P{W-glo=p,plx+ WD —-gW)=r}=zP{|W+o.—gle=r}>0
because g — @. € S(u). 0
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We first obtain an asymptotic upper bound for the probabilities (4.3).
LEMMA 4.2. Letn € N and let {t»: k=0, ..., m} be a subdivision of I such that nt,
€ N forallk. Letfe C(I,B) and fork=1, --- ,m, let
few) = f(te—r + u(te — te-1)) — f(le-1), WEI).
Then for all a > 0,
P{Zs — fllo= &} <TI}, suppesp=aP {l| 2k + Zntty~,_p = fll= = a}.

ProOF. LetZ,=2Z,—f, A= {suposi=,_p(Zn(t)) <a},
E = (g € C([0, tn—1], B): supos:=, p(&(¢)) =< a},

F={(g h):g € C(0, tu-1], B), h€ C([tn-1, tn], B),

sup: ststmp(g(tm—l) + h(t)) = Ol},

Vult) = Z1,(t) — Z5(tn-1) (E € [tm-1, tn])-
We have
P{||Z, — fll= < a}= P(A N {sup;,_,=t=tnP (Z1(tm-1) + Va(£)) = })
= P{Z,|[0, tn-1] € E, (Z3|[0, tn-1], V) € F).

Since {Z,(t): 0 < t < t,—1} is independent of {V,.(¢): tm-1 =t = tn}, we have by Fubini’s
theorem

P{|Z: = flle=a}
(4.6)
= j P{sup; _=i=,p(&(tm-1) + Vu(t)) = a} dL(Z,|[0, tn-11)(8)-
E
For x € B,
supy,_ =e=e, P& + Va(t)) = supozu=1p (x + Z5, (tn—1 + U(tm — tm-1)) — Zn(tm-1))

= SupOsuslp(x + Z, (tm—l + u(tm - tm—l)) - Zn(tm—l) - fm(u))

Observing that
LU Zn(tm-1 + utm — tn1)) — Zp(tm-1): 0=u=<1} = LU Zne -t l)(u): u€l}),

we have
P{sup;,_,=t=tnp(x + Va(2)) < a} = P{||x + Znttp—tn0 — folle < a},
and therefore we have from (4.6)
P{||Zn — fllo =< a} = P(A)suppeo=aP {| % + Znttyt) = full= = 0}
Iterating the same procedure gives the assertion. U
THEOREM 4.3. Let Z, be as in (4.1), p as in (4.2), ¢, as in Theorem 3.1. Let 0 < ax
— o, n a2 — 0. Then for all f€ H,,r > 0,
" lim suprawai? log P{| 07 — auflle < an'r} < —c,por ™ —CA) | 1.
ProOF. Let p be a fixed positive number. For n € N, k=0, ---, [p2a%), let t,r =
kn7[n/p’an]. If t, (202 =1, put b = [p2a2]; otherwise, put £, = 1 for k = [p’a?] + 1 and

bn = [p2a2] + 1. Then {tus: k=0, - -+, b} is a subdivision of I such that nt.. € N for all
k.
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Let dv(t) = ||f/(¢)||% dt. For M > 0, let

G.M)={k:k=1,.--,b,—1 and buw([tnr-1, tir]) > M}.

Then (i) card G.(M) < b, ||v| M7,
(i) HmuywSups Yreca.on ?([tnr-1,8n:]) = 0.
In fact,
|71l = Yrecuan v([tnr-1, tar]) = M by card G.(M),
proving (i). In order to prove (ii), let us observe that for % < b,,
tok — top—1 = qun "

where g, = [n/p%a’]. Given ¢ > 0, let 7 be such that

f IF @) |2 dt <e/2.

{&lr o>

Now choose M, so that 72 | »|| (sup.b.g.n )M5"' < /2. Then for M = M, and all n € N,
putting I, = [¢n,r-1, tnr], Wwe have

DkEGa(d) f I/ @3 dt = Trecaan f + ke f
T LO(ENf @) y=r) LOElf ©l>m)
< 1%g.n7?) card G, (M) + (¢/2)
= 7Xgnn a7 || M7 + (¢/2)
< (e/2) + (¢/2) = &.

This proves (ii).
For a given & > 0, choose now M so that card G, (M) < b.e and Yrec an v(I2) < &/2 for
all n € N. Let
F.= (1, b, — 1] N N)\G.(M).

Next we apply Lemma 4.2 with « = a;'n**r and (a,n"?)f instead of f. Putting ¢, =
annl/zq;1/2 dn= a;lnl/Zq;l/2,
fn,k(u) = f(tn,k—l + u(tn,lz - tn,k—l)) - f(tn,k—l), (u (S I))
we have by Lemma 4.2
P{|n"V2Z, — auf||= < ar'r}

4.7) -
= Hlean supp(yp=dur P (| y& + @72y, — Cafutll= = dur}.

For k € F,,, by Lemma 2.5 (1) f.» € H, and

tn,k
I fuelli = (Enp = 1) J I @) dt = gun™'v(Ii) < g.n™'b:' M,
tp k-1
and therefore
| cnfrrlli = (@ingz')(gnn™"'b7' M) = a7 b;' M,
showing that sup{|| cxfur|.: n € N, 2 € F,} < ® and consequently {c.foz: n E N, k € F,,}
is a relatively compact subset of S(u) for the | - ||»-metric on C(I, B).
Since g, — ® and d,, — p, for given § > 0, n > 0 there exists by Lemma 4.1 (1) a number
no = no(8, n) such that n = n, implies
4.8) supp)=dur PLI|Y + 92" Zg, — Cafuplle < dur + 1}
=1+ B)Supp(,)sd,,,P{"y + W—cufor "m =d,r+mn}

for all £ € F,,.
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By Corollary 2.6 (1), applied with A = c,fy.z, p(t) = yi for ¢ € I, we have
P{llyx + W = cufurlle < dur + m} = pleafor — @ + (dur + 1) V)
4.9) = p(dnr + ) V)exp{— (B (| crfar |2 = Il cn(&rr — Fur) |12} + 2(dnr + 0) | Cabnr||o},
where g = A, (¢) with £ € .4(I, B'),
&k (U) = gltnp—1 + Ul — tor-1)) — g(twr—1) W E I),
Eur(A) = (tr — top—1) {E(Enr—1 + (bop — trp-1)A) + E(tnr, 1161 (A)}

(k=1, ..., b,; A Borel in I); recall that ﬁﬂ(fmk) = gnr by Lemma 2.5 (2).

The next step is to find appropriate bounds for the terms in the exponent in the right
hand side of (4.9). By the absolute continuity of », there exists 8 > 0 such that A(E) <17
implies »(E) < ¢/2, where A is Lebesgue measure on I. Let n; be such that n; = n, and
q.n"' < B for n = n,. Then for n = n,

YreF || Crfok ||,:: = Yrer, 2 qun W([tur-1, tor))

(4.10)
=ai(|v] — »(Is,) — Trec.an vTx)) = ar (|| 2] — (¢/2) — (€/2)) = a3 (| f|? — e).
Also,
Shera | cx (s — for) I2 = c2gan Teen, f g’ = I dn
(4.11) T

=anlg—fli
By Lemma 2.5 (2),
(4.12) ZkeF,. dncn " gn,k "v = nq;I Zz’él " gn,k "v = anI ((Inn_l)zbn "gllv = 2b, "gllm

and Yier, cn || £k llo < 206.d7" || €]lo-
Now by (4.7) — (4.12), we have for n = n,

P{|n7%Z, = @uf||o= az'r} = (1 + 8)* {u((dr + ) V)27
-exp{— (A)an (i — e + g = flli) + 4bu(r + di'n) £ 3,
az?log P{||n""Z, — anf|l= < ay'r} < a;2b,log(1l + 8)
+ a7% (b, (1 — &)= Dlog p((dnr + n) V)
= COIfIE— e+ llg = £ID)
+ 4(ax?ba) (r + di'n) [1€ o,
and therefore, since a,2b, — p2 d, — p,
L = lim supn_«ay’log P{||n"*Z, — auf]le < ar'r}
= p’log(1 + 8) + p*(1 — e)log p((or + ) V)
=AU —e+llg—fID) + 40 + o) €],
Since ¢, 8,  are arbitrary, it follows that for all p > 0
(4.13) L = p%og plor V) — CA)(I£i — llg = fIIZ) + 4r0® [|£ o
By Theorem 3.1, letting p — 0 in (4.13) we have
L=—c,,r = Al - llg = £IID-
Finally, since g = A, (£) may be chosen arbitrarily || - |l.-close to f, we conclude
L=—c,r™ = (&) |fli.0

We obtain now a lower bound for the probabilities (4.3).
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LEMMA 44. Letn € N and let {t,: k=0, --., m} be a subdivision of [0, a] with a
=1, such that nt, € N for all k. Let f € C([0, a], B) and fork=1, -+ , m, let
fe(@) = f(te-1 + u(le — te-1)) — f(te-1), (@E D).
Then for all « > 0,all0<e<]1,
P{supcro,qp (Z.(t) — f(t)) < a} = I, infocp=camesn P {l Znw-4p — fellw
=1 - &, p(xr + Zniy—4,_p (1) — fo(1)) < ea),
where Z, is the extension of Z, to [0, a] obtained by putting Z,(k/n) = Sy(k < na) and
interpolating linearly.
PrOOF. LetZ;, =2, —f, A = (suposi=i, p(Z1(t)) < &, p(Z1(tm-1)) < ea},
E = {g € C([0, tn-1], B): supo=t=t, ,p(&(t)) = &, p(g(tm-1)) < ea},
F={(g h):g€C(0, tn-1], B), h S C([tn-1, tx], B),
supy,,_,<i=tnD (& (tn-1) + h(£)) =< &, p(&(tn-1) + h(tn)) < ea},
Vi(8) = Z1(t) = Z5(tn-1)(E € [bm—1, tn]).
We have
P{supccro.ap (Zn(8) = f(8)) < &} = P{supiero.ap (Z1.(8)) < &, p(Z}, (tn)) < 0}
= P(A N {sup,,_,<t=tnP(Z1(tm-1) + Va(t)) < &, p(Z5 (bn-1) + Va(tn)} < €a})
=P{Z.|[0, tn—1]1E E, (Z}, | [0, tm-1], V») € F}.

Reasoning as in the proof of Lemma 4.2, we have

P{suprepo,ap (Zn(t) — f(t)) < a} = f P{sup,,_,<i=t,p(&(tn-1) + Va(¢))

(4.14) E

< a, p(g(tn-1) + Va(tn)) < ea} dr(g),

where v = L(Z,,| [0, tm-1]).
Proceeding as in the proof of Lemma 4.2, we obtain for all x € B
( P{sup,, ,<i=tn0(x + Vo(t)) < o, p(x + V. (tn)) < €a}
4.15)
=P{||lx + Zut—t,,_p = flle = &, P(x + Zn(t,,~1,,_ (1) — f(1)) < ea}.

Since #(X1) has the same covariance structure as v, it follows that P {S; € S(y) for all
k} =1, and therefore P{Z, € C([0, a], S(y))} = 1. From (4.14) and (4.15) we have now

P{supeero, aip (Zn(8) — f(2)) < o}
= P(A) - infpmzeaxesn P %X + Zne,~t,_p = fullo
=a,p(x + Zn,-1,, (1) — fu(1)) < ea}-
=P(4) . infp(x)s’ea,xES(y)P N Znt—tp_) = fullw
= (1 =&, p(x + Zn¢,—,p (1) = fn(1)) < 2a}.

Iterating the same procedure gives the result. 0

THEOREM 4.5. Let Z, be as in (4.1), p as in (4.2), ¢,, as in Theorem 3.1. Let 0 < a,
— o, n'a — 0. Then for all f € H, such that f € L>(I, H,), r >0,

lim inf,a5°log P{|n"Zy = aufll= < an'r} = = e,pr™ = (4) | £1Ii.
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Proor. Let p be a fixed positive number. Forn € N, & € N, let t,., = kn"'[n/p?a2]
and let k, = [n/[n/p%a’]]. If tus, = 1, put by = ky. If tns, < 1, put by, = k, + 1; it is easily
checked that ¢, = 1. Then {£,x: =0, ---, bp} isa subdivision of [0, t,5,] such that
nt,, € N and b ~ tnx-1 = q.n " for all k, where g, = [n/p’a

We define ¢: [0, £,,5,] — B by setting f(t) f@)fortel, f(t) = f(l) fort €1, t,5, ] We

shall apply now Lemma 4.4 with a = £, 5, @ = a;'n"?r and (a.n'?) finstead of f. Putting

e = an nl/2q—1/2 d,=a; 1/zq—1/z

fn,k(u) = f(tn,k—l + u(tn,k— tn,k—l)) - f(tn,k—l), (u (S I))
we have
P{||n"*Zy = anfll= < an'r} = P{supieio,ap (0" Z,(t) — anf(t)) < ax'r)

(4‘16) = HZ’;I mfp(xk)ierdn,xkES(Y)P{" Qr_tl/zZq,, - Cnfn,k "oo
= (1 = &)rdn, pax + ga*Z; (1) = cufo (1) < erdy).

tn,k
Since Vokll2 = gon™ f 1P 12 de = (qun M,
t,

n,k—1
where M = (ess. supser | f/(£)||,)> we have for k=1, -+« , b,
" cnfn k "‘L (aannl )((In ‘I)ZM = an‘]n M,

showing that sup{|| cufor|l:n €N, k=1, -++, by} < o and consequently {c.fus: n € N,
k=1,...,b,)} is a relatively compact subset of S(u) for the | - |l.-metric on C(I, B).
Since g, — o and d,, — p, given 8 > 0 there exists by Lemma 4.1 (2) a number n, = nq ()

such that n = n, implies
infy i <erdnees) P 472 Zg, = Cofklle = (1 = &)rdn, p(x + g7 Zy, (1) — cafur (1) < erdy}
= (1 — 8)infp=erdnxes P L W = cafusll

= (1— &)rdy, p(x + W) — cafur(1)) < erd,).

Let An(x) = {9 € C(, B): | @|lo = (1 — e)rdy, p(x + 9(1)) = erdp}, An = (1 — e)rd,V,
where Vis as in Corollary 2.6. By Corollary 2.6, applied with A = cufnr, A = An(x), we
havefork=1,...,b,—1

WAL )u(cnfur + An(x))
= {u(An (x)))exp{—(B) (| cafut |2 — | cn(&uk = Fore) |2) = dur || Cabn|lu},
where g = 4,($) with ¢ € .4(I, B'),
Eni(U) = g(top—1 + Ultnr — top-1)) — 8ltop-1), (WEI),
Enrn(A) = (o — top—1) {(E(tnp—1 + (top — Eon—1)A) + &(tnr, 1161 (A))

(k=1,...,b,—1; A Borel in I); recall that ﬁﬂ(ﬁn,k) = g, by Lemma 2.5 (2).
Proceeding as in the proof Theorem 4.3, we have

(4.17)

(4.18)

(4.19) Sk lenfuelli = @i I £II7
(4.20) Yt [l en(gni — far) i < @i g — fII2
(4.21) Zk=11 dncn " gn,k "u = 2bn "‘g"w

Also, we have .
429) infp (s <erd, xesmnenP {|| W — Cnfn,b,, [|eo
' = (1= )rdn, p(x + W(Q) = cafus, (1)) < erdy} =0 > 0;

this may be proved directly, using the compactness of {cnfn,bn: n € N}, or from Corollary
2.6 (2) and Lemma 3.2.
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By (4.16)-(4.22), we have for n = n,:
P{||n"*Z, — aufll« =< an'r} = (1 — 8)*n{infym)=erdnresm (A (x)) Y20 {1 (4n)) 0
exp{—(h)az(|fli — g — fl)— 2rb. [|£]10),
and since a;2b, — p% d, — p, we have for all p > 0
¢=lim inf, .a;%log P{|n"*Z, — auf]l« < az'r}
(4.23)  =prog(l — 8) + 2p%og{infye)<apreslA (x, p))} — pZlog p((1 — e)rpV)
= FIE = Nlg = I — 2r0® [[£]lo,

where A(x, p) = {p EC, B): |plle = (1 — &)rp, p(x + ¢ (1)) <erp}.
Since § is arbitrary, the first term on the right may be omitted. By Theorem 3.1 and
Lemma 3.2, respectively, we have

lim,0plog p((1 — &)rpV) = — ¢, (1 — &)r) %,
lim inf,_002log {inf,y<erp xesm (A (%, 0))} = — ¢, (r(1 — 3¢)) 2.
Therefore letting p — 0 in (4.23) we obtain
(4.24) ¢= —2¢,,(r(1 —36)) " + ¢,p (r(1 — &) — (I fIIZ — lg — 1)
Finally, since 3,1 (4 (I, B")) is dense in H, and ¢ is an arbitrary positive number, we get from
(4.24) the desired inequality. 0
Combining Theorems 4.3 and 4.5, we obtain the following.

COROLLARY 4.6. Let Z, be as in (4.1), u as in (4.2), c,,, as in Theorem 3.1. Let 0 < a,
— o, n"'a% — 0. Then for all f € H, such that f' € L*(I, H,), r > 0,

lim,wa;’log P{|n7""Zy — aufll« < az'r} = = ¢,pr ™ = (A)|| flli.
Our next result is a slight extension of Theorems 4.3 and 4.5.

THEOREM 4.7. Assume0<n, 1 o, n, € N;0<ay— o, ainiy'— 0;0 < by, 0 < ¢, by
~ ap, ¢k~ aras k— o, Let f € H, and let { g} C C(, B) be such that a’|lgr — flle— 0.
Then
(1) lim sups_.«ai®log P{||ni"*Z,, — brge|l= < ci'r} = —cypr™> — A fI%
@) iff € L=, H,), then

lim infy.ar’log P{||ny"*Z,, — bagr| < ci'r} = —c,or™> — (&)||fli.
Proor. For ny < n < ng+1, let an =ar, Brn = br, Yn = Cr, hn= gr. Then 0 < ap, — o,

a/n— 0, a, ~ Br, an ~vn and ai|| Ay — f|le— O.
Given ¢ > 0, let no be such that n = n, implies

ol bn—flle <el +&)7% | Bran® — 1| <ég |vaBn' — 1| <e
Then for n = ny, ]
B2l Fn — flo = BEar02] hn = fll) < (L + el + &2 Bullhn — fllo < e(1 + )85
Now ||n7%Z, — Bufll« < (r — €)(1 + &) '8~ implies: for n = no
|7~ Zy = Bubinllw < |72 — Bufllw + Bull f = Bnllo = r(1 + &) 7'B" < rya’,
and therefore

4.25) {|n7V?Z0 = Buflle = (r — &)1 + &) 7B} C {|n7?Z0 = Bubn |l = ry2').
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Similarly, for n = ne
426)  {[|n72Z, — Buhnllw = 1y} C {7220 — Buflle = (1 — &) 7' + €)Ba"}.
Let u(e) = (r — €)(1 + ¢) 7. Since B, ~ a», Theorem 4.5 and (4.25) give
lim infywan?log P{|n"V2 Z, — Buhn|l» < rya')
= lim inf,_,war2log P{|n"Y?Z, — Buf]l« < u(e)B8x"}
= —c,,p (u(e)) > — (B £z

Since u(e) — r as e — 0, (2) is proved. Statement (1) follows in a similar way from Theorem
4.3 and (4.26).0

5. An invariance principle for the other law of the iterated logarithm and a
refinement of Strassen’s invariance principle. We will apply the results of Section
4 to obtain Theorems 5.1 and 5.5, which taken together may be regarded as a functional
form of the law of the iterated logarithm of Chung [5] and Jain-Pruitt [12]. At the same
time, these theorems give a strong speed of convergence result refining Strassen’s invari-
ance principle [20] (see also [10]). Theorems 5.1 and 5.5 deal with the case ||f||. < 1; a
partial result for || f|| .= 1 is given by Theorem 5.4, but this case is essentially different and
will require a separate investigation. )

Throughout the section, Z, will be as in (4.1), u as in (4.2), and c,,» will be the constant
given by Theorem 3.1.

THEOREM 5.1. For all f€ H, with ||f|. <1,
lim inf, .(LLn)[|(2nLLr) "2Z, — f|lo = (cy,x/2)*(1 — | fID ™ a.s.

We shall need the following lemmas.

LEMMA 5.2. Let o: N— R™ be such that
() o is decreasing and ¢(k) — 0,
(ii) ko (k) is eventually strictly increasing and ke (k) T o,
(i) (log k)~'(log g (k)) — 0,
(iv) (log k)’p(k) — 0.
Let n;, = [exp(ko(k))]. Then
(1) for all a > 1, Y, exp{—aLLn;} < o,
(2) nl:-}—l np — 1:
(3) (LLng+1)*(e+1 — np) /Rrs1 — O,
(4) LLng+1(LLngss — LLng) — 0.

ProoFr. (1) follows easily from assumption (ii). Observe next: for k2 = ko (say), by
assumptions (i) and (ii)
5.1) 0=(k+1Dpk+1) — ko) =k{pk+1) —ek)} +tok+1)<¢@k+1).
Now (2) follows from assumption (i) and (5.1). By (5.1) and the elementary inequality
1 — e™™ =< x, we have
(Prs1 — e} /Ps1 ~ 1 — exp(—{(k + Dok + 1) — kp(k)}) = @(k + 1);

thus

2
log p(k + 1)} e +1) >0

(LLg 1) (s — 1) /M1 < log?(k + 1){1 +W

/

by assumptions (iii) and (iv).
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From (i) we obtain LLngs: — LLn, = log(k ™ (k2 + 1)) and (4) follows easily from
here. 0

Thus the conditions imposed on ¢ imply that {n.} grows slightly slower than a first-
order exponential function. If & > 2 and ¢ (k) = (log 2) ™, then g satisfies (i)-(iv) of Lemma
5.1.

LEMMA 5.3. Letm,n,rE Nym=<n=<r. Then forallf€ H,

(LLr)m
(LLm)r

— LY’ (r — m)/ry' "M || ||
— ((LLP(r — m)/r + (LLr)(LLr — LLm)m/r}| f ||,

1/2
(LLn)||(2nLLn) 22, — f |l = { } (LLm)||2mLLm) 2Z,, — £}

where M = sup{p(x) :x € H,, | x ||, = 1}.

Proor. It is easily checked that Z,(mt/n) = Z,.(t) (t € I). Putting a = (2mLLm)*? b
= (2rLLr)"? ¢ = (LLr/r)"? g = f((m/n)(-)) on I, we have

1/2

(LLn)||2nLLn)""*Z, — f | = (%) superp(Z,(mt/n) — (2nLLn)"*f (mt/n))
=c|| Zn — (2nLLn)"%g |\
Now
(5.3) | Zn — (2nLLN)*g |0 = | Zn — af |ln — b | f— & ke — (b — @)|| £ |-
Since f€ H,, forallt €

t

=M I £y ds

Y

p(fO)—g@®)=M|f@) —g@Wl,=M f f'(s) ds
(m/n)t

=Mt — (m/n)t)"?| f|l. < (r — m)/P)*M || f]|,..

(m/n)t

(5.4)

Also
(5.5) b — a =< @2rLLr — 2mLLm)"? = {2(r — m)LLr + 2m(LLr — LLm)}"2.

Combining (5.2)-(5.5) we get the desired inequality. 00

PRrROOF OF THEOREM 5.1. Let n, = [exp(kp(k))], with ¢ as in Lemma 5.2. We first
prove: for all e > 0, if b, = (2n,LLns)"%,
(5.6) lim infy.d "(LLng)| b%'Z,, — flle=1—¢ as,

where d = (c,,,/2)"2(1 = || fI) "2 )
Let A = {d ' (LLn)||bx'Zn,— fll» = 1 — €}. Then in order to prove (5.6) it is enough to

prove Y. P(Ax) < =, by the Borel-Cantelli lemma. By Theorem 4.3, applied with a, =
(LLn)'2, we have, putting ¢ = c,,,

lim sup,_.«(LLn) log P{| n™/?Z, — (2LLn)"?f||l. < d (1 — £)2"/*(LLn)""/?}
< —c(d(1 — £)2"%) 72 — (%)|| 2% |12
So given 8 > 0, there exists ko such that 2 = &, implies
(5.7) P(Ap) = exp(— {e(d(1 = )27 + || f|[i — 6} LLma}.
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Since c(d(1 —&)2Y3) 2+ ||fIE= 1 — | fI5 @ — &) 2+ || f|Z > 1, choosing § small enough
we have from (5.7)
2?:;;0 P(Ay) = 2}?:1,0 exp{— aLLnk}

with @ > 1. By Lemma 5.2 this series converges, proving (5.6).
Now (5.6) implies

lim infyw(LLng)| 8%'Zn, — flle = d a.s.,

which together with Lemmas 5.2 and 5.3 imply the result. O

THEOREM 5.4. Forallf€ H, with | f|. =1,
lim,_.(LLn)||(2rLLn) ?Z, — f |l = ®, as.

Proor. Let {n:;} be as in Theorem 5.3, A > 0. Proceeding as in Theorem 5.3, one
proves

lim infy ,o(LLn)|| 8%'Zn,— flle = A, as.

The proof is then completed as in Theorem 5.3. 0

THEOREM 5.5. For all f € h, such that || f|.<1and f' € L(I, H,),
lim inf,, o(LLn)||(2rLLR) *Z, — fle < (cy,n/2)*(1 = | D7 as.
ProoF. It is enough to show: there exists a sequence {n.} C N, n;, 1 =, such that for
all e >0,
(5.8) lim inf,d "(LLny)||(2niLLng) %Z,, — fle =1 +¢, as.,

where d = (c,,,/2)"2(1 — || |2 ~2
Let ny = k*, ar, = (2nLLny) "2 Let 0 < a < 1, m € N. Then for any g € C(I, B), clearly

(59) I & = fll» < suprep(g(at) — f(at))
+ suprerp(gla + (1 — a)t) — gla) — {f(a + (1 — a)t) — f(a)}).
Set b, = ng+1 — Nk, @ = np/np41 and for ¢ € I,
Yi(t) = b *{Zn,, (a + (1 — a)t) = Z,,,, (@)},  felt) = fla+ (1 — a)t) — f(a).
Since Z.,,, ((ne/ne+1)(+)) = Z,,, we have putting g =ayi1Z,,,, in (5.9):
(5.10) | @x31Zn,,, = flle < || @312, = f(@ (Dl + || B 31 Y2 = fi |ko
By the law of the iterated logarithm in finite-dimensional spaces,
lim Sups—w@k' || Zn, |l = lim sups_.«a% 'max;<,p(S;) <, as.
Since (LLng+1)ar/ar+1 — 0, it follows that
(5.11) (LLnk+)aiis | Zn, - — 0, as.

"Also, for all ¢t € I, if M is as in Leinma 5.3,

J’ f'(s) ds
1)

and therefore (LLng+1)|| f(a(+)|le < M (LLnk+1) (na/ns1)|| £ |, — O.

p(flat) = M| f(at)ll, = M = Mf I, ds= M(aty”| £l
0
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From this last statement, (5.10) and (5.11), it follows that in order to prove (5.8) it is
enough to prove:

(5.12) lim sups,e d " "(LLng+1)|| 0%’ Ye — fel« =1 + ¢, as.

But {Y3} is an independent family of C(I, B) — valued random vectors (Y depends only
on {Xj:n, <j < np+1}) and L (Y;) = L (br"*Zs,), as it is easily verified. Let

Ap= {d_l(LLnk+1)" b}z/za;-}—IYk - ﬁe "oo =1+¢}.
By the Borel-Cantelli Lemma, (5.12) will follow if we prove that Y. P(A;) = c.

Since fort €1
a+(1—a)t t
pf@® —fO)=M| fO)—fO), =M f f'(s) ds —f f'(s) ds
o 0

a a+(1—a)t
j f'(s) ds f f'(s) ds
0 t

=Ma"?| fl. + M@@ — )| f|l.

Y

+M

Y

=M

Y

=2Ma'” | f |l
it follows that
(5~13) (LLnk+1)|| ﬁe - f"w =2M " f"M(LLnk+1)(nk/nk+l)l/2 — 0.

Since ng+1bx* — 1, (LLng+1)bi* — 0, we have from (5.13) and Theorem 4.7 (2), applied
with (LLn+1)"? in the role of a; and b, in the role of n;, putting ¢ = c,,,:

lim infy_,(LLns+1) log P{|| 8:Y%Zs, — b5 2apsifi |l» = d(1 + €)2V2b;2niE (LLng1) ™%}
= —c(d(1 +¢)2"%) 7 — (W) 2V .

So given § > 0, there exists ko such that & = %, implies
(5.14) P(A:) = exp{— {c(d(1 + &)2") 7 + || f |z + 8} LLns+1}.

Since

cd1+ 2+ | fli=Q - fDA+e+[fli<1,
choosing § small enough we have from (5.14)
Yr P(Ar) = Y5k, exp{— aLLns+1} = Yp=tot1 (k log k)™

with @ < 1 and therefore the series diverges, establishing (5.12) and thus completing the
proof.

COROLLARY 5.6. Let {X;} be a sequence of independent, identically distributed B-
valued random vectors. Assume EX: = 0 and for every g € B, E @%(X1) < . Let y be the
centered Gaussian measure on B such that [ ¢*> dy = E@*(X,) for all ¢ € B’'. Then

LLn\"*
lim infn_m<—> maxe<.p(Sk) = c¥7, as.
n

Proor. Follow at once by observing that max,<,p(Si) = || Z,|» and taking f = 0 in
Theorems 5.1 and 5.5. 0
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6. Improvement and generalization for vector-valued Brownian motion of
some results of Csaki. The following result improves and generalizes a result of Csaki
([7], Theorem 2). In the case of one-dimensional Brownian motion, Cséki obtained the
upper bound given below for all f € H, with | f||. < 1 and the lower bound for all f € H,
such that || f|. < 1 and f’ is of bounded variation (the question of the validity of the lower
bound when f’ is not of bounded variation is stated on pages 289 and 298 of [7]).

We use the definitions of Section 2 and 3.

THEOREM 6.1. Let B be a finite dimensional Banach space and let y be a centered
Gaussian measure on B. Let {W(t):t = 0} be y-Brownian motion, p the associated
Wiener measure on C(I, B). Then for all f € H, such that || f|. <1,

lim inf,_,w(LLt)||(2tLLt)'l/2W((-)t) — [l = (cyp/22QA = | fIB) ' as.
ProoF. The two parts of the proof are similar to the proofs of Theorem 5.1 and 5.5,

respectively. We will indicate the main steps.
(1) Just as in Theorem 5.1, we prove first: for every ¢ > 0,

(6.1) lim infy_,d "(LLng)||(2neLLne) 2 W((-)e) — flle = 1 —¢, as,
where d = (¢,,/2)2(1 — || f|2)™"/* (of course, it is immaterial here whether is defined as
exp(ko(k)) or [exp(k¢(k))]). Let

Ap = {|| n£2W((-)ne) — @QLLn&)"’f |l =< d(1 — e)(2@LLn) )Y
(6.1) will follow if we prove that Y P(Ax) < . Now

P(A;) = P{|| W— (2LLn#)"*f | = d(1 — €)(2(LLn:)™")%}
and by Theorem 3.3 we have
(LLr) "'log P(Ar) = —cyp(d(1 = )27 = (A2 [

The proof of (6.1) is completed as in the proof of Theorem 5.1. In order to complete the
proof of the lower bound result, we just point out that the inequality given in Lemma 5.3
is valid for Brownian motion when one takes ¢t € R* instead of n € N and W((-)¢) instead

of Z,..
(2) In order to prove the upper bound result we follow the steps in the proof of Theorem

5.5 with certain modifications. As in Theorem 5.5, it is enough to show: there exists {rn:}
C N, n; 1 o, such that for all e > 0

(6.2) lim infy_ d " (LLns)||[(2nsLLng) W (()e) — flln =1 +e. as.
Take n, = k%, ar = (2n:LLns)"2 Inequality (5.10) is substituted here by
©63) [ axhW(()nen) = fllo = | @ W((ma) = f@( Dl + || 6 arss Wi = fe [l
where «, by, and f; are as in (5.10) and
Wi(t) = b 2{W(ng + thy) — W(n)), .(t e I).

By the law of the iterated logarithm for a Brownian motion in a finite-dimensional
space,
lim sups_war' || W((:)ne) [l <o, as.

It follows that

(6.4) (LLnsaits | W((-)m) | — 0, as.
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Just as in Theorem 5.5,

(6.5) (LLne+y)|| f(a (-]l — 0.
From (6.3)-(6.5) it follows that in order to prove (6.2) it is enough to prove
(6.6) lim infy_wd " (LLng+1)|| 0%%a2' Wi — fi | <1 +¢, as.

But { W,} is an independent sequence of y-Brownian motions over I; therefore if we define
A= {d l(LLnk+1)||bl/2aki1 W — ﬁe Iloo <1l+ e},

by the Borel-Cantelli Lemma, (6.6) will follow if we can prove Y, P(A,) = . By Theorem
3.4 and (5.13), we have

(LLng+1) " "log P(Ar) = —c,p(d (1 + £)2V 2)“"\— )| 22f 2.
The proof of (6.6) is completed by following the final steps in the proof of Theorem 5.5. 00

The next result, corresponding to Theorem 5.4, is proved by an easy modification of the
first half of the proof of Theorem 6.1. It improves a result of Csaki ([7], Theorem 1) for the
case of one-dimensional Brownian motion.

THEOREM 6.2. In the same framework of Theorem 6.1, for all f € H, with | f|. =1,
Hm ¢e(LLA|(2ELLO 2 W((+)D) ~ fllo = o, a.s.
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