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THE CENTRAL LIMIT THEOREM AND POINCARE-TYPE
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We use Poincaré-type inequalities to prove the sufficiency and necessity of
the Lindeberg condition in the central limit theorem.

Borovkov and Utev (1983) defined the functional
Var[g(X)]

U(x)= SI;P m,

for any random variable X with finite variance o2, where the supremum is taken
over the class of absolutely continuous functions g such that 0 < Var[g(X)] <
00. They proved that

U(X)>1 and if U(X) =1, then X has a normal distribu-

@) tion.
Using this result they further proved that

if X, X,,... is a sequence of random variables such that
@) U(X,) — 1, then the moment generating function of (X, —

EX,)/[Var(X,)]"/? exists and converges to that of the
standard normal random variable in a neighborhood of zero.

It is natural to ask if (1) can also be applied to prove the central limit theorem
under the Lindeberg condition. This question was in fact raised by Kotani (1985)
and motivated the present work.

The existence of the moment generating function of X, in (2) is due to the
finiteness of U(X,) (see Borovkov and Utev, Theorem 2). Since the central limit
theorem does not require such a strong condition, arguments different from those
of Borovkov and Utev would have to be used. It turns out that a Poincaré-type
inequality for sums of independent random variables proved along the same line
as in Chen (1985), Section 2, is the key to the solution of this problem. Using this
inequality we can prove not only the sufficiency of the Lindeberg condition but
also its necessity.

In order to facilitate application, we restate (1) in a different form. Let C}(R)
be the class of functions g such that g and g’ are bounded and continuous.

PROPOSITION 1. Let X be a random variable with finite variance o2 > 0. If
Var{g(X)] < ¢2E[g'(X)?] for g € CXR), then X has a normal distribution.
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To see that (1) and Proposition 1 are equivalent, we define

Var[g(X)]
U(X)= sup ——r——r
eccrm oE[g/(X)Y
Var{g(X)]>0
and
Var[g( X)]
U(X)= sup ——r—— o,
geClR) O E[g (X) ]
Var{g(X)]>0

where C3°(R) is the class of C* functions on R with compact support. Then we
observe that by definition, U(X) > 1 and that by Theorem 2(i) of Borovkov and
Utev, Uy(X) = Ug(X) = U(X).

Since we are interested in both an application of Poincaré-type inequalities
and a new proof of the central limit theorem, it is fitting to examine the
arguments which lead to (1) and hence Proposition 1. There are three different
proofs of (1). All begin with a variational argument. After that the first uses the
method of moments (see Borovkov and Utev, Theorem 3). The second uses the
characteristic function [see Chen and Lou (1987), Theorem 2.1 and Corollary
2.1]. The third uses differential equations (see Chen and Lou, Lemmas 4.1 and
4.2).

We now prove the sufficiency of the Lindeberg condition. Let X,,,,..., X, ,
n > 1, be a triangular array of row-wise independent random variables with zero
means and finite variances ¢2,..., 02 such that X} 0% = 1. Let W, = X=X,
and W = W, — X,,,. By Theorem 2. 1 of Chen (1985),

Varlg(W,)] < ¥ E[Var*g(w,)],
i=1
for g € CY(R) such that |g(x)| < C(1 + |x|) for some constant C. Now the
right-hand side of the inequality satisfies

3 EE™[2(W,) - (W) — E"(g(W,) - g(W))])

i=1
r"

< Y E{[eW,) - g(W®)]*}

L |
= gE{[ (WD + t) dtr}
< ?E{ [ (W + 1) dt}
- gE{ il KXo > £> 0) = 1(X,i < £ < 0)][£/(W + ¢)] at)

_y 7 Elg(we + )| kO(@) at,

i=1" "
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where K()(t) = EX,[I(X,;>t>0)— I(X,, <t < 0)] >0. Define the prob-
ability measure v, on #(R?) by

[fdn= X [* (WO, KO ar,
R2 )

i=1"-
for bounded and continuous functions f on R2 Also define y: R?2 > R by
¥(x, y) = x + y. Then, combining the above inequalities, we have the following
Poincaré-type inequality for W,: For g € CY(R) such that |g(x)| < C(1 + |x]|) for
some constant C,

®3) Var[g(W,)] < f.. (&) dv, oy

Let »P(A) = v,(A X R) and »?(A) = »,(R X A) for A € B(R). Since

Tn

WA >e)= L [ KO(t)dt

i=1"1t>e

= Y EX (X, — )"

i=1

< Y EXZI(X,| > ¢),
i=1
the Lindeberg condition implies that »( = ¢,, the Dirac measure at 0, as
n - oo. Now EW®? < EW,? = 1 for each n and i implies that {»{"} is tight and
hence relatively compact. Let {»(} be a weakly convergent subsequence and let
v\ = L(Z). Then v, = Sf(ﬁ) and hence v, o y~! = £(Z). It follows from (3)
that for g € Ci(R),

(4) var(g(2)] < E[g/(2)"].

If we show that Z has a standard normal distribution, then 2( W,) = N(0,1)
is proved. By Proposition 1 it remains to prove that Var(Z) = 1. First, we
observe that by virtue of EW,2 = 1, Z is square integrable. Let ¢, € CXR) be
increasing such that |¢;| <1 and

x, if |x| < a,
o (x)={a+1, ifx>a+2,
-a-1, ifx<-a-2.
By 3),

Var[Wy, — 9u(W,)] < [ (1= 9) oy
Since v, o Yy~! converges weakly, {7, o ¢!} is tight. Therefore for ¢ > 0,

Var[W,, — ¢,(W,)] < fa (1 -g) dvnf°¢“s g,
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for sufficiently large a. Now (Var)'/2 is a seminorm and so
|1 - [Var(@ (W,))]"*| =|[Var(W,)]"* - [Var(e.(W;))] |
< [Var(W,, - @ (W,))]"*
<¢€/2,
By letting n’ — oo and then a — oo, we obtain
1 - [Var(2)]"?| < &2

This implies that Var(Z) = 1 and hence #(W,)) = N(0,1).
We now prove the necessity of the Lindeberg condition. First, we need two
simple propositions.

PROPOSITION 2. The Lindeberg condition holds if and only if v? = ¢,

ProOF. The “only if” part has been proved above. The “if” part follows
from the mequahtlw

Z E|X, (X, —&) = Z E|\X (1 X — e)I(X,.i| > 2e)
Z%ZEle(l > 2e). m]

For the next proposition let CZ(R) be the class of functions g on R such that
g, & and g” are uniformly continuous, |g(x)| < C(1 + |x|) for some constant C
and g’ and g” are bounded.

PROPOSITION 3. Let Z and T be independent random variables such that Z
has the normal distribution with mean 0 and variance ¢% > 0. If Var[g(Z)] <
02E[g(Z + T)?] for g € CL(R), then T = 0 w.p.1.

PROOF. By the variational argument used in Borovkov and Utev (1983) or
Chen and Lou (1987), we have

EZh(Z) = o’ER(Z + T),
for A € CZ(R). This equation also holds for A(x) = x3 by approximating this
function by functions of CZ(R). So

o*=EZ*=302E(Z+ T) .

The finiteness of E(Z + T)?> and EZ? implies that of ET2. By expanding
E(Z + T)? we obtain 02 = ¢% + ET? which implies that ET?=0andso T = 0
w.p.l. O

For the proof of the necessity of the Lindeberg condition we need the usual
assumptlon that for every e >0, max,_;_, P(|X,;| >¢) >0 as n - oo. Let
g € CL(R). For every e >0, let § >0 be such that 1g'(x)? — g'(¥)? < e for
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|x — y| < 8. Then we have

> [" Blg(Wo + 0) - g/(W, + 1)K dt[

i=1 —00

(5) < C{ 2 P(X, > 8) [ K9(e)de+e 5 30 dt}

i=1"—o0
< C[ max P(X,;|>8) + e],
1<i<r,
for some constant C. Define the probability measure 7, on Z(R) by
[far,= % [7 {(&)K(e) at,
R i=1"—

for bounded and continuous functions f on R. In view of (5), the inequality (3)
can be written as

(6) Varlg(W,)] < [* E[g/(W, + t)]5,(at) + o(0).

Suppose £ (W,) = N(0,1). Let {#,} be a subsequence of {7,} which converges
vaguely to a subprobability measure 7. By an application of the Ascoli-Arzela
theorem, it is not difficult to show that for g € CZ(R) such that g’ has compact
support,

/7 ElgW, + oY]5(ae) > [ E[g/(z + 1)]5(ar),
— o0 — 0
where Z is a standard normal random variable. So by (6) we have
o0
() Var[g(2)] < [~ E[g(Z + t)"]5(at).

By approximating CZ(R) by those functions g of CZ(R) such that g’ has
compact support, (7) holds for g € CZ(R). By letting g(x) = x, we get

15 [ w(ar),

and so 7 is a probability measure. By Proposition 3, # must be ¢,. Hence 7, = .
But 7, = 5®. By Proposition 2, the Lindeberg condition holds. This completes
the proof.
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