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ISOTROPIC STOCHASTIC FLOWS
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University of Aberdeen, Scotland and University of Southern California

Dedicated to the memory of Mark Kac

We consider isotropic stochastic flows in a Euclidean space of d dimen-
sions, d > 2. The tendency of two-point distances and of tangent vectors to
shrink or expand is related to the dimension and the proportion of the flow
that is solenoidal or potential. Tangent vectors from the same point tend to
become aligned in the same or opposite directions. The purely potential flows
are characterized by an analogue of the curl-free property. Liapounov expo-
nents are treated briefly. The rate of increase or decrease of the length of an
arc of small diameter is related to the shape of the arc. In the case d =2 a
sufficient condition is given under which the length of a short arc has a high
probability of approaching 0.

1. Introduction. A stochastic flow is a family of random mappings X_,,
0 < s <t< oo, of aspace M into itself, such that X,, o X, =X  if s<t<u,
X, is the identity map, and X, ,, X, ,,... are independent if s, < ¢, <, <
ty < --- . We treat the case M = R, d > 2, with sufficient conditions imposed
so that X has a version which for each s < ¢ is a diffeomorphism of R? onto itself
and such that X (x), X;'(x), DX (x) = (d,X}(x)), and DX_,'(x) are jointly
continuous in 0 < s <t < oo and x € R%. We put X, = X,,.

A number of authors have established conditions under which such flows exist;
relevant references include [1], [4], [9], [10], [12], [13], [15], [16], [19], [20], [24].
For our purposes it is important to relate the flow to the correlation tensor
b(x) = (b?%x)), p,q =1,2,...,d, of a certain R%valued homogeneous random
“generating” field U(x) = UP(x), p = 1,2,..., d, where EU”(x) = 0 and

bP9(x) = EUP(y + x)U%(y)
(1.1) =1ti{1(} tE(XP(y+x) — yP — xP)(X(y) — y9).

This field enters more or less explicitly in several of the above references.

The tensor b(x) determines the flow uniquely. (Inhomogeneous correlation
tensors b(x, y) have also been treated in some of the above references.) We shall
assume that b is isotropic in the vector sense: If G is any real orthogonal matrix,
proper or improper, then

(1.2) b(x) = G*b(Gx)G,
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1156 P. BAXENDALE AND T. E. HARRIS

where G* is the transpose of G. If we think of U as Gaussian, which is
appropriate, (1.2) implies that GU has the same law as U - G, and as we shall see
later, that the process GX,, ¢ > 0 has the same law as X, ° G, ¢t > 0; i.e., the flow
is isotropic.

Isotropic flows have nice properties which simplify their computational treat-
ment. Lengths of displacement and tangent vectors are Markovian processes
under the flow; so are angles between pairs of tangent vectors. A decomposition
of b into potential and solenoidal parts, available in the isotropic case, due to I1td
[17], Yaglom [29], and Obukhov [26], is reflected in certain properties of the flow,
which depend on how close it is to being potential or solenoidal. In particular if
d = 2 or 3 and the flow is close to potentlal displacement and tangent vectors
tend to shrink.

After reviewing some properties of vector random fields in Section 2, we give
an appropriate construction of our flow in Section 3 and discuss the motion of
finite sets of points. The behavior of the distance between two points is im-
portant, and is related to the dimension as well as the proportions of potential or
solenoidal components. Sections 4 and 5 treat the flow of tangent vectors
associated with the flow X. This again is related to the dimension and the
proportion of potential or solenoidal parts. Certain angle-length relations be-
tween pairs of tangent vectors are given; these appear later in the brief discussion
of Liapounov exponents given in Section 7. In particular, tangent vectors from
the same point tend to line up in the same or opposite directions. In Section 6 we
characterize isotropic potential stochastic flows by an analogue of the curl-free
property, although strictly speaking no curl exists.

Sections 8 and 9 treat the length of an arc under the flow. It is seen that the
length-process of a short arc depends on the shape mainly through the integral in
(8.11). Taking, e.g., a purely potential flow, we find that if d = 2, a short arc
tends in a sense to shrink no matter what its shape, the shrinkage being most
rapid for a straight arc and least for certain special shapes (see (8.13)). The main
result here, for d = 2, is Theorem 9.4. If d = 3, with potential flow, a short
straight arc tends to shrink but the special shapes tend to expand, and the
situation is less clear.

Sections 10 and 11 have brief discussions of volumes and of the situation for
homogeneous but nonisotropic flows.

NoTATION. (M, N), is the mutual variation process for continuous
martingales M and N, (M, N); is the time derivative, which always exists and is
continuous for our processes; (M), = (M M),. (¢£,m) is the Euclidean inner
product, |£| = (£ £)'/2, e,, e,,..., e, are orthonormal basis vectors in R% L(R%)
is the space of bounded linear operators R - R% CJ(R™ R") is the set of
mappings R™ —» R" which with their partial derivatives of order < r are
bounded and continuous; Cj;(R™ R') may be written C}(R™) or Cj if m is
understood. Omission of b means boundedness is not required. Cj(R™, R") is a
separable Banach space under the norm

I fIl = sup{| g --- a2 f(x)][:0<|a|= k<1, x € R"}.
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Linear maps are identified with their matrix representations through the stan-
dard basis. (W,) is a Wiener process with mean 0; the rate is 1 unless the contrary
is stated. Processes W;* with different a’s in the same formula are independent.
A* is the transpose of the matrix A.

ApDENDUM. While this paper was in the final stages of typing, the authors
received Le Jan’s preprint [23], treating essentially the same class of isotropic
stochastic flows in R% It appears that there is little overlap in the results beyond
the analysis of the diffusion p, = | X,(x) — X ()| (cf. (3.16)) and the computation
of the Liapounov spectrum (cf. (7.3)), where we have relied on [3]. Le Jan obtains
detailed results on the effect of isotropic stochastic flows on volumes in R? a
topic we have treated only briefly in Section 10.

2. Homogeneous isotropic vector fields. Let (Ui(x),i=1,...,d, x € R%)
be an R%valued homogeneous random field in R* with mean 0 and finite second
moments. We shall make direct use only of the correlation tensor

(2.1) bP9(x) = EUP(y + x)U%( y).
We denote the matrices (bP9(x)) or (b79) by b(x) or b.

CONDITIONS (2.2). b(x) satisfies (1.2) and is not a constant matrix. The
components bP9(x) are continuous and have continuous partial derivatives of
order < 4. (Boundedness is automatic.)

These conditions are assumed throughout. However, in some cases (e.g., [12])
homeomorphic flows exist if only continuous second derivatives are assumed.

We shall occasionally need the spectral formula b7%(x) = [gee'®NFPI(dN),
where, using (2.2), FP9B) for B a Borel subset of R? is a real symmetric
nonnegative definite matrix satisfying F(B) = G*F(GB)G, in particular F(B) =
F(—B). From an analogue of (6.4.1) of [8] [|A|*|FP9(d\)| < co. Hence all first
and third order partial derivatives of 77 vanish at x = 0.

The rest of this section is mainly adapted from Yaglom [29]. Isotropic
correlation depends on two scalar functions B; and By, the longitudinal and
transverse correlation functions:

(2.3) B,(r) = bpp(rel’,), r=0,
(2.4) By(r) = bPP(re,), r=0,q+p.

It follows from (1.2) that B; and By do not depend on the choice of p and q or
of the basis vectors. We then have

(2.5)  b79(x) = (By(|x]) — By(|x]))xPx?/|x|* + By(|x])879,  x#0,
(2.6) bP9(0) = 8§9B,(0) = 8P9B,(0),

where 677 is the Kronecker delta.
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We shall henceforth normalize by taking bP9(0) = §79, so that B;(0) =
By(0) = 1. B, and By are bounded and C* on [0, o) (right-hand derivatives at
0) with

B;(0) = By(0) = 0,
2 def
2.7) - By(0) = —9,3,b77(0) = E(3,U”(x))" = By,
— BY(0) = —9,9,b77(0) = E(3,U%(x))* < By,

using any p, g with p # q. Moreover

(2.8) B, (r)=1-18,r2+ O(r*), r-0,
(2.9) By(r)=1-1Byr*+ 0(r*), r-o.
Then

bP9(x) = 3(By — Bu)xPx? + (1 — }Bylx[?)877 + O(jx|*), x>0,
—8,8;679(0) = 3(B, — By)(8'P879 + §°967P) + Bp8HEP1.

Using quadratic-mean derivatives, EJ,UP(x)d,U%y) = —9,0,b"%x — y), so
that from the second line of (2.10)

(2.11) E(oU(x) - 9,U(x))" = (1 - §7)(38y — By),

(2.10)

(2.12) E(ZapUp(x))2 = E(divU(x))? = 1d[(d + 1)8, - (d - 1)By].

We call U potential (= irrotational = curl-free) if 38y, — B, = 0 and solenoidal
(= incompressible = divergence-free) if (d + 1)8, — (d — 1)By = 0. We shall also
apply these terms to the correlation tensor . If U is Gaussian, so that continu-
ous realizations for U and its first derivatives may be assumed, then in the
potential case U is the gradient of a scalar field. However, additional conditions
are needed to insure that the latter field is homogeneous and isotropic; see [29],
Sections 4 and 5. Similarly, in the solenoidal case, for a Gaussian U, the
realizations are divergence-free vector fields.

From (2.11) and (2.12)

d—-1

(2.13) 0< (d 1 )BN < B, < 3By.

From (2.13) if either B, or By is 0, so is the other and then from (2.10)
bPP(x) = 1 + O(]x|*). Since bP? is the characteristic function of the distribution
FPP this implies bPP(x) = 1, whence E(UP(x) — UP(0))?2 = 0, implying
bPI(x) = 879, excluded by (2.2). Hence B, and By are > 0. Note that U is
potential or solenoidal iff 8; /8, = 3 or (d — 1)/(d + 1), respectively.

For isotropic random fields we have the decomposition

bPT = podP9 + pbpT + p,y 047, pi20,Xp;=1,p,<1,
bRI(0) = BE(0) = 679, bR%(oo) = bg(e0) = O,

(2.14)
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where b, is an isotropic potential covariance tensor and by is isotropic solenoidal.
The representation is unique, with trivial exceptions if p, or p, is 0.

If U is a homogeneous vector field, isotropic or not, there is a decomposition
U = Up + Uy into potential and solenoidal parts (see [17]), but without isotropy
the parts are in general correlated and we do not have a corresponding decom-
position (2.14).

Expressing bp and bg in terms of By, Bpy, Bg, and Bgy as in (2.5), we get

B = po+ mBp, + pyBgy,
By = po + mBpy + 1y Bgy.

The four functions By, etc., depend on two finite positive measures M, and My
supported on (0, ). (In (4.37) of [29] these measures may have some mass at 0,
here absorbed in p,.) Since these four functions vanish at oo, we have B;(o0) =
Bj(o0) = p,. Here are the representations:

Iy (1) Jgia0(rs)
[ (r/s)d/2 - ((rs)()‘;“”/2 JMP(ds),

J, 5(rs)
“/Z—JZMP(%‘),

(2.15)

Bpy(r) = 202721 (3d) [
(0, 0)

Bo(r) =2¢700(3d) [ =05

(2.16)
Bgy(r) = 272/°T(3d)(d - 1) [

Ooo)

Bey(r) = 2472/21(3d) [

J(d—z)/z(rs) Jd/Z(rs)
(0, 00)

(rs)(d—z)/z - (rs)d/2 ]Ms(ds),

d
MP(O’ OO) = d’ MS(O’ OO) = )
d-1
the last line holding because each function must be 1 when r = 0. Because of (2.2)
Mp and Mg have finite fourth moments, and we have

3 ) (d-1Du,
,3L=m/3 Mp(ds) + m/s M;(ds),
(2.17)
9 (d+ p, 9
By = m/s Mp(ds) + m/s Mg(ds).

Mp and Mg are uniquely determined by b, except trivially when p; or p, = 0;
any Mp, Mg, po, k1, by subject to the conditions given above determine an
isotropic covariance tensor b.

REMARK (2.18). Since B;(r) = [gee’™ dF'()) is a characteristic function,
|B.(r)| = 1 for some r > 0 would imply limsup, _, ., B;(r) = 1, which is impossi-
ble because p, < 1 in (2.14). Hence, |B,(r)| < 1 if r # 0, and similarly for By.
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Le Jan [21] has treated an interesting class of flows based on covariance
tensors of the form

bP(x) = §P9C(x) = 81"’_[ M(dr)fd cos(rf - x) dé,
[0,00 ) gd-1

where M is a positive measure on [0, c0) with finite moments. Taking M{0} = 0
for simplicity, we obtain these tensors among the general isotropic ones by taking
p, =1/d, py = (d — 1)/d in (2.14), and Mg = (d — 1)"'Mp = M in (2.16). Using
some Bessel identities we find B;(r) = By/(r) and, hence, from (2.5)
bP9(x) = 879By(|x|)
; J(d_z)/2(|x|s)M(ds)

= 6P~ Y(d — 1)2(d‘2)/2r(§d)_£0 o (zs) 7

Since
2@=2720(1d ) g3 o Tlx])
(rlx) @27

b

f cos(rf - x) df =
Sd—l

we have Le Jan’s form.

3. The flow and its finite-point diffusions. Several authors have shown
that under quite general conditions there is a unique diffeomorphic flow associ-
ated with a given correlation tensor. See for example Le Jan [20], Le Jan and
Watanabe [24] and Baxendale [1]. Here we indicate briefly how the flow may be
realized as the solution of a system of stochastic differential equations.

Let b”9 be a correlation tensor satisfying (2.2). Writing

(3.1) bP(x, y) = b*(x — y),

we obtain a reproducing kernel b79(-, -) and its real separable reproducing kernel
Hilbert space H consisting of vector fields on R%. H may be realized by way of its
identification with the L, space generated by the UP(x), p = 1,...,d, x € R%.
For £ in this space we obtain the vector field f, given by f#(x) = [§, UP(x)] =
E£UP(x). Then b?(x,-) € H, corresponding to £ = UP(x), and we have the
reproducing property [b?(x, -), f ] = fP(x). From (2.2) b?%x, y) is C} in x and
y separately; the bounds on b and its partial derivatives come from the positive
definite property. Hence, there is a continuous inclusion of H in CZR?, R?) (see
[1]; in the present case this can also be seen from the finiteness of the fourth
spectral moments.) In particular || f||cz < K|\ f || g

Let {V,},-, be a complete orthonormal set in H. From the definition of H in
terms of bP9,

(3.2) Y VP(x)VI(y) = bPUx, y) = bP9(x — y).

In general H will be infinite dimensional so that {V,} will be a countable family
of bounded twice differentiable vector fields in R? and (3.2) will involve an
infinite series, but the continuous inclusion property insures the absolute conver-
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gence of (3.2) uniformly in x and y, as well as of

d
(3.3) Zaiv:xp(x)ajvaq(y) = b (x, y) = _aiajbpq(x -

ox* 0y’
In particular
(3.4) Y (V2(x))* = b77(0) = 1,
(3.5) Y (9VP(x))* = —9,9,;677(0) < oo.
Note that if &1, £2,... are independent standard Gaussian random variables,

then U(x) = ££*V,(x) is a homogeneous mean 0 Gaussian field with the correla-
tion tensor b.
Consider, for each x, the Itd stochastic differential equation in R?

(3.6) dX,(x) = LV X, (x))dWp,  Xo(x) = x,

where W', W2,... are independent standard Brownian motions. Kunita [19]
considered such systems, in general not isotropic, for the case of finitely many
W*, showing that they determine a flow of diffeomorphisms; Fujiwara and
Kunita consider the infinite case in [10], indicating that the reasoning is similar.
In our case, in order to maintain isotropy we take the drift to be zero. This
applies to both Stratonovich and It6 drift, since the correction term is

d JvP(x
() 1y oy )

a g=1

1
Va(x) = 5 £,b7%(0) = 0.
q

(See (2.10)). Following the reasoning of [19], we can then assert the existence of a
flow of diffeomorphisms as follows.

Let the standard Brownian motions W* be defined on a complete probability
space (22, F, P), relative to a right-continuous filtration (F,) such that F, contains
all the P-null sets of F. Then for each x, X,(x) is F,-measurable and so is X, '(x).
From the results of Kunita we see that 3 @, € F, P(Q,) = 0, such that » & Q,
implies the following: X, and X, ! are diffeomorphisms of R? onto itself for each
t > 0; X,(x)and X; (x) and their first partial derivatives are jointly continuous
in (¢, x). Putting X,,=X,o X', 0 <s<¢<oo, it can be shown that for
w & Qp, where P(Q)) =0, we have X, ° X =X, forall 0 <s<?¢<u<o0.
Moreover, X, ,, X ,,... have the independence property of Section 1.

In coordinate form (3.6) is dX/(x) = X VP(X,(x)dW;", whence XP(x) is a
martingale. Moreover, if x,,..., x, € R% then (X,(x,),..., X,(x,)) is a diffusion
whose mutual variation processes satisfy

d
<Xp(xl), Xq(xj)>;E £<Xp(xi)’ Xq(xj)>t

(3.8)
= ZVap(Xt(xi))Vaq(Xt(xj)) = bpq(Xt(xi) - Xt(xj))’
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which relates the flow to b It is known [1] that b and the flow determine one
another uniquely.

From (1.2) and (3.8) we see that if G is any rigid motion of R?, the diffusion
(X,(x)),..., X(x3)) has the same law as (G~'X/(Gx)),..., G™'X(Gx,)). More
generally the stochastic flows {X,: 0 < s <¢< o0} and {G™'e X ,cG: 0 <s <
t < oo} have the same law, expressing the isotropy of the flow. Conversely any
stochastic flow having the above isotropy properties arises from a covariance
tensor satisfying (1.2). The normalization 5”9(0) = 8”7 insures that the one-point
motion of the flow is standard Brownian motion in R% The condition that 579 is
not constant merely removes the case where the flow consists of rigid translations
by a single Brownian motion in R

LeEmMA (39). Fixx,y<€ R% x # yandlet V,= X,(x) — X{y). Then V,isa
diffusion with 0 drift and diffusion matrix

(VP, V), = 2(879 = bP(V,)).
This follows readily from (3.8).

LEmMMA (3.10). Let p, = |Vt| (see (3.9)). Then p, may be extended to a
diffusion on R! with operator A:

N(p)) (p), &€Cj.

(3.11) Ag(p) = (1—BL<p>)g"<p)+(d—1>(

Here B, and B are extended smoothly to R' by reflection. From (2.18),
|B.(p)| and |By(p)| are < 1if p # 0, so the drift and diffusion coefficients do not
vanish except at 0. We can deduce (3.10) readily from (3.9) (for a special case see
[12], Section 4).

LEMMA (3.12). For the diffusion p, of (3.10) the point 0 is absorbing and is
inaccessible from any other point. If S is a natural scale function for p, on (0, o)
then: (a) If d > 4, S(0) = S(0 + ) = —o0; S(o0) < 0. (b) If d =3, S(0) > —o0
iff BL/Bn > 2; S(0) < 0. () If d =2, S(0) > — o0 iff Br/Bn > 1; S(o0) =

REMARK (3.13). If d = 2 or 3, S(0) is finite in the potential case and — oo in
the solenoidal case. .

PROOF OF (3.12). Since p, measures the distance between two points in a flow
of diffeomorphisms, 0 is absorbing and inaccessible from any other point. (Alter-
natively one can use Feller’s criterion with (3.14), (2.8), and (2.9).) Now let S be a
natural scale function ([5], Chapter 16):

6 SO0

From (2.8) and (2.9) we have (1 — Bx(s))/(1 — By(s)) = By/BL + O(s?), s > 0.
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Hence, S’(y) ~ Ky (@=VAx/BL 35 y — 0, where K is a positive constant, whence
S(0) is finite iff By(d — 1)/B, < 1. This justifies the statements about S(0) (see
(2.13)).

Since lim, _,  B;(s) = lim,_,  Bxn(s) = po < 1 (see (2.14)), we may write

d(s
S(y) = y-<d-l>exp{—(d _y 2 ds}
1 S
where 6(s) = (By(s) — By(s))/(1 — B;(s)) = 0 as s = 0. This shows S(c0) <
oo if d > 3. If d = 2 it suffices to prove that [?(8(s)/s) ds converges as y — oo,
since then S’(y) ~ Ly ! as y — oo, where L is a constant > 0. From (2.16)

Bru(s) = Box(s) = [ = d(s\)My(aM),
(3.15) %)

Ji(sA
BSL(S)_BSN(S)=‘/;O w)[2 s(}\ ) - Jo(sx)]Ms(dA)-

Using (2.15) and noting that inf, (1 — B;(s)) > 0, it suffices to observe that

') Jz(SA)
f(o,w)MP(dA)j; 5 1d(s)\) < o,

o 2J,(sA)  Jy(sA)
f(o,w)MS(dA)fo PO i ‘d(s}\) < oo,

since Jy(x)/x and 2J,(x)/x? — J,(x)/x are absolutely integrable on (0, c0). O

COROLLARY (3.16). (a) If d > 4, P{p, > o} =1.(b) If d = 3, P{p, > o} >
0; P{p,— 0} >0 iff B./Bn>2; P{p,— 0} + P{p,—0}=1. (c) If d=2,
P{p, > 00} = 0; P(p,~ 0} = 1if B/By>Land =0 if B/By < 1.

In particular p, is transient except in the case d = 2 and B, /By < 1.

4. The tangent flow. From (3.6) the derivative DX,(x) (in matrix form
(9,X/(x)), i = row, j = column), considered as an element of L(R?), satisfies

(4.1) dDX,(x) = L DV,(X,(x)) DX,(x) dWy,  DXy(x) =1,
or in component form

(42) o, Xp(x) = ¥ 3 0V2(X,(x))0,Xi(x)aWe, 3, Xp(x) = 7%

a i=1
Fixing x, put v, = DX (x)(v). Then vf = ¥ 9, XP(x)v? satisfies
(43) dof = X L aVI(X,(x))v dWs,  vf =P

a 1
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LEMMA (4.4). For fixed x and fixed v € T, = R?, v, is a diffusion in R? with
zero drift and diffusion matrix

(vP, v7); = Bylvl*877 + (B, — By)ofvf.

Proor. (Inside the angular bracket v” means the process (v/).) From (4.3),
(3.3), and (2.10), v? is a martingale and

P07y = Z Za Vi(X, (x))v,}: VX (x))v]

- thivtjaiajbpq(o)

i

thvz[ (B — B)(877877 + 8'9877) + By8+877],

giving the asserted value. O

In (4.4), v € T,, the tangent space at x, and v, € Ty () we may speak of v, as
a “tangent vector from 7,.”

It follows from (4.4) that the infinitesimal generator of v, acting on f(v) €
CiRY) is

Af(v) =12 (Bnlv|2877 + (B, — By)vPv7)d,d,f(v).
pq

Changing to spherical coordinates r = |v|, u = v/|v| € S¢ !, noting that v, # 0
implies that a.s. v, # 0 for all ¢ > 0, we find that if f(v) = g(r, u) where g € C?
on (0, 0) X 8471

1 3%
PLCar

where A, acting on u only, is half the Laplacian operator on S~ !:

(4.5) Af= + BN(d_ 1)" + BnAE,

1 a 1 ad
Agg(r,u) = 5 X870 = wrut) oo = p(r,u) = —(d = 1) Kur52(r, u),
p

g JduP du?

where g is any C? extension of g to (0, c0) X (neighborhood of S~'). It follows
(see [18], 7.15 for more general related propositions) that |v,| and u, are
independent, u, having the law B(Byt), where B is Brownian motion on S,
and |v,| having the law

(4.6) o] = [volexp{ B, W, + 3[(d — 1)By — B.]¢t}.

In particular |v,| — 0 as. as t = oo iff (d — 1)8y — B, < 0. This was also the
condition for the finiteness of S(0) (see proof of Lemma 3.12). It can hold only if
d = 2 or 3 and then only for flows that are close to potential.

Now consider a displacement vector V, = X,(x,) — X,(x,) and the tangent
vectors v, = DX,(x,)(v;), i = 1,2, where v, v, # 0.
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LEMMA (4.7). (v,, vy, V,) is a diffusion in R*?, and each component vf or
V2 is a martingale with

(of, vf);

Z8in(Xz(x1))3jVaq(Xz(x1) + Vt)vitvzjt

Ja

() X007, ohehs

(o0, 77y = LaVA(X, () [VI(X(x,) + V) = VE(X,(x))] o,
(49) - o

(ot V95 = SoT X) + )
(4.10) “

X[‘/aq(Xt(xl) + Vt) - Vaq(Xt(xl))]Uét
=~ Zaszq(vt)vét'

We can get (v?, v?), from (4.4) and (V?, V), from (3.9).

l

Proor. The diffusion property follows from standard results on the solution
of the martingale problem [28] and the fact that the right sides of (4.8)-(4.10)

depend only on v,,, v,,, and V,. We obtain (4.8)—(4.10) from the following
relations deduced from (3.6):

dof, = Z Zaiv:xp( Xt(xl))uit dwW¢,

a l

dvj, = Z Zatv:xq(Xt(xl) + Vt)véthV,“,

thp = Z(Vap(Xt(x1) + Vt) - Vap(Xt(xl))) dwy. O
Note that b7%(—x) = b?%x) and 9,67 —x) = —9,bP%x), so 9,b6790) = 0. In
case V, = 0, then V, = 0 for all ¢ and (4.8) gives
(P, vf); = — L9,9,67%(0)v},v4,
(4.11) i ’

= :BN(Um 023)8pq + %(:BL - BN)(Uﬁvgt + 02%0(11:)'

For later use the mutual variation process for the martingale parts M|, and
M,, of |vy,| and |vy,|, v, = DX ,(x;)(v;), is
(M, My); = |oy] "oz~ L ofofi(of, of);
pq
(4.12) ~ - . N
= — o7 |y IZDluDQJtDﬁDgtalajbpq(V;),
Upq

where V, = X,(x,) — X,(x,). This is because d|v,|=|v,| 'E,0f dvZ + drift

pt



1166 P. BAXENDALE AND T. E. HARRIS

terms. In the special case x, = x,, using (2.10), (4.12) becomes

2
(0145 3,)
[014] [0

In our version |v,,| is never 0, so the right side of (4.13) is always defined.

1 1
(4.13) E(BL = B)lvyl vy | + E(BL + By)

5. Angle-length relations for tangent vectors.

LEMMA (5.1). Letu,v € T,, x fixed, be noncollinear (implying neither is 0);
let u, = DX, (x)(u), v,= DX,(x)(v). Let

_ (ug50,)

[w,] v, ’

Y, 6, = cos™'y,,

taking 0 < 0, < m. Then v, is a diffusion on (—1,1) with operator 5(B, + By) X
(1 —yH%%/9y* = (B, + By)y(L — ¥*)3/3v; 6, is a diffusion on (0, ) with
operator (B, + By)sin®0(3%/96%).

This follows from the It6 calculus, using (4.11). Note that —1 and 1 (resp. 0
and ) are inaccessible for vy, (resp. 6,) from the interiors of their respective
intervals.

Since 6, is a bounded martingale and (), > 0 for 0 < 6, < =, lim §, exists a.s.
and by familiar reasoning is = with probability §,/7 and otherwise 0. Hence,
limsin 6, = 0 a.s. This means that under the flow any two initial tangent vectors
in the same tangent space tend to line up in the same or directly opposite
directions. The alignment takes place exponentially fast, as is seen in the
following result. (See the remark about Furstenberg [11] in paragraph 2 of
Section 7.)

LEMMA (5.2). lim,_ (logsiné,)/t = — 4(B. + By) a.s.

PRrOOF. 0, satisfies the stochastic differential equation

db, = B, + Bysing,dW,.

Using Itd’s lemma
logsin g, = logsin 6, + B, + By /tcos 0,dW, — X(B. + Bn)t
.o

and the lemma follows. O

THEOREM (5.3). Let v, v, € T, be noncollinear. Let v;, = DX ,(x)(v;), i =
1,2; 8, = log(|vy,l/|vy]) — log(|vyol/|vgl); and let 6, be the angle between vy,
and v,,. Then S, is a martingale; also (S), = (8, = (B, + By)sin®6, whence
lim S, = S exists a.s. and in quadratic mean.

Proor. Since log|v,,| and log|v,,| have the same constant drift
i[(d — 1)By — B.] (see (46)), S, is a martingale; also dS, = d|v,,|/|v},| —
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d|v,,|/|vg,|- A routine calculation based on (4.13) gives the desired result for (S);.
Then ES? = E(S),= E(0),= E§? — 62 < =2, from which the rest of (5.3) fol-
lows. O

(5.3) will be used in Section 7 for some special results when d = 2. In
particular we shall find the distribution of S_.

REMARK (5.4). If d =2, let 6, be the angle between v, and the x' axis,
6,=80,,— 6,, Then 6,,0,,,0,, are diffusions with 0 drift and

00y, = (y); =By, (8); = (B + By)sin’d,,
(0,,0,), = By — %(BL + ,BN)sin20,.

Here 6, is not necessarily confined to (0, 7) as it was in Lemma 5.1.

6. Characterization of the potential (irrotational) case. Although the
terms “potential” and “solenoidal” were picked as descriptive of the generating
field U (see Section 2), we should expect them to be reflected in appropriate
properties of the flow itself. Among homogeneous not necessarily isotropic flows,
the solenoidal ones are characterized by the preservation of Lebesgue measure;
this is known in various settings and is to be expected from the analogous
relations between fluid flows and their velocity fields. Alternatively they are the
ones whose finite-point diffusions are reversible for Lebesgue measure. The
argument for both properties is like that given in [12] for flows in R2.

To characterize potential isotropic stochastic flows in a manner related to
rotation, we recall that for smooth nonrandom flows in R? the curl at a point x
is the sum of the angular velocities of any two mutually perpendicular tangent
vectors in 7T); see [27], 10.2 and 10.5 for this and an analogous property for R?.
Recalling the definition of 6,, in (5.4), we shall see that among isotropic flows in
R? the potential ones are characterized by having (6, + 6,), = 0 whenever
6,, — 0,, is an odd multiple of /2. Here is the result for R” It is not quite a
straightforward analogue of the three-dimensional result given in [27] for the
deterministic case.

THEOREM (6.1). Let v,,, v,, be tangent vectors from T,. We assume that the
initial values v, and v, (and, hence, v,, and v,,) are noncollinear. Let

Uy 0y
[0 vg
be the unit angle bisector of v,, and v,, and let
Oy Dyt
o)
[0 0]/

be a unit vector in the span of v,, and v,,, orthogonal to ¢,. Then M, = [{(d¢,, ¥,),
which measures the rotation of ¢, in the plane spanned by v,, and v,,, is a

Uy Vgt

[01] |09

Oy, Uy

[O1] [0
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martingale with

( U1y © 2t)

ERREY R

1
(6-2) (M), = Z (3:BN - B+ (BL :BN)

In particular, only the potential flows, among the isotropic ones, have the
property that (M), = 0 whenever v, and v,, are orthogonal vectors.

Proor. Let u,=v,, v,=1v,, &,=u,/lul %,=v/lv) If Y is a vector
quasimartingale (in [15], Chapter 3, a quasimartingale is defined as a continuous
semimartingale) with |Y;| # 0, we have from It6 calculus

Y\ dY (Y,dY)Y
(|7|) IEOLG

(6.3) + l{— —1—3- [2(Y,dY)dY + Y(dY, dY)] + M

AN Y]

dy (Y,dY)dy

weowP

Here, as usual, dY'dZ’ means d{M"*, N’), where M* and N’ are the martingale

parts of Y* and Z/, respectively. Applying (6.3) to ¢ = Y/|Y|, where Y = & + o,

and noting that ¢ and ¢ are orthogonal, we have, for M, as defined in the
statement of the theorem,

dz+o) (&+o,di+ dd)d(ic+ o) u—a)
8]

+ terms in the direction of Y.

6.4 dM = - ,
(6.4) & + B &+ B*

The martingale part M* of i +  satisfies
du N dv (u, du) (v, dv) ]

= u
lul o] |uaf? lof?

This contributes a martingale part N to the right side of (6.4) satisfying

—(du, F) + (dv,G ,
N = ~( u~ ~) ~(v )’ sz_(u v2)u’
| + 0| |& — D] |ul|v] [
(6.5)
u,v)v
G=u_(‘v|2) , (F,u) =(G,v) =0.
|

After some calculations, using (4.11), we find that ( N); has the value given on
the right side of (6.2). To complete the proof notice that the drift term in dM is
antisymmetric in & and © and is also invariant under the replacement of &, ¥ by
Gii, Go for any real orthogonal G. This follows directly from the isotropy of the
flow. Choosing G so that Git = , Gb = &, we see that dM has zero drift, as
required. O
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7. Liapounov characteristic numbers (exponents). For fixed x € R? the
L(R%)-valued process DX,(x), whose law does not depend on x, satisfies

aw)

a
(7.1) DX,,(x) = DX/(x)DX,(x), s,t>0,

where X’ is an independent copy of X; this follows from the independence of the
“increments” of the flow. Hence, we should expect the behavior of M, = DX,(x)
to resemble that of a product of independent random matrices. Since M, is
nonsingular, because X, is a diffeomorphism, we have M, = (M,N; ')N,, where
N, = (M}M,)'/* is symmetric strictly positive definite and M,N, ' is unitary.
Thus the semiaxes of the ellipsoid M,S%! are (A;,)"/2, 1 <i < d, where A, >
Ay, = -+ = Ay > 0 are the characteristic values of N2 The Liapounov expo-
nents p; may be defined as the limits

(7.2) i log A,
. ;= lim ,
ot t— o0 2t
which can be shown to exist and to be constants a.s.; actually p; > py > --- > pgy

for isotropic flows.

Carverhill [6], [7] has discussed the exponents for stochastic flows on compact
manifolds, and has treated their relation to asymptotic properties of the flow. (In
this case (7.1) does not hold, and a multiplicative ergodic theorem is used.) Many
of his results remain valid for isotropic flows in R%. Baxendale [3] has treated
flows on manifolds by different methods and has evaluated the p; for isotropic
flows in R% Le Jan [21] and Newman [25] have evaluated the p; for certain
operators related to DX,(x) and Le Jan [22] has done it for isotropic flows.
Furstenberg [11] discusses the asymptotic behavior of products of independent
identically distributed random matrices. In particular his Theorem 8.3 shows (in
a slightly different situation from ours) the exponentially fast alignment of
columns in the random product. See the remark above (5.2).

It has been shown in [3] that for isotropic flows

(7.3) pi=tl(d-i)By—iB], i=1,....d.

Here we note only that the value of u, follows readily from our earlier calcula-
tions, although we shall shortly also obtain p, in the case d = 2. In fact, we have

P
M, = ‘ )
of, v 0g
where v, = DX,(x)(e;). Then the trace of M}M, is ¥;|v,,|* and, hence,
. logA,, . logXA,
g, = lim = lim
t— o0 2t 2t
(7.4)
logX|v,|> 1
= lim—% = — -1 -
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from (4.6). Compare Theorem 2 of [7]. From (2.13) we see that if d < 3 and the
flow is close to potential, then n, < 0 (Liapounov stability.) Conversely if d > 4,
or if d = 4 and the flow is not potential, then u, > 0.

For the case d = 2, assumed in the rest of this section, we can use the results
of Section 5 to get additional information about the shape of M,S?, and at the
same time we show how to find the distribution of lim,_,  |v,,|/|v;,| for two
tangent vectors from 7T,,. We shall put S' = C, DX,(x) C = C.,.

Let e,, e, be an orthonormal basis in T, and represent C as {v,,0 < a < 27},
where v, = cos ae; + sinae,. Let v;, = DX,(x)(e,) and let «, be the value of « in
[0, ) for which |DX,(x)(v,)| is maximum. There are minima at «, + 7/2, as we
see from the polar form of M,. We shall see that a.s. «, has a unique determina-
tion, continuous in ¢, for sufficiently large ¢.

Let A, and a, be the lengths of the semimajor and semiminor axes of C,. Let 6,
be the angle between v;, and v,,. Let R =lim,_  |v,]/|v,,l, 0 < R < oo (see
(5.3)).

THEOREM (7.5). With the above definitions:
1/2
(a) A~ (o2 + 10,0%) 7" ~ [oJ(1 + R, - o,

a [01,] [0g,Isin 6, |vy,|R sin, £ o
- 12 = on1/2? ’
(lowl® +lo?) ™ (1 + R?)

a, Rsiné,
A, 1+ R¥
(b) Almost surely there exists a random t, such that for t > t, there is a
continuous choice of a, € (0, 7/2) U (7/2, 7), such that lima, = o«* and
@) if 6, = 0, then o* € (0, 7/2) and tana* = R;
(i) if 6, > 7 then o* € (7/2,7) and tana* = —R.
(From (5.1), lim 8, = 0 or = with probability ; each.)
(c) If v* = v,. and v is any vector in C making an acute (obtuse) angle with
v*, then the angle between DX, (x)(v) and DX, (x)(v*) — O0(7) as t — oo.

t— 0.

Note that v* is orthogonal to Carverhill’s V", in Theorem 2.1 of [6]. Note
also that (b) and (c) can be obtained from Liapounov theory once we know that
p; > py. Conversely from (a) we obtain p, — p, = lim(log(a,/A,))/t =
lim(logsin 8,)/t = — 3(B, + By) < 0, verifying (7.3) when d = 2.

We are indebted to R. Arratia for the following corollary and its proof.

COROLLARY (7.6). The distribution function of R has the density (2/7)(1 +
r?)=Y r > 0. (From this one can deduce the density of lim |v,,|/|v,,| when v,
and vy, are arbitrary nonzero vectors in T,, using the linearity of DX,/(x).)

ProOOF OF (7.5). (a) A;, and A,, are given by
2 . 1/2
ol? + |vg,)® + [(|01z|2 + |'-72:|2) - 4|’-’1z|2|v2t|2sm2az]

2
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with the + and — sign, respectively. Since A, and a, are \/7\‘1: and \/X; , (a)
follows from (5.2) and (5.3).

(b) Note that since 6, € (0, 7) and lim#é, = 0 or =, (v,,, v,,) ultimately stays
>0 or <O for t> some random ¢, henceforth supposed. Putting F,(a) =
|DX,(x)v,|, we have

F(a) = 5(|oy)? + |v]?) + §(cos2a)(|vy,]* — |05,]%)
+ (sin2a)(v,,, vy,), O<a<m.

From this it follows that if (v,,, vy,) > 0, the smallest critical value of « in (0, 7)
is at a, € (0, 7/2) where cot2a,= (1 — R?)/(Rcos8,), R, = |vy|/|v,, This
determines 2a, € (0, 7) and «, € (0, 7/2) -uniquely with F,”(a,) <0, so that
F(a,) is maximum. Then limcot2a, = cot2a* = 1(1 — R?)/R, which de-
termines a* uniquely by o* € (0, 7/2), tana* = R. If (v,, vy,) <0, F(a) has
a minimum at &, € (0,7/2) and a maximum at «,= &, + 7/2 € (7/2, ),
satisfying cot2a, = cot2&, = +(1 — R?)/(R,cos8,). In this case limcot2a, =
cot2a* = — 1(1 — R*)/R and «* is the unique angle in (7/2, 7) satisfying
tana* = —R.

(¢) Put v, = DX,(x)(v) where v = cos e, + singe, € T,, v* = cosa*e, +
sin a*e, where o is as in (b), v; = DX,(x)(v*). Then v, = cos ¢v,, + sin ¢v,,,
v} = cos a*v,, + sina*v,,. If 6, > 0, we have sina* = R/ V1 + R? cosa* =
1/V1 + R?, (v,,, vy,) ~ |0y |0y, and we find

(v, 0f)  cos(¢ — a*)

im = .
t=o0 |0 [0f]  cos(¢ — a¥)]

If 6, > 7 we have sina* = R/ V1 + R?, cosa* = —1/V1 + R?, (v, vy,) ~
—|vyl |vg,l, and we find that the limit is the same, proving (c). (Note. We shall see
in a moment that «* has an absolutely continuous distribution, so the above limit
is a.s. well defined.) O

ProoOF oOF (7.6). Although o* was defined with respect to a particular
coordinate system, one can see from isotropy that its distribution is the same for
any orthonormal basis e, e,. It can be seen from this that «* must have an
absolutely continuous distribution and in fact must be uniform on (0, 7). Since
R = tana* if o* € (0, 7/2) and —tano* if a* € (7/2, 7), (7.6) follows. O

8. Arc lengths. Let y(u), a < u < b be a piecewise-C' continuous curve in
R? (having bounded continuous first derivatives on each piece), with |y’(u)| # 0
at each C! point. Put v,(u) = X,(y(u)), L, = [2|y/(v)| du = length of y,. Because
of the diffeomorphic property of the flow v, is also piecewise-C' and |y;(u)| # 0
at each C! point.

Since y;(u) is a tangent vector, we have in law for fixed u (see (4.6))

(8.1) () = [v'(u)lexp{ B, W, + $[(d — 1)By — B.]t},
(8.2) dlv/(u)l = v, (w)|{ B, dW, + $(d — 1)By dt}.
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To exhibit the dependence of the r.h.s. of (8.2) on u write
t
(8.3) i)l = 1y ()] + M(w) + 1(d = 1)By [[ri(u)) ds,

where, using (4.13) with v,, = vy, = v/(u),

’ ’ 2
(8.4) (M(u)), = (w)|.
Since |y'(u)| is integrable and DX,(x) is continuous in (¢, x), we may integrate
(8.3) on u to get

(85)  L,=Ly+N,+ }(d- l)BNfOthds, N,= [*Mu)du.

Using (8.1) and (8.4), one can get estimates insuring that N, is an L, martingale.
It has continuous sample functions. One can check that

b b
(8.6) (N, = ["du, [ duy( M(u,), M(us,)),.
In differential form (8.5) is
(8.7) dL, = dN, + (d — 1)ByL, dt,

whence L, is a submartingale with EL, = Lyexp{3(d — 1)Byt} — oo as t — oo.

If uy, u, € [a, b], denote Yz(u2) Yu) = X(v(uy)) — X(v(uy)) by
V(u,, u,) or by V, if u, and u, are understood. Fixing u, and u, for the
moment, let v,, and v,, denote y/(u;) and v;(u,), respectively. Since M,(u,) is
the martingale part of |v,|, i = 1,2 we have from (4.12)
(8:8)  (M(w,), M(us)); = =log) 'logd ™' X v3,04,0004,0,0,67(V,).

Upq

Referring to the remarks below (2.2) we see that 4,0 bp"(V) = d,0;6790) +
OK(1 A V?2) where K € (0, c0) depends only on the correlatlon tensor b; here
|®] < 1. From (2.10)

2
(Uw ”2:)

|01, ] 124l

<M(u1), M(u2)>; = 3(B = Bn)Ivy vy, + 5(Br + Bw)

+OK(1 A V2ol [0g]-

(8.9)

From (8.6) and (8.9)
1
(N = 5 (Be = By [y [ dusl () v wz)]

1 oo (i), vi(y)
+ (B By [ e e S
b

(8.10) +OK(1 A &) [*du,

a a

_ l _ 2 b (vi(w), Yt(ﬁz))z
= (B = By)Li + (BL+BN)f dulfa ACBIINACS]

du2|yt’(u1)| /(1)

+OK(1 A A%)L2,
where A, < L, is the diameter of v,.
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From (8.7) and (8.10) the behavior of L, when it is small depends on the shape
of v, (approximately) only through the integral

I= /;bfb(Yz'(%)a Yf(uz))z

(8.11) a Iv/(u)l v (up)|

du, du,.

LeEMMA (8.12). If v is an arc satisfying the conditions at the beginning of
this section, put

I(y) = fbdulfbd (Y/(ul)’ 'Y,(uz))2

u - -
a a 2 |y’(u1)||y(u2)|

and let L(y) be the length of y. Then (L(y))?/d < I(y) < (L(y))?, and both
bounds are attained, the maximum when and only when v is (geometrically) a
straight line segment.

NoTE (8.13). There are many minimizing shapes. One example occurs when y
consists of d pairwise perpendicular line segments of equal length. If d = 2,
circles, semicircles, and all regular polygons are minimizing shapes.

Proor oF (8.12). The statement about the maximizing shape is obvious. For
the lower bound, since I(y) is invariant under a change of the arc parameter, we
may as well assume |y () =1. If y'(u) has components y'{(u), let hY =
J2Y'(u)y(u) du. Then I(y) = L, (h¥)? > T(h)? > (1/d)(Z;h*)? =
(1/d)b — a)* = (L(y))?/d. One may easily check that the first example men-
tioned in (8.13) attains this minimum, and the values for the others can readily
be calculated. O

Putting together (8.7), (8.10), and (8.12) applied to vy,, we have the following
result.

THEOREM (8.14). With the initial arc y described at the beginning of this
section
dL,= dN,+ }(d — 1)ByL,dt,
where for the martingale N we have

(d+1)8, - (d-1)By
(8.15) 2d

L7~ K(1 A &)L < (N,

<B.L?+ K(1AA)L2,

the upper bound corresponding to a geometrically straight v,, the lower to any of
the shapes in (8.13).

From (2.13), (d + 1)8;, — (d — 1)By = 0, with equality only in the solenoidal
case.
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We shall be interested in conditions under which L, - 0. A logarithmic
transformation is suggestive. From (8.14)

(8.16) dlog(f—:)) = dfl\:' +A(t)dt,  A(t) = %(d— DBy = %<Z>t,
and from (8.15)
1 1 1
§(d_— DBy = 5B - gK(l A B3) < A1)
2d2—-d -1 d+1
(8.17) < (T)BN - ( 1d )BL

“K(LA &),

(8.18) (d+ 1)BL2_d(d— 1)BN 1 A A2 </ 7 >; S,BL"'K(l A Azt)'

If A,< L, is small then (fdN/L), = (N),/L? is bounded between positive
constants (the lower one is strictly positive except in the solenoidal case). If
d = 2, and if the flow is potential or not too far from potential as measured by
B./Bxn, the upper bound in (8.17), which corresponds to one of the shapes of
(8.13), is negative when L, is small. Since L,, no matter what the shape, thus has
a negative logarithmic drift rate when small, it should have a chance of approach-
ing 0, as will be seen to be the case in the next section.

For d = 3 the situation is interesting because a short straight arc has a
negative logarithmic drift in potential or near potential cases (the lower bound in
(8.17)), but a short arc of the type in (8.13) has a positive logarithmic drift (the
upper bound in (8.17)). We have not settled what happens in this case. One might
surmise from the results of Section 7 that a short arc tends to straighten itself
out, in which case the lower bound in (8.17) might be relevant.

For d > 4 (3.16)(a) shows that a fortiori L, = o0 ass.

9. Decrease of arc lengths. Rather than the logarithmic transformation of
Section 8, it seems simpler to use the following proposition, stated here for any
quasimartingale L, > 0 and continuous martingale N, subject to the indicated
conditions, and adapted to a common filtration. (See the definition of “quasi-
martingale” above (6.3).)

ProposITION (9.1). Suppose dL, = dN, + ;AL,dt (cf. (8.14)), L,> 0,
(N); > 8L} — K L}, where 0 <X <8 and K, >0 are constants. Then there
exist constants L > 0, B > 0, and 0 < A < 1 such that
(9.2) P(L,<e PLVt>0)>1-(Ly,/L)"

whenever L, < L. In fact we may take any A € (0,1), B> 0, L > 0 such that
(1)KL<8—7\and(11)A(8—KL)+2B<8—}\ K,L.
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Proor. Let A, B, L satisfy (i) and (ii) and put f,= (e®L,)* Then f, =
Ly < L* and
(1-4)
L;
Let 7 = inf{¢t > 0: f, = L“}. Then df, = Ae“B'LA~' dN, + C/ dt where, for t < 7,
C/ < jAe*P'L{2B+ X - (1 - A)(8 - K ,L,))}
< 1Ae*BLMA(B- K L)+2B- (8§ -A-K,L)} <0

1
df, = Ae*P LYV dN, + S ALY - {23 +A— (NY;) dt.

by (i) and (ii). It follows that f,, ., is a positive supermartingale with values in
[0, L] and

(93) P(r=o00}=1-P{r<ow} =1~ lim P{r<t} >1- (L,/L)*,
t— o0
ie, P(L,<e PLVt>0)>1-(Ly/L)*it Ly<L. O

Considering (9.1) in relation to (8.14) and (8.15), and noting K(1 A A%) <
KA, <KL, we may take K=K, 8=[(d+1)8,—(d— 1)Bxy1/2d, X =
(d = 1)By. Then § — A =[(d + 1)B, — (d — 1)(1 + 2d)By]1/2d. Using (2.13) we
see that § — A > 0iff d = 2 and £ < B, /By < 3. We can then choose A and B so
that (ii) holds. Combining the above results:

THEOREM (9.4). Supposed = 2 and § < B;/By < 3. Let K be as determined
below (8.8). Pick L > 0, A € (0,1), B > O so that (i) and (11) of (9.1) hold, where
8 =3B, — Bn)/4, A= Bn, K, = K. Let y be an arc as in Section 8 with initial
length Ly < L. Then P{L, < s Vit>0}>1-(L,/L)"

ExampLE. d =2, B, =3By (potential case). Take KL = pfy, B = vBy,
where p,» > 0, p+2r <1; A= — p~ 2»)/(2 — p). Note that A < 1 but we
can make ; — A arbitrarily small.

We can strengthen (9.4) as follows. The general idea is that if the diameter A,
of y is small, then P(L, — 0) is close to 1 even if L, is large.

THEOREM (9.5) (Conditions and notation of (9.4), but allowing any L, < o0).
(@) If Ay < L/5, then P(L, - 0) > 1 — (5A,/L)A. (b) If A, = diameter of Y, =

X,(v) then P(L, - 0|A, —» 0) = 1, whatever the values of A and L, provided
P(A, - 0) > 0.

PROOF. Let y be as in (9.4) with A, < L/5. By a simple geometrical con-
struction we see that there is a C' simple closed curve y’ of length < 5A, having
y in its interior. Let L, (resp. A’) be the length (resp. diameter) of vy, = X,(Y').
From (9.4) we have, using A, < A, < ;L)

P(Ly<e BLVt>0)>1- (54,/L)",
(9.6) ( t ) ( 0, )

P(A,<1ePLVt>0)>1- (50,/L)%,
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the second line of (9.6) following from the first. Part (a) will now follow as soon as
we have proved part (b).
From (8.15) we have

(9.7) (N), > 8L? — KA,L?.
Defining f, and C/ as in the proof of (9.1), we have, using (9.7),
(9.8) C/ < 1Ae*BLA2B+ X\ — (1 - A)8 + (1 — A)KA /],

and Cj < 0 from (9.2)(ii). Hence if A, » 0 then eventually C; < 0. Let o, =
inf{t > n: C/ 20}, 0,= o0 if C; <OV ¢2>n. Since {f,,,: t=n} is a positive
supermartingale, lim,_, . f, ., exists and is finite, whence the same is true of
lim f, on {6, = «}. Hence L, > O on {6, = w0}, n =1,2,.... Then

99) P(A,-0) < P(U(o,, - oo)) — lim P(, = o) < P(L, - 0).
This completes the proof, since L, > A,. O

REMARKS (9.10). (1) Under the conditions of (9.4), if x € y there is a.s. a
subarc of random length containing x whose length — 0 (use the Borel-Cantelli
lemma). (2) Under the conditions of (9.4), if B, is a ball of radius r, then
lim, , P{lim,_, diam(X,(B,)) = 0} = 1. For a general result for balls in com-
pact manifolds of dimension d > 2 in cases of Liapounov stability see Carverhill
[6], 2.3.3. (3) Lemma (3.12) (c) implies a fortiori that if d = 2 and B8, /B8y < 1 then
P(L, - 0) = 0. We cannot say what happensif 1 < 8, /8y < 5/3. (4) We cannot
say what happens to an arc of large diameter under the conditions of (9.4).

10. Volumes. We have already mentioned that results on volumes in com-
pact manifolds have been obtained by Carverhill [6]. Here we confine ourselves to
a few remarks that are readily established from what has gone before, using also
the following fact: If {X,, ¢ > 0} is an isotropic diffeomorphic flow in R? of the
type studied above, then for each fixed ¢ the transformation X, ! has the same
law as X,. This can be established by an argument similar to that in [2], Section
6 dealing with flows on spheres.

Let J(x) = J(X,, x) = det(DX,(x)). J,(x) > 0 since X, is diffeomorphic and
X, is the identity. From (7.1), extended to several factors, and the continuity in ¢
of J,(x), we see that for fixed x

(law)
(101) J(x) = exp{laVVt(x) + bt},

EJ(x) = exp{}a®t + bt}.
On the other hand, arguing as in [12], Section 3, if ¢ € CP(R%, R}),

o(x)dx =E| ¢(X,(x))dx
RY RY
= EfRd(b(y)J(X[‘, y)dy

_ p(a?/2)t+bt d
e ’
/ | () dy
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whence b = — 1a® and J(x) is a martingale with finite moments of order
1,2,....
Using (7.2) and (7.3) we have

log J,(x) . XlogA, d
Jim ——t’—~ = lim 2t—t =Xu, = Z[(d ~ DBy~ (d+1)B].

But limlog J,(x)/t = — ia? whence a* = (d/2)[(d + 1)B, — (d — 1)B]. From
(2.12) this is E(div U(x))?.

If B is a bounded Borel set in RY |-| denotes Lebesgue measure, and
B, = X,(B), then |B,| = [J,(x) dx is a positive martingale with finite moments.
Hence lim, , | B,| exists and is finite a.s.

The quadratic variation of the martingale can be evaluated, but is not given
here. We have not settled in general what the nature of lim|B,| is, although under
the conditions of Theorem 9.4, taking y as a simple closed curve and B as the
interior of y, we can get a lower bound for P(|B,| — 0).

See also Le Jan [23] and the Addendum at the end of Section 1.

11. Homogeneous nonisotropic flows. In this section we indicate briefly
the extent to which our results are valid when the isotropy condition (1.2) is
dropped. We still assume homogeneity. Consider the vector field V(x) on R¢
given by

(11.1) VP(x) = ltilrr(}t”E(X{’(x) — xP).

V(x) is the (I1t0) drift of the flow. By homogeneity V(x) = V,, a constant vector
field. The flow determined by the correlation tensor b and the drift V|, now
satisfies
(112)  dX,(x)= X VA X(x)dW + Vydr,  Xy(x) =x,

a>1
where the V, and the W are as in Section 3. It can be seen that the effect of V
is merely to superpose a constant drift in the direction V, on a flow with zero
drift. The correction term for Stratonovich drift, again ;3 d,679(0) as in the
isotropic case, is now not zero in general, so we may take either the 1td or the
Stratonovich drift to be 0, but not both.

The displacement V, = X,(x) — X,(y) is still a diffusion in R% It has diffusion
matrix (V?, V9, = 2(b?90) — b”%(V,)). The tangent flow DX, (x) satisfies (4.1).
For fixed x and v,v, = DX,(x)(v) is a'diffusion in RY with zero drift and
diffusion matrix

(11.3) (0P, 07y, = — Y viv/d,0,;6"(0).
LJ
Since v, satisfies a linear stochastic differential equation we may follow the
method of Has’minskii [14] to determine the asymptotic behavior of |v,|. Putting
b, = v,/|v,], B, is a diffusion on S~ ! whose generator may be computed in terms
of 9,0,6790). In particular, under the nondegeneracy condition that
- ) vwuPu?9,9,b790) > 0

i J, P, q
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for all u, v # 0 (notice that > 0 is automatic), the process &, will be a nondegen-
erate diffusion with a (unique) smooth invariant probability measure » on S¢~1,
o, = log|v,| can be written in the form

(11.4) do = f(%,) AW, + g(%,) dt,
where the functions f, g: S~ ! - R are givén by
(11.5) (F(8)" =~ ¥ oposuis/a,0,67%(0),
i,j,p,q
(11.6) - g(d)=-1 Y (8P7—20P07)5!%] 813/bp‘7(0)
i,J,p,q

We see that o, = log|v,| is not a diffusion; its rate of change depends upon the
direction of @, = v,/|v,). In particular Has’minskii shows that the asymptotic
behavior of |v,| is determined by the average value [qu-18(%) dv(9).

The Liapounov exponents u, > py, > -+ = p, exist as before. Assuming that
B, > po it will again follow that tangent vectors v;, = DX, (x)(v;), i = 1,2 will
align themselves exponentially fast, for any noncollinear v,, v, € T,. Also the
ratio |v,,|/|v,,| Will converge. However in general the angle 6, between v,, and v,,,
and log(|vy,|/|v,,), Will not be martingales and 6, will not be a diffusion.

The result on the shrinking of arcs depends upon a comparison of the sizes of
the martingale and drift parts of L,. In the nonisotropic case both of these terms
will depend strongly not only on the shape of the curve but also on its orientation
inside R?, so that our techniques do not apply.

Finally, our result in Section 10 that the Jacobian J(x) is of the form
J(x) = exp(aW, — 1a’t) depends only on homogeneity together with the fact
that X, and X, ! have the same law. By the comment earlier in this section we
may assume without loss of generality that the flow has zero Stratonovich drift.
Our result now follows. The constant a is given by

a?= Y (divV(x))’ = - Za 3,6"(0

ax>1

The argument that |B,| is also a martingale follows as before.
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