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ON CONTINUUM PERCOLATION

By PETER HAaLL

Australian National University

Let 2 be a homogeneous Poisson process in R”*. At the points of P,
centre k-dimensional spheres whose radii are independent and identically
distributed. It is shown that there exists a positive critical intensity for the
formation of clumps whose mean size is infinite, if and only if sphere content
has finite variance. It is also proved that under a strictly weaker condition
than existence of finite variance, there exists a positive critical intensity for
the formation of clumps whose size is infinite with positive probability.
Therefore these two critical intensities need not be the same. Continuum
percolation in the case of general random sets, not just spheres, is studied,
and bounds are obtained for a critical intensity.

1. Introduction and summary. The problem of percolation in the con-
tinuum may be described as follows. Let 2 be a homogeneous Poisson process in
k-dimensional Euclidean space, R*. Let S be a random k-dimensional shape,
often a sphere. Centre an independent copy of S at each point of 2. We shall say
that percolation occurs if, with positive probability, any given random shape is
part of an infinite clump of random shapes.

The concept of continuum percolation was introduced by Gilbert [4], albeit in
a slightly different form. Gilbert noted similarities between continuum and lattice
percolation. One of the results in this paper concerns the extent to which such
similarities may be relied upon. It is known that in the case of site or bond
percolation on a regular lattice, the critical probability at which percolation takes
place is often the same as the probability at which mean cluster size becomes
infinite. See for example Kesten [9, pages 52-68]. This property can be particu-
larly useful if critical probability is to be estimated by simulation, since it is
relatively easy to estimate the graph of expected cluster size against occupation
or passage probability, and determine the asymptote at which the curve diverges.
Such a procedure was used by Gilbert [4] and Roberts [14], among others, to
estimate critical intensity in the case of percolation in the continuum. We shall
show in the preseént paper that for continuum percolation, in the important case
where shapes are random radius spheres, the critical intensities at which clump
size and mean clump size become infinite, are not necessarily the same. Indeed, it
is possible for one of these quantities to be positive and the other to be zero. We
shall prove that the critical intensity at which mean clump size becomes infinite,
is strictly positive if and only if sphere content has finite variance.

It is perhaps worth giving an intuitive explanation of our argument. There are
two ways of describing the size of a clump on the basis of counting the number of
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shapes. The most common, and that which is most important from a physical
point of view, is to define clump size to equal the total number of shapes in the
clump. An alternative approach is to define size in terms of the total number of
shapes protruding from the clump—that is, the number of shapes comprising the
perimeter, or boundary, of the clump. It is likely that as the area covered by a
clump increases, the total number of shapes in the clump will increase at a faster
rate than the number comprising the perimeter. Therefore there may exist an
intensity at which the expected number of shapes in the perimeter is finite, but
the expected total number of shapes in the clump is infinite. This is basically the
argument which leads us to the results described in the previous paragraph.

In addition to treating the percolation problem for random radius spheres, we
shall study continuum percolation for quite general random shapes. Percolation
does not require that the k-dimensional shapes have positive Lebesgue measure.
For example, percolation in R* can occur if the shapes are small sections of
hyperplanes. In this case, a necessary and sufficient condition for percolation at
sufficiently high intensities is that the orientation of the shapes have a nondegen-
erate distribution. We shall also provide new, rigorously determined upper and
lower bounds to the critical intensity for continuum percolation when the shapes
are discs of unit radius placed randomly into the plane. Both bounds improve on
the best known previously, and complement estimates which have been obtained
via simulation or by extrapolation from the lattice case. Our results will be
presented together in Section 3, and their proofs given in Section 4. Section 2 will
present notation, and some examples to provide insight into the types of condi-
tions which are necessary to rule out pathological cases.

Continuum percolation lacks much by way of an orderly mathematical struc-
ture. Methods based on enumeration, which prove so useful in determining
critical probabilities for lattice percolation, lose much of their power in the
continuum case. However, continuum and lattice percolation are close in spirit,
and so it is worth going into a little more detail about related results in the
lattice case. Lattice percolation was introduced by Broadbent and Hammersley
[2] as a mathematical model for dispersion of fluid through a random porous
medium. Smythe and Wierman [17, Chapter 3] and Kesten [9] have given
engaging, rigorous accounts of the general problem of lattice percolation in two
dimensions. The case of bond percolation on the square lattice has received the
greatest attention in the literature. For this case, let p, denote the critical
probability beyond which infinite clumps start to form, and let p, be the
probability beyond which occur clumps whose expected size is infinite. Clearly,
Pr < py. Seymour and Welsh [16] showed that p, + pr =1, and Kesten [8]
proved finally that py = pr = ;. See also Sykes and Essam [18] and Russo [15].

Gilbert [4] introduced continuum percolation as a model for the growth and
structure of random networks in communication theory. Today the physical
applications of continuum percolation, for example to the modelling of impurity
conduction in semiconductors, are of greater importance. In many of these
applications the random shapes are taken to be discs in two dimensions, or
spheres in three dimensions, whose radii represent some sort of interactive
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distance. Two intersecting spheres could be said to be bonded in some manner. In
conduction models, the critical intensity beyond which infinite clumps form can
be interpreted physically as the impurity density beyond which conduction takes
place. Pike and Seager [13] have summarised some of the physical applications,
and discussed continuum percolation for several types of random shapes. Haan
and Zwanzig [5] and Gawlinski and Stanley [3] have each given tabular summaries
of various efforts to estimate critical intensities for continuum percolation.
Kertész and Vicsek [7] have described simulation results in the case of random
radius spheres.

2. Notation and introductory examples. The points of a homogeneous
Poisson process 2 in R*, of intensity A > 0, may be described by a countable
collection of random vectors. We denote these by X, X,,..., in any systematic
order. Let S be a random k-dimensional set, and let S;,S,,... be independent
copies of S, also independent of 2. For our purpose, there is no essential loss of
generality in assuming that S is a random closed set (RACS). This enables us to
employ Matheron’s [11] simple definition of a RACS, as a measurable mapping
from our probability space into the measure space double consisting of the class
of closed subsets of R* and its associated o field. We shall not again make specific
reference to the theory of random (closed) sets, except to note here that the fact
that S is measurable ensures that many random scalar quantities associated with
S, such as the Lebesgue measure of S, are well-defined random variables taking
values on the extended real line. This obviates the need to qualify intuitively
obvious steps in our arguments by caveats about measurability and “ well-defini-
tion.”

We shall call the set

X,+ 8= {xcR:x-X,€85),

the “random shape S; centred at X,.” The coverage process % is the stochastic
pattern generated by overlapping random sets X; + S;, i > 1.

Let & be a bounded, measurable subset of R*. The expected vacancy within
&7 due to the coverage process %, equals

E{V(«)} = fﬂP(x is not covered by any random set X, + S;) dx

= ||%Z|| P(0 is not covered by any random set X, + S;)
= | llexp{ —AE(IISI) },
where ||#|| denotes k-dimensional Lebesgue measure of a set .. Therefore
P{V(«/) =0} =1 ifandonlyif E(]S||) = .
This implies that k-dimensional Lebesgue measure of the total uncovered area of
R, equals zero with probability one if and only if E(||S|]) = cc. In most practical
cases, for example where S is a sphere, E(||S||) = co implies that R* is completely

covered with probability one. To avoid this type of pathology we shall always
assume that E(||S])) < .
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Let Y be a random vector in R%. We claim that the mosaic ¢’ in which
random shapes are distributed as Y + S instead of S, has the same properties as
%. To see this, let Y; + S; be independent copies of Y + S, independent also of 2.
Conditional on S,,S,,..., the point process #' = {X; + Y,, i > 1} is Poisson-
distributed with intensity A. Therefore ¥ and ¢’ must have identical properties.
This translation invariance will be used on several occasions below, without
further comment. ’

The next two examples illustrate the phenomenon of infinite clumping in the
case k = 1. In the first example, no infinite clumps can ever form; in the second,
each part of each random shape is part of an infinite clump.

ExXAMPLE (i). Assume % = 1. Suppose the sets S; are closed intervals of
random location and random length. There is no loss of generality in assuming
that left hand endpoints of the intervals are points of £. Our restriction that
E(||S|]) < oo means that the intervals have finite expected lengths, equal to « say.
The resulting coverage process may be modelled by any of several classical
stochastic processes, such as an M/G/« queue. In this way it may be proved
that the expected number of intervals making up an arbitrary clump, equals
e** < co. (This is the same as the expected number of services in an arbitrary
busy period of an M/G/x queue.) Therefore no clumps containing an infinite
number of segments can ever form.

EXAMPLE (ii). Assume % = 1. Define the set %, by

n2
SH= U [i/n—(2n2+1)_1,i/n+(2n2+1)_1], n>1.
i 2

i=-n

The distribution of the random shape S is given by
K 0 —_ 1
P(S=%)=cn% n>1, wherec= (Zn_Q) .
1

Note that ||.%,|| = 2 for each r, so that ||S|| = 2. It may be proved that for each
£> 0,
(2.1) the interval (—¢, /) is intersected by an infinite number of the

’ sets X; + S;, with probability one.
Indeed, if n, denotes the smallest integer exceeding 1,/2¢, then the set x + %,
will intersect (—7¢, ¢) whenever |x| < n and n > n,. Therefore (2.1) will follow
from

(2.2) P(|X, < N;io0.) =1,
where N,, N,,... are independent integer-valued random variables defined by
S; = &, Put

« E;= {forsomei, X;€ (j—1,j)and |X;| < N;}, —o0 <j< oo.

The events E; are independent,
(2.3) P(|X;] < N;i0.) > P(E,io0.),
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and
P(E;) > P{forsome i, X,€ (j— 1, j)}P(j < N,)
=c(l—e?) Y n2
n>j
Therefore

o0 o0 o0
YPE)>2cl-e?))Y Yn?=oo,
J=1 J=1n=j
and so by the Borel-Cantelli lemma, P(E; i.0.) = 1. The desired result (2.2), and
hence (2.1), now follows from (2.3). Result (2.1) implies that with probability one,
each random set X, + S; intersects an infinite number of other random sets.

We may avoid the pathological behaviour described in Example (ii) by assum-
ing that with probability one, the shape S is connected. Under this constraint, we
can give simple, formal definitions of a clump and an infinite clump. A clump C is
a connected union of a collection of random sets X; + S,,

(2.4) c=UX, +8s,),

which has empty intersection with each random set not appearing in the union.
The clump is infinite if there is an infinite number of distinct subscripts ;
appearing in (2.4). When £ = 1, the only connected shapes are intervals, and then
Example (i) shows that with probability one, no infinite clumps can ever form.

The situation is rather different in two or more dimensions. There it is possible
for the shape S to be connected, and satisfy E(||S||) < oo, but still be such that
each random set X, + S; is part of an infinite clump with probability one, for all
values of the Poisson intensity. One class of sets which exhibits this type of
pathological behaviour is that in which S is essentially a sphere with much of its
- content removed, and such that E(||S|) < co but the expected content of the
smallest sphere containing S is infinite. To eliminate this type of behaviour we
shall introduce a little extra notation. Given #C R*, define

5(&) = inf{||T|: I isa[k] sphere, and ¥ I}

and
s(&) = sup{||7||: I isa[k] sphere, and IC ¥}.

We shall strengthen the condition E(||S||) < co to
(2.5) E{5(S)} < o

3. Main results. We begin by discussing the case where S is a sphere of
random radius. Recall from Section 2 that in this situation, E(||S|) = oo is a
necessary and sufficient condition for all of R* to be covered with probability
one. We shall show next that the condition E(||S||?) = oo is necessary and
sufficient for the expected number of spheres in an arbitrary clump to be infinite
for all values of the intensity A. To establish this result it suffices to consider the
case where E(||S|)) < oo, for otherwise each sphere is part of an infinite clump
with probability one.



CONTINUUM PERCOLATION 1255

THEOREM 1. Assume that the shape S is a k-dimensional sphere, where
k = 2, and that E(||S||) < co. There exists A, > 0 such that the expected number
of spheres in an arbitrary clump is finite whenever 0 < A < X, if and only if
E(||S||?) < . Indeed, if E(||S||?) = oo then the expected number of spheres
which are in the same clump as a given sphere and distant no more than one
sphere away from that sphere, is infinite for all values of A.

It will follow from Corollary 2 that if E(||S|]) > O, then there exists A; > 0
such that the expected number of spheres per clump is infinite for all A > A,. Of
course, the case E(||S||) = 0 is trivial, since it implies that with probability one,
all spheres are degenerate. Therefore the restriction

0 < E(|IS|I?) <

is equivalent to the condition that there exists 0 <A, < oo such that the
expected number of spheres per clump is finite for all A < A, and infinite for all
A > A,. This type of behaviour is only possible for £ > 2. Example (i) in Section 2
shows that a critical intensity cannot exist in one dimension.

Our next result shows that the restriction E(||S||?) < co is stronger than is
necessary to ensure that for all sufficiently small A, all clumps are finite with
probability one.

THEOREM 2. Assume that the shape S is a k-dimensional sphere. If
E(|IS|IP~/®) < co,

then for all sufficiently small N\, the number of spheres in each clump is finite
with probability one.

If S is a k-dimensional sphere where £ > 2, and if S satisfies
E(IS|*~4/®) < o but  E(|IS||*) = oo,

then the critical intensity for formation of clumps of an infinite number of
spheres will be strictly positive, while the critical intensity for formation of
clumps with expected number of spheres equal to infinity will be zero.

The following corollary applies to general random shapes, not just spheres.
The condition of connectedness is not crucial, but is imposed so that we may use
the simple definitions of a clump and an infinite clump given around (2.4). Note
the definition of §(S) which preceded (2.5).

COROLLARY 1. Let S be a random set, connected with probability one. If
E{3(S)?} < co then for sufficiently low intensities, the expected number of
random shapes making up an arbitrary clump is finite. If E{5(S)*~"/?} < oo
then for sufficiently low intensities, the number of random shapes making up an
arbitrary clump is finite with probability one.

Our next task is to determine conditions which give rise to percolation at high
intensities. This requires constraints rather different from those imposed in
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Corollary 1. To illustrate the contingencies which can arise, let us consider the
case k = 2, and examine the distribution of “sticks” (line segments) in the plane.
Suppose the sticks are of fixed length, and have their centres at points of a
homogeneous Poisson process. If all sticks have the same orientation then no
intersections ever occur, and so there is no possibility of even finite clumping.
However, Theorem 3 below shows that in all other cases—that is, whenever the
distribution of orientation is nondegenerate—percolation occurs for all suffi-
ciently high intensities.

We shall state Theorem 3 in the general k-dimensional case. Place a Cartesian
co-ordinate system (x,,...,x,) into R*, and let ¥© denote the unit (k — 1)-
dimensional sphere lying in the hyperplane perpendicular to the x, axis and
centred at the origin. Given a unit vector 6 from the space © of all such vectors,
let A denote the image of & after rotation to a hyperplane with normal
vector 0, still centred at the origin. Let 8 be a random vector distributed on £,
and define the random shape S© to be A©. Let S, S{?,... be independent
copies of S, and let X,,X,,... be points of a homogeneous Poisson process 2
in R*, independent of the S¥’s. We shall study the coverage process %©
generated by the small hyperplanar segments X, + S©, i > 1.

THEOREM 3. Assume that k > 2, and that the distribution of 8 has at least
two points of support, 8, and 6,, with 8, # 0, and 0, + —8,. Then there exists a
constant A, depending on the distribution of 8, such that the probability that a
random set X;+ S is part of an infinite clump is strictly positive for all
A > A,

Theorem 3 admits many generalisations. For example, the set %@ does not
have to be perfectly hyperplanar, and neither does it have to be a (k — 1)-
dimensional sphere. In many applications, the random shape S will have positive
k-dimensional Lebesgue measure with positive probability, and in those cases it is
often preferable to frame Theorem 3 a little differently. This is done in Corollary
2 below, in which we revert to the notation of Corollary 1, where S is a general
random shape.

COROLLARY 2. Assume k >2. Let S be a random set, connected with
probability one. If E{s(S)} > 0 then for all sufficiently high intensities, the
probability that a given random set is part of an infinite clump is strictly positive.

Our last theorem gives rigorously determined upper and lower bounds to
critical intensity in the two-dimensional case. Both bounds are improvements on
the currently best available, 0.151 < A, < 0.883, which are due to Kirkwood and
Wayne [10]. Gilbert [4] conjectured, but could not completely prove an upper
bound of 0.87, which is in excess of the upper bound derived below. [To convert
Gilbert’s notation into ours, divide his bounds by 4#. Note that there is a
numerical error in his display (2).]

THEOREM 4. Assume k = 2, and that the shape S is a disc of unit radius.
Let A, denote the critical intensity beyond which infinite clumps start to form,
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and N, the critical intensity beyond which the mean number of discs in an
arbitrary clump is infinite. Then

0174 <X, < A, < 0.843.

4. Proofs. Throughout these proofs we let v, denote the content of a
k-dimensional sphere of unit radius.

PrROOF OF THEOREMS 1 AND 2. Since the Poisson process is homogeneous,
there is no loss of generality in assuming that the random sphere S is centred at
the origin. In all parts of our argument it will prove expedient to give sphere
radius a distribution on the nonnegative integers. Note that Theorem 2 is trivial
if 2 = 1; see Example (i) in Section 2.

It is convenient to establish Theorem 2 first, and so we begin by assuming that
E(||S))?~%/®) < o0. Note that this condition is equivalent to E(R%**7!) < oo,
where R has the distribution of sphere radius. Let R’ — 1 equal the integer part
of R, and note that E(R’)?*~! < oo. If sphere radius is given the distribution of
R’ instead of R, then the probability of an infinite clump occurring will not
decrease. Therefore to establish Theorem 2, it suffices to prove that when the
sphere radius takes only positive integer values and satisfies E(R**~!) < o0, and
Poisson intensity is sufficiently small, the number of spheres per clump is finite
with probability one. This we do by showing that the expected number of spheres
in the perimeter of the clump, is finite with probability one.

We shall construct a multitype branching process to bound the number of
spheres in the clump perimeter. There will be a countable infinity of types,
indexed by positive integers which correspond to sphere radii. Our first step is to
determine the distribution of types.

Suppose an initial sphere of radius i is centred at a point z. The number of
spheres of radius j in our coverage process which intersect the initial sphere, and
which protrude at least partially beyond that sphere, has a Poisson distribution
with parameter

(4.1) ke = Ao (i + )" = (max(0,i = )] by,

where p, = P(R =j). Let this number be N,. The variables N, j > 1, are

stochastically independent. We ignore spheres which are wholly contained within

the initial sphere, since they cannot contribute to the perimeter of the clump. If
an individual of type i is present in the nth generation, then the vector of

numbers of types of his progeny in the (n + 1)th generation will be given the

same distribution as (N}, N,,...). Here N; represents the number of children of

type J. .

Using this type distribution, we construct the branching process as below. The
individuals in the process are points in R*. The individual in the zeroth genera-
tion is the centre of some given sphere, which we may take without loss of
generality to be the origin. Given individuals Z,,,...Z,y in the nth generation,
we define the (n + 1)th generation as follows. Suppose Z,,, is of type i. Let Z,,
be a Poisson process in R* of intensity A, independent of the previous history of
the process and also of £, for ¢’ # £. Centre spheres at the points of £ ,, the
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radii being independent and distributed as R. The progeny of Z ,, of type j in the
(n + 1)th generation, are those points of #,, whose associated spheres are of
radius j, and which intersect the sphere of radius i centred at Z, ,, but are not
wholly contained within that sphere. The expected number of individuals in all
generations of this multitype process, is greater than or equal to the expected
number of spheres which protrude from the clump containing the initial sphere in
the coverage process. (This observation requires the “lack of memory” property

of a Poisson process. Specifically, if # is homogeneous Poisson and if x,,...,x,,
are arbitrary fixed points, then the conditional distribution of Z \ {x,,...,x,,}
given that points of # occur at x,,...,x,,, is the same as the unconditional

distribution of 2. This property, and the fact that our construction adds extra
points in certain cases, ensure that the conditional distribution of the (& + 1)st
generation of the branching process dominates that of the coverage process.)

We shall prove that the expected total population size is finite for all
sufficiently small A. The expected number of immediate type j progeny born to a
type i individual, equals p,;. Define v{™ to be the expected number of type i
individuals in the nth generation, and let v(*) be the row vector whose ith
element is v{™. If the initial individual was of type i, then

v =iM",
where 1 is the row vector whose ith element is one and has all other elements
zero, and where M = (y,;) is a matrix with an infinite number of rows and
columns. See Athreya and Ney [1, page 184] for the relevant theory of multitype

branching processes. Therefore the expected total number of individuals in the
nth generation, is

™38

[«

n) _ n)
Z UJ( - H’(U ’
Jj=1 Jj=1

where p{%) is the (i, j)th element of M". The expected total number of individu-
als in all generations, given that the initial individual was of type i, is

(4.2) =2 2.

n=1j=1
In view of formula (4.1), for i < j we have
B = Aog(i +j)kpj < 2%, A j*p;,
while for i > j,
Bij= Avk{(i +) -G —j)k}pj < const. A\i*~Yp;,
\;vhere the constant depends on none of Z, j or A. Therefore in general,
Bij = cA j{max(i, J.)}kﬂpj < C}\ikiljkpj

for all i, j and A, where c¢ is chosen > 2*v, and depends on none of these
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parameters. Consequently,

o0
M(LZJ)_ Zﬂm“f, (C}\) i jkij ¢ p,
—1

= (eA)’ui* Ytp, < (eAp)’i*~Ytp,,

where p=XY,/%* " p,< 0, the last inequality following from the fact that
E(R*" 1Y) < 0. If p‘” D < (eAp)* 1k Yj*p, for all i, j and A, it follows easily
that p{” < (cAp)"i*~j*p;, and so the latter formula must be true for all i, j, n

and A, using mathematical induction. Substituting this estimate into (4.2) we see

that
o0 o0
pi <N Y (edp)" X J*p; < o0,

n=1 J=1
provided only that A is chosen so small that cAp < 1. In this case, the expected
number of spheres which form the perimeter of the clump containing a given
sphere of radius i, is finite. Since each of these spheres has finite radius, then the
dimensions of the clump are finite with probability one. Therefore the total
number of spheres making up the clump must be finite with probability one.
Next we prove a portion of Theorem 1, by showing that if E(]|S||?) < oo, or
equivalently, if the distribution of R satisfies E(R?*) < oo, then the expected
number of spheres in an arbitrary clump is finite provided A is chosen sufficiently
small. This requires a modification of the branching process argument given
above. We assume as before that R takes only integer values. On the present
occasion we must bound the total number of spheres in the clump, not just the
number of spheres protruding from the clump.
Suppose a sphere of radius i is centred at a point z. Instead of N, we consider
_ N/, equal to the number of spheres of radius j in our coverage process which
intersect the initial sphere. The variables N; are stochastically independent, and
N is Poisson distributed with parameter

(4.3) Wi, = Aou(i +5)"p;.

The branching process is defined as before, except that the type j progeny of the
type i individual Z ,, in the (n + 1)th generation, are taken to be those points in
2,, whose associated spheres are of radius j and intersect the sphere of radius i
centred at Z,,. We may derive an analogue of formula (4.2), and so the proof of
this part of the theorem will be complete if we show that

(4.4) Z Z M/(") < 00.
n=1j=1
In view of (4.3), we have
. w;; < cA{max(i, Y pj < cAitj*p;
for all i, j and A, where ¢ = 2*p,. It now follows as before that for n > 1,

piP < (ehw)"iti*p;,
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where ' = ¥ ,¢%#p, < oo. Therefore (4.4) will hold if A is chosen so small that
cAp < 1.

It remains only to show that if E(]|S||?) = oo then the expected number of
spheres which are in the same clump as a given sphere and are distant no more
than one sphere away from that sphere, is infinite for all values of A. Let R have
the distribution of radius of S, define R” to be the integer part of R, and note
that E(R”)** = . If sphere radius is given the distribution of R”, then the
expected number of spheres distant one or more spheres away from a given
sphere, will not exceed the expected value in the case where radius has the
distribution of R. Therefore we may assume without loss of generality that R
takes only nonnegative integer values.

Suppose a sphere S® of radius r > 0 is centred at a point z. The number, N,,
of spheres of radius i which intersect S, is Poisson distributed with parameter

= Aog(r+i)"p,,
where p, = P(R = i). Let M denote the largest value of i for which N, > 0,

except that we define M = —1 if no spheres intersect S". The variables N, are
independent, and so

P(M=m)=P(N,>0) [ P(N=0)

i=m+1

={1—exp(—um)}exp(— i .ui), m>0,

i=m+1

with

o0 o0
P(M=-1)=1- ) P(M=m)= exp(— Zp.i).
m=0 =0

Note that the entire coverage process may be regarded as the superposition of
independent coverage processes %, %,,..., where %, is generated by spheres of
fixed radius i centred at points of a Poisson process of intensity A p,. The event
{M = m} is the same as the event {N, > 0; N,=0 for i > m + 1}, and so is
measurable in the o field generated by the processes %,,,%,,.1,--. - Thus for any
m > 0 the events {M = m} and {M > m} are stochastically independent of any
event which is measurable in the o field generated by %,,%,..., %,,_,. Define

t=inf{n > 1: p, > 0}.

Conditional on M > ¢ + 1, let S® be any sphere of radius M intersecting S®. In
view of the preceding discussion, the following is true. Conditional on M = m,
where m > t + 1, the number of spheres of radius ¢ which intersect S® is
Poisson distributed with parameter

v,, = Avy(m + t)kpt.

Therefore the expected number of spheres of radius ¢ distant one sphere or less
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away from the initial sphere of radius r, is not less than

p= X P(M=my,
m=t+1

(4.5) . .
> Avkptexx)(— Eou,») > {1 - exp(—p,)}m"

m=t+1

Since E(||S||) < oo then

o0
p; < const. Y. i*p;, < oo,
0 i=1

Ior

l

and also,
1 - exp(—p,,) = pexp(—p,) = Ao,m*p,exp(—p,,)
> const. m*p,,

for all m > 1, where “const.” denotes a generic positive constant not depending
on m. Substituting these estimates into (4.5), we see that

o0
p>const. Y. m*p, = oo,
m=t+1

since E(R?*) = oo. Therefore p = oo, which completes the proof of Theorem 1.

Proor oF COROLLARY 1. The Corollary is trivial when &2 = 1; note Example
(i). Therefore we may confine attention to the case £ > 2. Let ¥ be a coverage
process in which the shapes are distributed as S. Given a random shape S, let T'
be the closed k-dimensional sphere centred at the origin and such that ||T'|| = s(S),
and let Y be a random vector in R* such that S € Y + T. Consider the coverage
process €’ in which the shapes have the distribution of Y + T, and are centred at
points of a Poisson process of the same intensity as that for ¥. The expected
number of shapes per clump, and the probability of a shape being part of an
infinite clump, are not greater for ¢ than for ¢’. The Corollary follows on
applying Theorems 1 and 2 to the process ¢’.

Proor oF THEOREM 3. We shall derive a lower bound to the probability of
infinite clustering, by comparing our coverage process to a site percolation process
on a rectangular lattice in R*.

Let £ > 0 be so small that the sets

T(3¢) = {0 Q:10 — 0] <3e}, fori=1and?2,

are disjoint. (The set Q is the surface of the unit k-dimensional sphere centred at
the origin.) Given z € R* and 0 € @, let %(z,0) denote the open (k& — 1)-
dimensional sphere of unit radius centred at z and whose plane has its normal in
the direction of 0. Let Z denote the set of all integers. The sites in the percolation
process will be the points of the lattice (r,Z)*, for some r; > 0. Two sites will be
said to be adjacent if they are distant exactly r, apart.
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Choose r; so small that if x, and x, are any two adjacent sites of the lattice,
the two (k& — 1)-dimensional spheres (1/2)%(x,,¢,) and (1/2)%(x,, $,) have
nonempty intersection whenever ¢, € 7;(2¢) for i = 1 and 2. Next, choose r, €
(0, r,/2) so small that the spheres %(y,,¢,) and %(y,,$,) have nonempty
intersection whenever x, and x, are adjacent sites, |x, — y;| < r, for i = 1 and 2,
and ¢; € 7 (¢) for i =1 and 2.

Let J(x, r,) denote the k-dimensional sphere of radius r, centred at the point
x. Classify each site of the lattice (r,Z)* as either “type 1” or “type 2,” in such a
manner that no type i site is adjacent to another type i site, for : = 1 and 2.
(Once any given site has been classified, the classification of all other sites is
determined, so there are only two different possible classifications.) Distribute the
points X of the Poisson process 2 throughout R*. Let x € (r,Z)* be a site of
type i. We shall say that x is occupied if some point of £ lies within the sphere
J (%, 1y), and is such that the associated random shape S/ (actually, a (£ — 1)-
dimensional sphere %(0,0;), for some random orientation vector 8;) has orienta-
tion 6; lying in the set J,(¢). It follows from our construction that the following
properties hold. (i) The probability p, that a site of type i is occupied, depends
only on i and not on other characteristics of the site. (ii) The value of p, increases
to one as Poisson intensity, A, increases to infinity. (iii) The occupation of a given
site x is stochastically independent of the occupation pattern of any set A of sites
for which x ¢ A. (iv) If two adjacent sites x, and x, are occupied, then there
exists points X; € J(x,, rp), for /=1 and 2, such that the random sets X TS
. =1 and 2, have nonempty intersection.

In view of property (iv), there will exist an infinite clump of random sets
X, + S,, if there exists an infinite path composed of bonds linking adjacent
occupied sites. Consider the simpler site-percolation process on the rectangular
lattice Z*, in which each site is occupied with probability p = min( p,, p,) and
vacant with probability 1 — p, independently of all others. The probability that
a given site is part of an infinite clump (or “cluster”) for this process, is no less
than the probability that a site is part of an infinite cluster for the former
two-parameter site-percolation process. It follows from the theory of site percola-
tion that if p <1 is sufficiently large, the probability of an infinite path is
strictly positive. (In the case k& = 2, the critical probability for site percolation on
the square lattice satisfies 0.5 < p_, < 1; see Higuchi [6]. When & > 3, the critical
probability is bounded above by the probability in the case & = 2. Thus, p, <1
for all k.) In view of property (ii) above, this means that the probability of an
infinite path is positive for all sufficiently large A.

Proor orF COROLLARY 2. Let T denote the open sphere centred at the origin
and such that ||T|| = s(S). Choose Y € R* such that Y + 7' S. We claim that
there exists a k-dimensional sphere .7~ with fixed centre and radius, such that

(4.96) P(IJcY+T)>o0.

To prove this, note that since E{s(S)} > 0 we may choose a fixed sphere 77, of
radius 2r > 0 and centred at the origin, such that P(Z; € T') > 0. Let Y* have
the distribution of Y conditional on 7, € T, and let y be a continuity point of
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Y*. Then
Py +(1/2)7, Y+ T) > Py +(1/2)7,C Y + 717, S T) x P(7,C T)
>P(Y-y|<r)P(7,cT)>0.

Therefore (4.6) will hold if we take =y + J,, where J, = (1/2)7,.

We shall use the sphere .7 to construct a new coverage process %,, as follows.
Delete the set X; + S; from the collection {X; + S;, i > 1} if 7¢ S;, and replace
X;+S;, by X;+7 if g S,. This gives rise to a sequence of random sets
Z,+ 7, where Z,,Z,,... are points of a Poisson process in R* of intensity

p=mn(A)=AP(ICS).

In view of (4.6), P(J < S) > 0. Define %, to be the coverage process generated
by Z, + 7, i = 1. If the probability is positive that a given random set in %, is
part of an infinite clump, then the probability is also positive in the case of %.
Therefore the proof will be complete if we show that for some p > 0, the
probability of infinite clumping is positive for #,. Indeed, since the coverage
process %, generated by Z; + 7, i > 1, has the same properties as %,, we may
prove instead that infinite clumps have positive probability of forming in %,.

We may assume without loss of generality that the sphere .7, is of unit
radius, i.e. r = 1, since this situation may always be achieved by rescaling. In this
case, the k-dimensional sphere .7, contains any number of (2 — 1)-dimensional
unit spheres centred at the origin, of the type ¥ considered in Theorem 3. It
" then follows immediately from Theorem 3 that infinite clumping occurs in %,
with positive probability if p is sufficiently large.

PROOF OF THEOREM 4.

Part(i). Lower bound. As in the proof of Theorem 1, our argument relies on a
multi-type branching process approximation. However, the distribution of types
is quite different in the present case. Types are indexed by the continuum in the
interval (0, 2).

Let 7 (x) denote the disc of radius 2 centred at x € R2. “Individuals” in the
branching process are points in R2 The individual in the zeroth generation is
the point X,. Given points Z,,,,...,Z,y in the nth generation, we derive the
(n + 1)th generation as follows. Suppose Z,; is a child of Z,_, ; from the
(n — 1)th generation. Let %,; denote the set of points within the lune

y-(zni) \j—(z ) ='7—(Zni) ny—(zn—l,j)c’

n-1,j

resulting from a Poisson process &,; of intensity A, where #,; is independent of
all variables defined previously and also of &, ; for j # i. The points within %,
are the progeny of Z,; in the (n + 1)th generation.

LetZ,,, , be any one of the points in %,;. We shall say that Z,, . , , is of type
t, where 0 <t <2, if |Z,,, ,— Z,]|=t The distribution of the number of
immediate progeny of Z ,; that are of a type lying between ¢ and ¢ + dt, depends
on previous history of tl.- process only through the type of Z, ;. Furthermore, the
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distribution does not depend on n. These observations follow from the fact that
the distribution of the number of immediate children of Z,; of types between y
and y + dy, depends only on the area dA of the intersection of the lune
IJZ,)\T(Z ) with a thin circular shell of radius y:

dA =|[7(Z,) N T (Z,-1 )] N {z: y <2~ Z,il <y + dy} . '

The value of dA depends on past history only through x = |Z,, - Z,_, .

The expected number of discs in the clump containing the unit disc centred at
X, is bounded above by the expected total number of individuals in all genera-
tions of the branching process. Qur aim is to determine a value A; such that, for
all A < A,, the expected total number of individuals in the branching process is
finite.

Let g(y|x)dy denote the area element dA, given that [Z,, — Z,_, ;| = x. Then
g(yx)>0if 2—-x<y<2 and g(y|lx)=0 if 0 <y <2 — x. The expected
number of immediate progeny with types between y and y + dy, parented by a
type x individual, equals Ag(y|x)dy. Let N'g,(y|x)dy denote the expected
number in the nth generation which are of a type between y and y + dy, given
that the zeroth individual was of type x. Then g, = g,

2
Mg (ylx) = /0 Ag(¥|2)Ng,(2|x) dz

2
= N1 [g(y12)g,(2lx) dz,
0

and the expected total number of individuals in all generations, given that the
zeroth individual was of type x, equals

(4.7) 1+ ij: )\"/:gn( y|x)dy.

We shall prove that the series in (4.7) converges whenever A < A, = 0.174.
Consider the integral operator T, defined by

(Te)(x) = [ “a(y)a(ylx) dy.
Then
[y dy = (1) (),

where 1 denotes the function which is identically unity on (0,2). Therefore the
desired result will follow if we prove that the maximal eigenvalue, p, of the linear
operator T, does not exceed A;'. There are numerical procedures for computing
maximal eigenvalues, and these show that in the present case, p = 5.718 + . Note
that, after a little trigonometry,

g(ylx) = 2yarccos{(2xy) "'(4 — x% - y%)}
if 2 — x <y < 2. Furthermore, g(y|x)=0if 0 <y <2 — x.
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Part (ii). Upper bound. Our argument is based on site percolation on the
regular triangular lattice in R2. The lattice is composed of equilateral triangles,
each of which has unit side length. At each site of the lattice, construct a “curved
sided hexagon,” in which the arcs forming the sides are portions of circles of unit
radius whose centres are the midpoints of the six bonds radiating from the site.
We shall define a site to be occupied if and only if the curved sided hexagon
associated with that site contains a point of the Poisson process of intensity A in
R 2. Thus, the sites are occupied or vacant independently of one another, and for
each site the probability of occupation equals

p=1l-e,
where 2 denotes the area of the curved sided hexagon.

Each pair of adjacent occupied sites will be thought of as being bonded. If two
adjacent sites s, and s, are bonded, then there is a disc centred within the curved
sided hexagon centred on s, which intersects a disc centred within the curved
sided hexagon centred on s,. Therefore if site percolation occurs in the triangular
lattice—that is, if there is positive probability of any given site being part of an
infinite chain of bonded sites—then there is positive probability of any given disc
being part of an infinite clump of discs. Site percolation in the triangular lattice
occurs if and only if p > }; see Kesten [9, pages 52-53]. Therefore a sufficient

condition for infinite clumping is that
A > a2 Hog?2.

A little trigonometry shows that < = 0.8227 — , whence < 'log2 = 0.843 — .
Consequently, A, < 0.843.
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